Multi-plate nozzle and method for dispensing random pattern of adhesive filaments

- Nordson Corporation

A nozzle for dispensing a random pattern of liquid adhesive filaments. The nozzle may include first and second air shim plates, an adhesive shim plate and first and second separating shim plates. The first and second air shim plates each have respective pairs of air slots. Each air slot has a process air inlet and a process air outlet and the air slots of each pair converge toward one another such that the process air inlets are farther apart than the process air outlets in each pair. The adhesive shim plate includes a plurality of liquid slots each with a liquid outlet. Four process air outlets are associated with each of the liquid outlets. The process air slots are adapted to receive pressurized process air and the liquid slots are adapted to receive pressurized liquid adhesive. The pressurized process air discharges from each group of the four process air outlets and forms a zone of turbulence for moving the filament of liquid adhesive discharging from the associated liquid outlet in a random pattern.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates generally to air-assisted nozzles and systems for extruding and moving filaments of viscous liquid in desired patterns and, more particularly, air-assisted dispensing of hot melt adhesive filaments.

BACKGROUND

Various dispensing systems have been used in the past for applying patterns of viscous liquid material, such as hot melt adhesives, onto a moving substrate. In the production of disposable diapers, incontinence pads and similar articles, for example, hot melt adhesive dispensing systems have been developed for applying a laminating or bonding layer of hot melt thermoplastic adhesive between a nonwoven fibrous layer and a thin polyethylene backsheet. Typically, the hot melt adhesive dispensing system is mounted above a moving polyethylene backsheet layer and applies a uniform pattern of hot melt adhesive material across the upper surface width of the backsheet substrate. Downstream of the dispensing system, a nonwoven layer is laminated to the polyethylene layer through a pressure nip and then further processed into a final usable product.

In various known hot melt adhesive dispensing systems, continuous filaments of adhesive are emitted from a multiple adhesive outlet die with multiple process air jets oriented in various configurations adjacent the circumference of each adhesive outlet. The multiple air jets discharge air generally tangentially relative to the orientation of the discharged adhesive filament or fiber as the filament emerges from the die orifice. This process air can generally attenuate each adhesive filament and cause the filaments to move back and forth in overlapping or non-overlapping patterns before being deposited on the upper surface of the moving substrate.

Manufacturers of diaper products and others remain interested in small fiber technology for the bonding layer of hot melt adhesive in nonwoven and polyethylene sheet laminates. To this end, hot melt adhesive dispensing systems have incorporated slot nozzle dies with a pair of angled air channels formed on either side of the elongated extrusion slot of the die. As the hot melt adhesive emits from the extrusion slot as a continuous sheet or curtain, pressurized process air is emitted as a pair of curtains from the air channels to impinge upon, attenuate and fiberize the adhesive curtain to form a uniform fibrous web of adhesive on the substrate. Fibrous web adhesive dispensers have incorporated intermittent control of adhesive and air flows to form discrete patterns of fibrous adhesive layers with well defined cut-on and cut-off edges and well defined side edges.

Meltblown technology has also been adapted for use in this area to produce a hot melt adhesive bonding layer having fibers of relatively small diameter. Meltblown dies typically include a series of closely spaced adhesive nozzles or orifices that are aligned on a common axis across the die head. A pair of angled air channels or individual air passages and orifices are positioned on both sides of the adhesive nozzles or orifices and align parallel to the common nozzle axis. As hot melt adhesive discharges from the series of aligned nozzles or orifices, pressurized process air is discharged from the air channels or orifices and attenuates the adhesive fibers or filaments before they are applied to the moving substrate.

While meltblown technology has been used to produce fibrous adhesive layers on moving substrates, it has various areas in need of improvement. As those skilled in the art will appreciate, meltblown technology typically uses a high volume of high velocity air to draw down and attenuate the emitted adhesive filaments. The high velocity air causes the fibers to oscillate in a plane that is generally aligned with the movement of the substrate, i.e., in the machine direction. To adequately blend adjacent patterns of adhesive to form a uniform layer on the substrate, meltblown dispensers require the nozzles to be closely spaced. Moreover, the volume and velocity of the air must be high enough to sufficiently agitate and blend adjacent fibers.

However, the high volume of air used in conventional meltblown dispensers adds to the overall operational cost as well as reduces the ability to control the pattern of emitted fibers. One byproduct of the high velocity air is “fly” in which the fibers get blown away from the desired deposition pattern. The “fly” can be deposited either outside the desired edges of the pattern, or even build up on the dispensing equipment which can cause operational problems that require significant maintenance. Another byproduct of the high velocity air and closely spaced nozzles is “shot” in which adjacent adhesive fibers become entangled and form globules of adhesive on the backsheet substrate. “Shot” is undesirable as it can cause heat distortion of the delicate polyethylene backsheet.

It will be further appreciated by those skilled in the art that when typical meltblown dies are placed in side-by-side fashion across the width of a moving substrate a less consistent fiber pattern on the substrate results. This occurs since each meltblown die has continuous sheets of air formed on either side and these sheets of air are interrupted between adjacent meltblown dies.

Other air-assisted nozzles or dies use capillary style tubes mounted in a nozzle or die body for extruding filaments of thermoplastic material. Air passages are provided adjacent to the tubes, and the ends of the tubes project outwardly relative to the outlets of the air passages.

Various forms of laminated plate technology are known for extruding rows of adhesive filaments in an air assisted manner. These include dispensing nozzles or dies constructed with slotted plates for discharging filaments of liquid and process or pattern air for attenuating and moving the discharged filaments in a desired pattern. These nozzles or dies present various issues relating to their performance, design complexity and large numbers of plates needed to complete the assembly. Therefore, improvements remain needed in this area of technology.

SUMMARY

The present invention, in an illustrative embodiment, provides a nozzle for dispensing a random pattern of liquid adhesive filaments. The nozzle includes first and second air shim plates, an adhesive shim plate and first and second separating shim plates. The first and second air shim plates each have respective pairs of air slots. Each air slot has a process air inlet and a process air outlet and the air slots of each pair converge toward one another such that the process air inlets are farther apart than the process air outlets in each pair. The adhesive shim plate includes a plurality of liquid slots each with a liquid inlet and a liquid outlet. The adhesive shim plate is positioned between and lies parallel to the first and second process air shim plates such that one of the liquid slots extends generally centrally between a pair of the air slots in the first process air shim plate and a pair of the air slots in the second process air shim plate. In this manner, four process air outlets are associated with each of the liquid outlets. The process air slots are adapted to receive pressurized process air and the liquid slots are adapted to receive pressurized liquid adhesive. The pressurized process air discharges from each group of the four process air outlets and forms a zone of turbulence for moving the filament of liquid adhesive discharging from the associated liquid outlet in a random pattern. The nozzle further includes first and second end plates securing together and sandwiching the first and second process air shim plates, the adhesive shim plate and the first and second separating shim plates. The first end plate includes a process air inlet communicating with the pairs of air slots in the first and second process air shim plates and a liquid adhesive inlet communicating with the liquid slots in the adhesive shim plate.

Various additional features are incorporated into the illustrative embodiment of the nozzle. For example, the first and second process air shim plates have first and second opposite ends and the pairs of process air slots respectively angle in a progressive manner outwardly from a central portion of each process air shim plate toward the opposite ends of the process air shim plates. This assists with spreading the pattern of adhesive filaments outwardly in opposite directions along the width of the nozzle. The adhesive shim plate also includes opposite ends and at least the liquid slots closest to the opposite ends of the adhesive shim plate respectively angle outwardly toward the opposite ends. This may assist with spreading the adhesive filament pattern in opposite directions.

In the illustrative embodiment, the first and second end plates further comprise respective process air passages for directing pressurized process air between the first and second end plates. The first end plate is generally L-shaped and includes a top surface generally orthogonal to planes containing the first and second process air shim plates, the adhesive shim plate and the first and second separating shim plates, and a side surface generally parallel to the planes containing the first and second process air shim plates, the adhesive shim plate and the first and second separating shim plates. The liquid adhesive inlet and the process air inlet are formed in the top surface.

The invention further contemplates methods directed generally to the manner in which liquid filaments and process air are discharged to form a random pattern of filaments on a substrate.

Various additional features and advantages of the invention will become more readily apparent to those of ordinary skill in the art upon review of the following detailed description of the illustrative embodiment taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an assembled perspective view of a nozzle constructed in accordance with an illustrative embodiment of the invention.

FIG. 2 is a disassembled perspective view of the nozzle shown in FIG. 1.

FIG. 3 is a perspective view the inside of an end plate of the nozzle shown in FIG. 1.

FIG. 4 is a cross sectional view taken along line 4-4 of FIG. 1.

FIG. 5 is a cross sectional view taken along line 5-5 of FIG. 1.

FIG. 6 is a bottom view of the nozzle shown in FIG. 1.

FIG. 7 is a cross sectional view generally taken along lines 7-7 of FIGS. 1 and 4.

FIG. 8 is an elevational view of a random filament pattern produced with a nozzle constructed in accordance with the principles discussed herein.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

Referring first to FIGS. 1 and 2, a nozzle 10 in accordance with one illustrative embodiment is shown and generally includes first and second process air shim plates 12, 14, an adhesive shim plate 16, first and second separating shim plates 18, 20, and first and second end plates 22, 24. The entire assembly is held together as shown in FIG. 1 by, for example, a pair of threaded fasteners 26, 28 that extend through holes 30, 32 in the first end plate 22 and into threaded holes 34, 36 in the second end plate 24. As further shown in FIG. 2, respective holes 40 in the air shim plates 12, 14, separating shim plates 18, 20 and adhesive shim plate 16 allow passage of the threaded fasteners 26, 28 as well. The second end plate 24 includes a projection 42 serving as a locating member that extends through respective upper slots 44 in the air shim plates 12, 14, separating shim plates 18, 20, and adhesive shim plate 16. The projection or locating member 42 is then received in a blind bore 50 (FIG. 3) in the first end plate 22.

The first end plate 22 is a generally L-shaped member and includes a top surface 60 generally orthogonal to planes that contain the first and second process air shim plates 12, 14, the adhesive shim plate 16 and the first and second separating shim plates 18, 20. A side surface 62 generally parallel to the planes containing these same shim plates receives the threaded fasteners 26, 28. The top surface 60 includes an adhesive inlet 70 and a pair of process air inlets 72, 74. The first end plate 22 also includes oppositely extending projections 80, 82 that may be used for securing the nozzle 10 to a dispensing valve or module (not shown) as further shown and described in U.S. Pat. No. 6,676,038, the disclosure of which is hereby incorporated by reference herein.

Referring to FIGS. 2-5, the first end plate 22 includes a process air inlet passage 90 (FIG. 4) communicating with the inlet 72 and a liquid adhesive inlet passage 92 (FIG. 5) communicating with the liquid inlet 70. A seal member 93 located in a groove 94 may be used to seal liquid inlet 70. As also shown in FIG. 4, the process air inlet passage 90 communicates with first and second air distribution passages 100, 102 that respectively communicate with opposite sides of the shim plate assembly 12, 14, 16, 18, 20. It will be appreciated that a second identical distribution passage system (not shown) in the first end plate 22 communicates with the second air inlet 74 (FIG. 2) to provide additional pressurized air to opposite sides of shim plate assembly 12, 14, 16, 18, 20. The upper distribution passage 100 passes through the shim plate assembly 12, 14, 16, 18, 20 through aligned holes 110 and through a vertical recess 112 (FIGS. 2 and 4) and, finally, into a horizontally extending slot 116 in the second end plate 24. Another series of aligned holes 120 and another vertical recess 122 are provided to receive process air from the other air inlet 74 through the previously mentioned identical distribution passage system. In this regard, distribution passages 124, 126 shown in FIG. 3 communicate with air inlet 74. Passage 124 aligns with holes 120 and slot 122 shown in FIG. 2, while passage 126 communicates with recess 132 as shown in FIG. 3. The horizontally extending slot 116 communicates with one side of the shim plate assembly, as discussed further below. The other distribution passage 102 communicates with a lower horizontal recess 132 contained in the first end plate (FIGS. 3 and 4). This horizontal recess 132 communicates with the right side of the shim plate assembly (as viewed in FIG. 4) for supplying process air to the first process air shim plate 12. As shown in FIG. 5, the liquid inlet passage 92 communicates with a liquid distribution passage 140 and an upper horizontal slot 142 (FIG. 3) in the first end plate 22. This upper horizontal slot 142 communicates with the adhesive shim plate 16 as further described below.

Again referring to FIG. 2, the adhesive shim plate 16 includes a plurality of liquid slots 150 each with a liquid inlet 152 and a liquid outlet 154. The adhesive shim plate 16 is positioned between and lies parallel to the first and second process air shim plates 12, 14 such that one of the liquid slots 150 extends generally centrally between a first pair of air slots 160, 162 in the first process air shim plate 12 and also generally centrally between a second pair of the air slots 164, 166 in the second process air shim plate 14. As best viewed in FIG. 7, each first pair of air slots 160, 162 is directly aligned with a corresponding second pair of air slots 164, 166 (not shown in FIG. 7), although the pairs of air slots 160, 162 and 164, 166 are separated by adhesive shim plate 16 and separating shim plates 18, 20. Thus, as shown in FIG. 6, four process air outlets 160a, 162a, 164a, 166a are associated with each of the liquid outlets 154. As further shown in FIGS. 2 and 7, air slots 160, 162 converge toward each other and air slots 164, 166 converge toward each other such that the process air inlets 160b, 162b and 164b, 166b are farther apart than the corresponding process air outlets 160a, 162a and 164a, 166a in each pair. However, none of the air slots 160, 162, 164, 166 converge toward their associated liquid slot 150 since the respective pairs of slots 160, 162 and 164, 166 are each contained in parallel planes different from the plane containing he liquid slots 150. From a review of FIG. 7, it will be appreciated that for each of the liquid slots 150, one pair of converging process air slots 160, 162 is shown and another pair is hidden behind the first pair but is directly aligned therewith in the second process air shim plate 14.

In the manner previously described, pressurized process air is directed downwardly through the respective pairs of slots 160, 162 and 164, 166 in both process air shim plates 12, 14. In this regard, the horizontal slot 132 communicates pressurized air to the inlets 160b, 162b of slots 160, 162 in the first process air shim plate 12. The horizontal slot 116 communicates pressurized air to the inlets 164b, 166b of the slots 164, 166 in the second process air shim plate 14. Liquid hot melt adhesive is directed into the liquid inlet passage 70 to the distribution passage 140 and the upper horizontal slot 142 in the first end plate 22. The upper horizontal slot 142 in the first end plate 22 communicates with respective aligned holes 170, 172 in the first process air shim plate 12 and the first separating shim plate 18 and, finally, into the upper inlets 152 of the liquid slots 150. The second process air shim plate 14 also includes such holes 170 to allow full interchangeability between the first and second process air shim plates 12, 14. In the construction shown in FIG. 2, the holes 170 in the second process air shim plate 14 remain unused. The separating shim plates 18, 20 are utilized to seal off the respective air slots 160, 162 and 164, 166 from the liquid slots 150.

Nozzle 10 has a design such that it may be flipped or rotated 180° from left to right when mounting to a valve module (not shown). Furthermore, the respective liquid slots 150 and air slots 160, 162, 164, 166 may be formed along any desired width or width portion(s) of the respective air shim plates 12, 14 and adhesive shim plate 16 depending on the needs of the application. The air shim plates may always have the full distribution of air slots 160, 162, 164, 166 as shown for nozzle 10 since providing additional air streams typically will not adversely affect the discharged filaments.

As further shown in FIG. 7, twelve respective groupings of 1) pairs of air slots 160, 162, 2) pairs of air slots 164, 166 (FIG. 2) and 3) individual liquid slots 150 are shown in the illustrative embodiment. The right hand side of FIG. 7 illustrates respective centerlines 180 centered between the respective pairs of converging air slots 160, 162. These air slot centerlines and, therefore, the respective pairs of air slots 160, 162 gradually angle toward an outer end of the process air shim plate 12. Thus, for example, the angles of the respective centerlines 180 may gradually become smaller relative to horizontal with β1 being the largest angle at 90° and β6 being the smallest angle at 87.5°. In this illustrative embodiment, the angles may, for example, be as follows:

β1=90°

β2=89.5°

β3=89°

β4=88.5°

β5=88°

β6=87.5°

Of course, other angles may be chosen instead, depending on application needs. The second process air shim plate 14 may be configured in an identical manner.

On the left hand side of FIG. 7, additional centerlines 200 are shown through the respective centers of the liquid slots 150. In this embodiment, angle α may be 90°, while angle α1 may be less than 90°, such as 88.3°. In this manner, the outermost or endmost liquid slot 150 is angled outwardly toward the outer edge of the shim plate 16. The outermost liquid slot 150 on the opposite edge of the assembly may also include this feature. Likewise, the respective six pairs of process air slots 160, 162 on the left hand side of FIG. 7 may also be gradually fanned (as pairs) outward or to the left just as the six pairs on the right hand side of FIG. 7 are “fanned” or angled to the right. It will be understood that any “fanning” or angling of air or liquid slots on the left side of the nozzle 10 will be to the left while any “fanning” or angling of air or liquid slots on the right side of the nozzle 10 will be to the right. Adhesive filaments discharging from the liquid slots 150 will fan outwardly generally from the center point of the nozzle 10, i.e., to the left and to the right as viewed in FIG. 7, such that the overall pattern width of randomized adhesive filaments will be greater than the width between the two outermost or endmost liquid slot outlets 152 and, desirably, may have a width at least as great as the width of the nozzle 10 itself. It will further be appreciated that any number of the liquid slots 150 may each be gradually fanned or angled outwardly relative to a center point of the nozzle, as shown in FIG. 7, rather than only the outermost liquid slots 150 having this configuration.

As one additional modification, more than one adhesive shim plate 16 may be used in adjacent, side-by-side stacked format. In this format, adhesive slots in one adhesive shim plate would communicate, respectively, with adhesive slots in an adjacent adhesive shim plate. This would allow, for example, the adhesive slots in each adhesive shim plate to form only a portion of the overall adhesive outlet. If, for example, one or more of the adhesive slots of each adhesive shim plate that communicate with each other is formed with a different shape, a desired overall cross sectional shape for the resulting adhesive filament may be obtained. In this manner, a variety of different adhesive filament shapes may be obtained in different nozzles or along the width of the same nozzle. Cross sectional shapes of the adhesive filaments may, for example, take the form of “plus” signs or “C”-shapes or other geometric configurations.

The discharged stream of pressurized air exiting from each process air outlet 160aconverges and impacts against a process air stream exiting from each associated outlet 162a of the pair 160a, 162a. In a similar manner, respective process air streams exiting outlets 164a impact against the streams exiting from process air outlets 166a. This forms a zone of air turbulence directly below each liquid outlet 154 of the nozzle and causes the continuous adhesive filaments 180 exiting the associated liquid outlets 154 to move side-to-side or back and forth in random directions forming an erratic, non-uniform or random pattern as, for example, shown in FIG. 8. In this regard, FIG. 8 illustrates a substrate 182 onto which the random pattern of multiple, continuous filaments 180 has been deposited after discharge from one or more nozzles constructed in accordance with nozzle 10 as generally described herein.

While the present invention has been illustrated by a description of various illustrative embodiments and while these embodiments have been described in some detail, it is not the intention of the Applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The various features of the invention may be used alone or in any combination depending on the needs and preferences of the user. This has been a description of the present invention, along with the preferred methods of practicing the present invention as currently known. However, the invention itself should only be defined by the appended claims, wherein what is claimed is:

Claims

1. A nozzle for dispensing a random pattern of liquid adhesive filaments, comprising:

first and second process air shim plates, said first and second process air shim plates each having respective pairs of air slots, each air slot having a process air inlet and a process air outlet and said air slots of each pair converging toward one another such that said process air inlets are farther apart than said process air outlets in each pair;
an adhesive shim plate having a plurality of liquid slots each with a liquid inlet and a liquid outlet, said adhesive shim plate positioned between and lying parallel to said first and second process air shim plates such that one of said liquid slots extends generally centrally between a pair of said air slots in said first process air shim plate and a pair of said air slots in said second process air shim plate thereby associating four process air outlets with each of said liquid outlets, said process air slots adapted to receive pressurized process air and said liquid slots adapted to receive pressurized liquid adhesive, each group of said four process air outlets capable of discharging the pressurized process air for moving the filament of liquid adhesive discharging from the associated liquid outlet in a random pattern;
a first separating shim plate positioned between said first process air shim plate and said adhesive shim plate;
a second separating shim plate positioned between said second process air shim plate and said adhesive shim plate; and
first and second end plates secured together and sandwiching said first and second process air shim plates, said adhesive shim plate and said first and second separating shim plates together, said first end plate including a process air inlet communicating with said pairs of air slots in said first and second process air shim plates and a liquid adhesive inlet communicating with said liquid slots in said adhesive shim plate.

2. The nozzle of claim 1, wherein said first and second process air shim plates have first and second opposite ends, and said pairs of process air slots respectively angle outwardly in a progressive manner from a central portion of each process air shim plate toward said opposite ends of said process air shim plates to assist with spreading the pattern of adhesive filaments outwardly in opposite directions.

3. The nozzle of claim 2, wherein said adhesive shim plate includes opposite ends and at least said liquid slots closest to said opposite ends of said adhesive shim plate respectively angle outwardly toward said opposite ends.

4. The nozzle of claim 1, wherein said adhesive shim plate includes opposite ends and at least said liquid slots closest to said opposite ends of said adhesive shim plate respectively angle outwardly toward said opposite ends.

5. The nozzle of claim 1, wherein said first and second end plates further comprise respective process air passages for directing pressurized process air between said first and second end plates.

6. The nozzle of claim 1, wherein said first end plate is generally L-shaped and includes a top surface generally orthogonal to planes containing said first and second process air shim plates, said adhesive shim plate and said first and second separating shim plates, and a side surface generally parallel to the planes containing said first and second process air shim plates, said adhesive shim plate and said first and second separating shim plates, said liquid adhesive inlet and said process air inlet formed in said top surface.

Referenced Cited
U.S. Patent Documents
2031387 February 1936 Schwarz
2212448 August 1940 Modigliani
2297726 October 1942 Stephanoff
2628386 February 1953 Tornberg
3032008 May 1962 Land et al.
3038202 June 1962 Harkenrider
3176345 April 1965 Powell
3178770 April 1965 Willis
3181738 May 1965 Hartvig-Johansen
3192562 July 1965 Powell
3192563 July 1965 Crompton
3204290 September 1965 Crompton
3213170 October 1965 Erdmenger et al.
3253301 May 1966 McGlaughlin
3334792 August 1967 Vries et al.
3379811 April 1968 Hartmann et al.
3380128 April 1968 Cremer et al.
3488806 January 1970 De Cecco et al.
3492692 February 1970 Soda et al.
3501805 March 1970 Douglas, Jr. et al.
3613170 October 1971 Soda et al.
3650866 March 1972 Prentice
3704198 November 1972 Prentice
3730662 May 1973 Nunning
3755527 August 1973 Keller et al.
3801400 April 1974 Vogt et al.
3803951 April 1974 Bagley
3806289 April 1974 Schwarz
3807917 April 1974 Shimoda et al.
3825379 July 1974 Lohkamp et al.
3847537 November 1974 Velie
3849241 November 1974 Butin et al.
3852013 December 1974 Upmeier
3861850 January 1975 Wallis
3874886 April 1975 Levecque et al.
3888610 June 1975 Brackmann et al.
3920362 November 1975 Bradt
3923444 December 1975 Esper et al.
3942723 March 9, 1976 Langdon
3954361 May 4, 1976 Page
3970417 July 20, 1976 Page
3978185 August 31, 1976 Buntin et al.
3981650 September 21, 1976 Page
4007625 February 15, 1977 Houben et al.
4015963 April 5, 1977 Levecque et al.
4015964 April 5, 1977 Levecque et al.
4050866 September 27, 1977 Kilsdonk
4052002 October 4, 1977 Stouffer et al.
4052183 October 4, 1977 Levecque et al.
4100324 July 11, 1978 Anderson et al.
4145173 March 20, 1979 Pelzer et al.
4151955 May 1, 1979 Stouffer
4185981 January 29, 1980 Ohsato et al.
4189455 February 19, 1980 Raganato et al.
4277436 July 7, 1981 Shah et al.
4300876 November 17, 1981 Kane et al.
4340563 July 20, 1982 Appel et al.
4359445 November 16, 1982 Kane et al.
4380570 April 19, 1983 Schwarz
4414276 November 8, 1983 Kiriyama et al.
4457685 July 3, 1984 Huang et al.
4468366 August 28, 1984 Socha, Jr.
4526733 July 2, 1985 Lau
4548632 October 22, 1985 Tanaka et al.
4568506 February 4, 1986 Kiriyama et al.
4596364 June 24, 1986 Bauer
4645444 February 24, 1987 Lenk et al.
4652225 March 24, 1987 Dehennau et al.
4694992 September 22, 1987 Stouffer
4708619 November 24, 1987 Balk
4709836 December 1, 1987 Andersen
4711683 December 8, 1987 Merkatoris
4730197 March 8, 1988 Raman et al.
4746283 May 24, 1988 Hobson
4747986 May 31, 1988 Chao
4774109 September 27, 1988 Hadzimihalis et al.
4785996 November 22, 1988 Ziecker et al.
4812276 March 14, 1989 Chao
4818463 April 4, 1989 Buehning
4818464 April 4, 1989 Lau
4826415 May 2, 1989 Mende
4842666 June 27, 1989 Werenicz
4844003 July 4, 1989 Slautterback et al.
4874451 October 17, 1989 Boger et al.
4875844 October 24, 1989 Nakajima et al.
4889476 December 26, 1989 Buehning
RE33158 February 6, 1990 Stouffer et al.
RE33159 February 6, 1990 Bauer
4905909 March 6, 1990 Woods
4918017 April 17, 1990 Greenstreet et al.
4923706 May 8, 1990 Binley et al.
4949668 August 21, 1990 Heindel et al.
4955547 September 11, 1990 Woods
4960619 October 2, 1990 Slautterback et al.
RE33448 November 20, 1990 Bauer
RE33481 December 11, 1990 Ziecker et al.
4983109 January 8, 1991 Miller et al.
5013232 May 7, 1991 Way
5017116 May 21, 1991 Carter et al.
5035361 July 30, 1991 Stouffer
5066435 November 19, 1991 Lorenz et al.
5067885 November 26, 1991 Stevenson et al.
5069853 December 3, 1991 Miller
5094792 March 10, 1992 Baran
5098636 March 24, 1992 Balk
5114752 May 19, 1992 Hall
5124111 June 23, 1992 Keller et al.
5129585 July 14, 1992 Bauer
5145689 September 8, 1992 Allen et al.
5147197 September 15, 1992 Hodan et al.
5160746 November 3, 1992 Dodge, II et al.
5165940 November 24, 1992 Windley
5169071 December 8, 1992 Boger et al.
5209410 May 11, 1993 Wichmann et al.
5234650 August 10, 1993 Hagen et al.
5242644 September 7, 1993 Thompson et al.
5260003 November 9, 1993 Nyssen et al.
5269670 December 14, 1993 Allen et al.
5275676 January 4, 1994 Rooyakkers et al.
5312500 May 17, 1994 Kurihara et al.
5342647 August 30, 1994 Heindel et al.
5354378 October 11, 1994 Hauser et al.
5393219 February 28, 1995 Hagen et al.
5397227 March 14, 1995 Hodan et al.
5407619 April 18, 1995 Maeda et al.
5409733 April 25, 1995 Boger et al.
5418009 May 23, 1995 Raterman et al.
5421921 June 6, 1995 Gill et al.
5421941 June 6, 1995 Allen et al.
5423935 June 13, 1995 Benecke et al.
5429840 July 4, 1995 Raterman et al.
5445509 August 29, 1995 Allen et al.
5458291 October 17, 1995 Brusko et al.
5458721 October 17, 1995 Raterman
5476616 December 19, 1995 Schwarz
5478224 December 26, 1995 McGuffey
D367865 March 12, 1996 Bajadali
5503784 April 2, 1996 Balk
5512793 April 30, 1996 Takeuchi et al.
5524828 June 11, 1996 Raterman et al.
5533675 July 9, 1996 Benecke et al.
5540804 July 30, 1996 Raterman
5551588 September 3, 1996 Hills
5605706 February 25, 1997 Allen et al.
5618347 April 8, 1997 Clare et al.
5618566 April 8, 1997 Allen et al.
5620139 April 15, 1997 Ziecker
5620664 April 15, 1997 Palmer
5645790 July 8, 1997 Schwarz et al.
5667750 September 16, 1997 Nohr et al.
5679379 October 21, 1997 Fabbricante et al.
5902540 May 11, 1999 Kwok
5904298 May 18, 1999 Kwok et al.
5927560 July 27, 1999 Lewis et al.
5964973 October 12, 1999 Heath et al.
5992688 November 30, 1999 Lewis et al.
D420099 February 1, 2000 Lewis et al.
6051180 April 18, 2000 Kwok
6074597 June 13, 2000 Kwok et al.
D429263 August 8, 2000 Auber et al.
6235137 May 22, 2001 Van Eperen et al.
6264113 July 24, 2001 Dingler
D456427 April 30, 2002 Gressett, Jr. et al.
6375099 April 23, 2002 McGuffey
D457538 May 21, 2002 Gressett, Jr. et al.
D460092 July 9, 2002 Gressett, Jr. et al.
D461483 August 13, 2002 Gressett, Jr. et al.
6540152 April 1, 2003 Holm et al.
6578773 June 17, 2003 Holm et al.
6676038 January 13, 2004 Gressett, Jr. et al.
6680021 January 20, 2004 Kwok et al.
6890167 May 10, 2005 Kwok et al.
6938795 September 6, 2005 Barton, Jr. et al.
D519536 April 25, 2006 de Leeuw et al.
D520538 May 9, 2006 de Leeuw et al.
D521035 May 16, 2006 de Leeuw et al.
D524833 July 11, 2006 Folk et al.
D529321 October 3, 2006 Gould et al.
D536354 February 6, 2007 Kufner et al.
D550261 September 4, 2007 Bondeson et al.
20050205689 September 22, 2005 Crane et al.
20090258138 October 15, 2009 Burmester et al.
Foreign Patent Documents
3543469 December 1985 DE
19715740 April 1997 DE
0893517 January 1999 EP
0979885 February 2000 EP
1155745 November 2001 EP
0835952 February 2003 EP
0872580 June 2005 EP
756907 September 1956 GB
1392667 April 1975 GB
9207122 April 1992 WO
9315895 August 1993 WO
9904950 February 1999 WO
Other references
  • Rajiv S. Rao et al., Vibration and Stability in the Melt Blowing Process, Ind. Eng. Chem. Res., 1993, 32, 3100-3111.
  • Gregory F. Ward, Micro-Denier Nonwoven Process and Fabrics, on or about Oct. 17, 1997, pp. 1-9.
  • Scott R. Miller, Beyond Meltblowing: Process Refinement in Microfibre Hot Melt Adhesive Technology, Edana 1998 International Nonwovens Symposium, 11 pgs.
  • European Patent Office, European Search Report in EP Application No. 07122920, Aug. 27, 2008.
  • Today's Idea, Nordson Unveils Diaper Elastic System, Oct. 1988, 1 pg.
  • Nordson Corporation, Adhesive and Powder Application Systems for the Nonwoven Industry, 1992, 7 pgs.
  • Edward K. McNalley et al., J&M Laboratories, Durafiber/Durastitch Adhesives Applications Methods Featuring Solid State Application Technology disclosed Sep. 8, 1997 at Inda-Tec 97 Meeting, Cambridge MA, pp. 26.1-26-8.
Patent History
Patent number: 7798434
Type: Grant
Filed: Dec 13, 2006
Date of Patent: Sep 21, 2010
Patent Publication Number: 20080145530
Assignee: Nordson Corporation (Westlake, OH)
Inventors: Benjamin J. Bondeson (Suwanee, GA), Thomas Burmester (Bleckede), Hubert Kufner (Luneburg), Joel E. Saine (Dahlonega, GA)
Primary Examiner: Dinh Q Nguyen
Assistant Examiner: Ryan Reis
Attorney: Wood, Herron & Evans, L.L.P.
Application Number: 11/610,148