Methods and compositions relating to the hydrolysis of water-hydrolysable materials

Treatments fluids relating to the hydrolysis of water-hydrolysable materials are provided. In one embodiment, provided is a treatment fluid that comprises an aqueous liquid, a water-miscible solvent, and a water-hydrolysable material. Also provided is a hydrolysis retarder composition that comprises an aqueous liquid and a water-miscible solvent.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 11/046,652, entitled “Methods and Compositions Relating to the Hydrolysis of Water-Hydrolysable Materials,” filed on Jan. 28, 2005, now abandoned the entire disclosure of which is incorporated herein by reference. The present invention is also related to U.S. application Ser. No. 11/046,043, entitled “Methods and Compositions Relating to the Hydrolysis of Water-Hydrolysable Materials” filed on Jan. 28, 2005, the entire disclosure of which is incorporated herein by reference.

BACKGROUND

The present invention relates to water-hydrolysable materials and, more particularly, to treatment fluids and associated methods relating to the hydrolysis of water-hydrolysable materials.

Water-hydrolysable materials are commonly employed in subterranean operations. For instance, water-hydrolysable materials may be used in subterranean operations as fluid loss control particles, diverting agents, filter cake components, drilling fluid additives, cement additives, and the like. In some instances, the water-hydrolysable material may be in a mechanical form (e.g., plugs, sleeves, and the like). In another instance, the water-hydrolysable material may be capable of releasing a desirable degradation product, e.g., an acid, during its hydrolysis. The acid released by certain water-hydrolysable materials may be used to facilitate a reduction in viscosity of a fluid or to degrade a filter cake, as well as for numerous other functions in subterranean operations.

Inclusion of a water-hydrolysable material capable of releasing an acid in a gelled (and optionally crosslinked) treatment fluid may be used to facilitate a reduction in viscosity of such fluid. Generally, these water-hydrolysable materials likely will hydrolyze over time due to contact with water present in the fluid, thereby releasing an acid. Upon its hydrolysis, the acid will function, inter alia, to reduce the viscosity of the gelled (and optionally crosslinked) treatment fluid, for example, by breaking the crosslinks in the treatment fluid, reducing the pH of the treatment fluid sufficiently to reverse the crosslinks therein, and/or breaking down the backbone of the gelling agent present in the treatment fluid. Typically, the acid released by the water-hydrolysable materials may breakdown the gelling agents at temperatures above about 150° F.

Water-hydrolysable materials capable of releasing an acid also may be used in the degradation of acid-soluble materials present in a subterranean formation, such as those present in or adjacent to filter cakes. Filter cakes commonly may be formed by a fluid (e.g., a drill-in and servicing fluid) on the face of a portion of a subterranean formation, inter alia, to minimize damage to the permeability thereof. The filter cake often comprises an acid-soluble component (e.g., a calcium carbonate bridging agent) and a polymeric component (e.g., starch and xanthan). Before desirable fluids, such as hydrocarbons, may be produced, the filter cake generally is removed. To facilitate the degradation of the acid-soluble component, a water-hydrolysable material capable of releasing an acid may be utilized. Filter cakes also may be removed using an acid where the filter cake does not contain an acid-soluble component, for example, by degrading the underlying carbonate adjacent, if the filter cake is present in a carbonate formation.

In one instance, the filter cake may be contacted by a treatment fluid that comprises the water-hydrolysable material. The resultant acid should interact with the acid-soluble component of the filter cake and/or the underlying carbonate adjacent to the filter cake in such a way as to facilitate their degradation. In another instance, the water-hydrolysable material capable of releasing an acid may be included in the fluid (such as the drill-in and servicing fluid) that forms the filter cake, such that the filter cake further contains the water-hydrolysable material. Subsequent contact of the filter cake with an aqueous fluid hydrolyzes the water-hydrolysable material thereby releasing an acid that acts to degrade the acid soluble component of the filter cake. Among other components, the aqueous fluid may contain oxidizing agents or enzymes suitable to facilitate the degradation of the polymeric component of the filter cake.

Use of water-hydrolysable materials capable of releasing an acid may be problematic, for example, if the water-hydrolysable material hydrolyzes too slowly or too quickly. For example, where used to facilitate a reduction in viscosity of a treatment fluid, the treatment fluid may need to have a desired viscosity for a requisite duration to ensure a desirable well treatment. In some instances, as the temperature in the well bore increases, the hydrolysis rate of the water-hydrolysable material increases, which may lead to an untimely or undesired reduction in viscosity of the treatment fluid. One method used to reduce the hydrolysis rate of the water-hydrolysable material may be to encapsulate it in a slowly soluble coating that can delay the hydrolysis of the water-hydrolysable material and thus delay release of the resulting acid. However, encapsulation of the water-hydrolysable material may add undesired expense and complexity. Further, where the water-hydrolysable material has a relatively small particle size, e.g., less than about 200 microns, encapsulation may not be practicable. Also, while it is possible to “tune” the water-hydrolysable material through various methodologies (e.g., initial choice of material, choice of plasticizers, molecular weight of the material, etc.), these methods may not be sufficient to extend or decrease the degradation time appropriately and/or may not be economical.

SUMMARY

The present invention relates to water-hydrolysable materials and, more particularly, to treatment fluids and associated methods relating to the hydrolysis of water-hydrolysable materials.

In one embodiment, the present invention provides a treatment fluid that comprises an aqueous liquid, a water-miscible solvent, and a water-hydrolysable material.

In another embodiment, the present invention provides a treatment fluid that comprises an aqueous liquid, a water-miscible solvent, a water-hydrolysable material capable of releasing an acid, and a gelling agent comprising a cellulose grafted with an allyl or a vinyl monomer.

In yet another embodiment, the present invention provides a hydrolysis retarder composition that comprises an aqueous liquid and a water-miscible solvent.

The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the specific embodiments that follows.

DRAWINGS

A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a graph illustrating the break time of a crosslinked fluid that did not comprise a water-miscible solvent; and

FIG. 2 is a graph illustrating the break time of a crosslinked fluid that comprised a water-miscible solvent.

DESCRIPTION

The present invention relates to water-hydrolysable materials and, more particularly, to treatment fluids and associated methods relating to the hydrolysis of water-hydrolysable materials. The water-hydrolysable materials may be used in subterranean operations for a number of functions, including, but not limited to, fluid loss control particles, diverting agents, filter cake components, drilling fluid additives, cement additives, and the like. In some instances, the water-hydrolysable material may be in a mechanical form (e.g., plugs, sleeves, and the like). In some instances, the water-hydrolysable material may be capable of releasing a desirable degradation product, e.g., an acid, during its hydrolysis. The acid released by certain water-hydrolysable materials may be used to facilitate a reduction in viscosity of a fluid or to degrade a filter cake, as well as for numerous other functions in subterranean operations.

The treatment fluids of the present invention generally comprise an aqueous liquid and a water-miscible solvent. Among other things, because the amount of water in a treatment fluid of the present invention is reduced due to the inclusion of a water-miscible solvent therein, the hydrolysis of a water-hydrolysable material contacted by the treatment fluid or present within the treatment fluid should be at least partially delayed. For example, a hydrolysis retarder composition may comprise an aqueous liquid and a water-miscible solvent. Depending on the application, the treatment fluids of the present invention further may comprise at least one of the following: a water-hydrolysable material, a gelling agent, a crosslinking agent, or additional additives suitable for a particular application.

The aqueous liquid utilized in the treatment fluids of the present invention may be fresh water, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater), or seawater. In certain embodiments, the aqueous liquid may comprise at least one salt of potassium chloride, sodium chloride, calcium chloride, zinc chloride, potassium bromide, sodium bromide, calcium bromide, zinc bromide, sodium formate, potassium formate, or cesium formate. Among other things, the salt may be included in the aqueous liquid for density control. In some embodiments, the aqueous liquid may have a density in the range of from about 8.33 pounds per gallon (“ppg”) to about 21.5 ppg. Generally, the aqueous liquid may be from any source provided that it does not contain an excess of compounds (e.g., dissolved organics) that may adversely affect a treatment fluid of the present invention. In certain embodiments, the aqueous liquid may be present in the treatment fluids of the present invention in an amount in the range of from about 1% to about 80% by weight of the treatment fluid therein. In certain embodiments, the aqueous liquid may be present in the treatment fluids of the present invention in an amount in the range of from about 20% to about 80% by weight of the treatment fluid therein. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of water for a chosen application.

Generally, any water-miscible solvent may be used in the present invention. Among other things, inclusion of the water-miscible solvent in the treatment fluids of the present invention should act to at least partially delay the hydrolysis of a water-hydrolysable material present within or contacted by the treatment fluids of the present invention. Examples of suitable water-miscible solvents include, but are not limited to, alcohols such as methanol, glycols such as propylene glycol and ethylene glycol, ethers such as ethylene glycol monobutyl ether, esters such as propylene carbonate and ethylene glycol monomethyl acetate, derivatives thereof, and combinations thereof. Additional examples of suitable water-miscible solvents are those described in Kirk-Othmer, Fourth Edition, Volume 22, pp 536-553. Generally, the water-miscible solvent should be included in the treatment fluids of the present invention in an amount sufficient to at least partially delay the hydrolysis of the water-hydrolysable material. In some embodiments, the water-miscible solvent may be present in the treatment fluids of the present invention in an amount in the range of from about 20% to about 99% by weight of the treatment fluid. In some embodiments, the water-miscible solvent may be present in the treatment fluids of the present invention in an amount in the range of from about 20% to about 80% by weight of the treatment fluid. The amount of the water-miscible solvent to include in the treatment fluids of the present invention depends on a number of factors, including, the desired hydrolysis rate of the water-hydrolysable material, the desired density of the treatment fluid, and the hydration needs of other additives present in the treatment fluid.

A wide variety of gelling agents may be employed in the treatment fluids of the present invention. While optional, one or more gelling agents may be included in a treatment fluid of the present invention for gelling the water and increasing the treatment fluid's viscosity. Examples of suitable gelling agents include, but are not limited to, biopolymers (e.g., xanthan and succinoglycan), galactomannan gums, modified celluloses, and derivatives thereof, combinations thereof, and the like. Suitable galactomannan gums include, but are not limited to, gum arabic, gum ghatti, gum karaya, tamarind gum, tragacanth gum, guar gum, locust bean gum, and the like. Suitable galactomannan gum derivatives include, but are not limited to, guar gum derivatives, such as hydroxypropylguar (“HPG”), carboxymethylhydroxypropylguar (“CMHPG”), and carboxymethylguar (“CMG”).

Modified celluloses and derivatives thereof such as cellulose ethers, cellulose esters, and the like are also suitable for use as gelling agents in accordance with the present invention. In some embodiments, the gelling agent may be a water-soluble cellulose ether, including, but not limited to, carboxyalkylcellulose ethers such as carboxyethylcellulose and carboxymethylcellulose; mixed ethers such as carboxymethyl-hydroxyethylcellulose; hydroxyalkylcelluloses such as hydroxyethylcellulose (“HEC”) and hydroxypropylcellulose; alkylhydroxyalkylcelluloses such as methylhydroxypropylcellulose; alkylcelluloses such as methylcellulose, ethylcellulose, and propylcellulose; alkylcarboxyalkylcelluloses such as ethylcarboxymethylcellulose; alkylalkylcelluloses such as methylethylcellulose; hydroxyalkylalkylcelluloses such as hydroxypropylmethylcellulose; and the like.

In certain embodiments, the derivatized cellulose is a cellulose grafted with an allyl or a vinyl monomer, such as those disclosed in U.S. Pat. Nos. 4,982,793; 5,067,565; and 5,122,549, the relevant disclosures of which are incorporated herein by reference. The allyl or vinyl monomer should have a crosslinkable substituent, such as a vicinal dihydroxy group or a phosphonate group, which should allow the derivatized cellulose to crosslink. Examples of suitable allyl or vinyl monomers include, but are not limited to, glyceryl allyl ether (GAE), 2,3-dihydroxypropylmethacrylate (DHPM), vinyl phosphonic acid (VPA), allyl glycidyl ether (AGE), glycidyl methacrylate (GMA), and combinations thereof. In one certain embodiment, the gelling agent comprises HEC grafted with VPA. An example of a suitable gelling agent comprising HEC grafted with VPA is commercially available from Halliburton Energy Services, Inc., Duncan, Okla., as “WG-33™” gelling agent.

Where present, the gelling agent generally should be included in the treatment fluids of the present invention in an amount sufficient, among other things, to achieve the desired viscosity thereof. In some embodiments, a gelling agent may be present in the treatment fluids of the present invention in amount in the range of from about 0.25% to about 10% by weight of the treatment fluid. In other embodiments, the gelling agent may be present in the treatment fluids of the present invention in amount in the range of from about 0.75% to about 1.5% by weight of the treatment fluid.

While optional, at least a portion of the gelling agent included in the treatment fluids of the present invention may be crosslinked by a reaction comprising a crosslinking agent, e.g., to further increase the treatment fluid's viscosity thereof. Crosslinking agents typically comprise at least one metal ion that is capable of crosslinking gelling agent molecules. Examples of suitable crosslinking agents include, but are not limited to, zirconium compounds (such as, for example, zirconium lactate, zirconium lactate triethanolamine, zirconium carbonate, zirconium acetylacetonate, zirconium malate, zirconium citrate, and zirconium diisopropylamine lactate); titanium compounds (such as, for example, titanium lactate, titanium malate, titanium citrate, titanium ammonium lactate, titanium triethanolamine, and titanium acetylacetonate); aluminum compounds (such as, for example, aluminum lactate or aluminum citrate); borate compounds (such as, for example, sodium tetraborate, boric acid, disodium octaborate tetrahydrate, sodium diborate, ulexite, and colemanite); antimony compounds; chromium compounds; iron compounds; copper compounds; zinc compounds; or a combination thereof. An example of a suitable commercially available zirconium-based crosslinking agent is “CL24™” crosslinker from Halliburton Energy Services, Inc., Duncan, Okla. An example of a suitable commercially available titanium-based crosslinking agent is “CL39™” crosslinker from Halliburton Energy Services, Inc., Duncan Okla. An example of a suitable borate-based crosslinking agent is commercially available as “CL-22™” delayed borate crosslinker from Halliburton Energy Services, Inc., Duncan, Okla. Divalent ions also may be used; for example, calcium chloride and magnesium oxide. An example of a suitable divalent ion crosslinking agent is commercially available as “CL30-™” from Halliburton Energy Services, Inc., Duncan, Okla. Where present, the crosslinking agent generally should be included in the treatments fluid of the present invention in an amount sufficient, among other things, to provide the desired degree of crosslinking. In some embodiments, the crosslinking agent may be present in the treatment fluids of the present invention in an amount in the range of from about 0.01% to about 5.0% by weight of the treatment fluid.

Water-hydrolysable materials suitable for use in the present invention are those capable of degrading when contacted by water. Water-hydrolysable materials that may be used in conjunction with the present invention include, but are not limited to, degradable polymers, lactides, lactones, esters, dehydrated compounds, derivatives thereof, and combinations thereof. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize other suitable water-hydrolysable materials for a particular application. Generally, the water-hydrolysable materials should degrade over time as opposed to immediately. The terms “degrading,” “degradation,” and “degradable” refer to both the relatively extreme cases of hydrolytic degradation that the degradable material may undergo, i.e., heterogeneous (or bulk erosion) and homogeneous (or surface erosion), and any stage of degradation in between these two. In some embodiments, the water-hydrolysable materials may be capable of releasing an acid upon hydrolysis. Among other things, the water-hydrolysable materials capable of releasing an acid should degrade after a desired time to release an acid, for example, to degrade a filter cake or to reduce the viscosity of a treatment fluid.

In certain embodiments, the water-hydrolysable materials comprise a degradable polymer capable of hydrolyzing when contacted by water. Suitable examples of degradable polymers that may be used in accordance with the present invention include, but are not limited to, homopolymers, random, block, graft, and star- and hyper-branched polymers. Examples of suitable degradable polymers, include, but are not limited to, polysaccharides such as dextran or cellulose; chitin; chitosan; proteins; aliphatic polyesters; poly(lactic acids); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxide); polyphosphazenes, polyvinyl alcohols, and copolymers and blends of any of these degradable polymers. The term “copolymer” as used herein is not limited to the combination of two polymers, but includes any combination of polymers, e.g., terpolymers and the like. Certain of these degradable polymers are capable of releasing an acid upon hydrolysis. For example, poly(lactic acids) and poly(glycolides), among others, are capable of releasing an acid upon hydrolysis.

Preferred aliphatic polyesters have the general formula of repeating units shown below:


where n is an integer between 75 and 10,000 and R is a hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, or mixtures thereof. Of these aliphatic polyesters, poly(lactic acid) is preferred. Poly(lactic acid) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid) as used herein refers to formula I without any limitation as to how the polymer was made such as from lactides, lactic acid, or oligomers, and without reference to the degree of polymerization or level of plasticization. The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid, and oligomers of lactide are defined by the formula:


where m is an integer 2≦m≦75. Preferably m is an integer and 2≦m≦10. These limits correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention where a slower degradation of the degradable particulates is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This may be suitable for other applications where a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually or combined to be used in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified to be used in the present invention by, inter alia, blending, copolymerizing or otherwise mixing the stereoisomers, blending, copolymerizing or otherwise mixing high and low molecular weight poly(lactides), or by blending, copolymerizing or otherwise mixing a poly(lactic acid) with another polyester or polyesters.

One skilled in the art will recognize that plasticizers may be included in forming suitable polymeric degradable materials of the present invention. The plasticizers may be present in an amount sufficient to provide the desired characteristics, for example, more effective compatibilization of the melt blend components, improved processing characteristics during the blending and processing steps, and control and regulation of the sensitivity and degradation of the polymer by moisture.

Suitable dehydrated compounds are those materials that will degrade over time when rehydrated. For example, a particulate solid dehydrated salt or a particulate solid anhydrous borate material that degrades over time may be suitable. Specific examples of particulate solid anhydrous borate materials that may be used include but are not limited to anhydrous sodium tetraborate (also known as anhydrous borax) and anhydrous boric acid. These anhydrous borate materials are only slightly soluble in water. However, with time and heat in a subterranean environment, the anhydrous borate materials react with the surrounding aqueous fluid and are hydrated. The resulting hydrated borate materials are substantially soluble in water as compared to anhydrous borate materials and as a result degrade in the aqueous fluid.

In choosing the appropriate water-hydrolysable material, one should consider the degradation products that will result. Also, these degradation products should not adversely affect other operations or components. The choice of a water-hydrolysable material also can depend, at least in part, on the conditions of the well, e.g., well bore temperature. For instance, aliphatic polyesters have been found to be suitable for well bore temperatures in the range of 180° F. to 400° F. And, for example, lactides may be suitable for well bore temperatures less than about 180° F. Generally, lower molecular weight water-hydrolysable materials are suitable for use in lower temperature applications and higher molecular weight acid-releasing degradable materials are suitable for use in higher-temperature applications. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable water-hydrolysable material.

Blends of certain water-hydrolysable materials may also be suitable. One example of a suitable blend of materials includes a blend of poly(lactic acid) and a lactide. Other materials that undergo degradation may also be suitable, if the products of the degradation do not undesirably interfere with either the subterranean treatment being performed or the subterranean formation.

The water-hydrolysable material may be included in the treatment fluids of the present invention in an amount sufficient for a particular application. For example, in embodiments where water-hydrolysable materials capable of releasing an acid are used, the water-hydrolysable material should be present in the treatment fluids of the present invention in an amount sufficient to release a desired amount of acid. In some embodiments, the amount of the released acid should be sufficient to reduce the viscosity of the treatment fluid to a desired level. In another embodiment, the amount of the released acid should be sufficient to facilitate the degradation of an acid-soluble component, for example, an acid-soluble component of a filter cake or an acid-soluble component adjacent to a filter cake. In certain embodiments, the water-hydrolysable material may be present in the treatment fluid in an amount in the range of from about 1% to about 30% by weight of the treatment fluid. In certain embodiments, the water-hydrolysable material may be present in the treatment fluid in an amount in the range of from about 3% to about 10% by weight of the treatment fluid. One of ordinary skill in the art, with the benefit of this disclosure, will be able to determine the appropriate amount of the water-hydrolysable degradable material to include in the treatment fluids of the present invention for a particular application.

The desired hydrolysis rate of the water-hydrolysable material will vary dependent on the particular application. As previously discussed, inclusion of a water-miscible solvent in the treatment fluids of the present invention should reduce the hydrolysis rate of the water-hydrolysable material. By adjusting the concentration of the water-miscible solvent in the treatment fluids of the present invention, the hydrolysis rate of the water-hydrolysable material may be controlled. One of ordinary skill in the art, with the benefit of this application, will be able to determine the appropriate hydrolysis rate of the water-hydrolysable material for a particular application.

The treatment fluids of the present invention may further comprise additional additives as deemed appropriate by one of ordinary skill in the art, with the benefit of this disclosure. Examples of such additional additives include, but are not limited to, pH-adjusting agents, pH-buffers, oxidizing agents, enzymes, lost circulation materials, scale inhibitors, surfactants, clay stabilizers, fluid loss control additives, combinations thereof, and the like.

Generally, the present invention comprises utilizing a treatment fluid of the present invention to at least partially delay the hydrolysis of a water-hydrolysable material. In one certain embodiment, the present invention provides a method of treating at least a portion of subterranean formation, the method comprising: providing a water-hydrolysable material; introducing the water-hydrolysable material into a well bore penetrating the subterranean formation; providing a treatment fluid comprising an aqueous liquid and a water-miscible solvent; introducing the treatment fluid into the well bore so as to contact the water-hydrolysable material; and allowing the water-hydrolysable material to hydrolyze. Generally, the treatment fluid may be introduced into the well bore subsequent to, or simultaneously with, the introduction of the water-hydrolysable material into the well bore. In certain embodiments, the treatment fluid may further comprise the water-hydrolysable material.

The water-hydrolysable material may be introduced into the well bore for any of a number of uses. For instance, water-hydrolysable materials may be used in subterranean operations as fluid loss control particles, diverting agents, filter cake components, drilling fluid additives, cement additives, and the like. In some embodiments, the water-hydrolysable material may be in a mechanical form (e.g., plugs, sleeves, and the like). In some instances, the water-hydrolysable material may be capable of releasing a desirable degradation product, e.g., an acid, during its hydrolysis. At a chosen time or after a desired delay period, the water-hydrolysable material should be allowed to hydrolyze so as to release an acid.

In some embodiments, the acid released by certain water-hydrolysable materials may be used to degrade acid-soluble components present in the subterranean formation. In some embodiments, the acid-soluble component may be present in or adjacent to a filter cake in the subterranean formation. In another embodiment, the acid-soluble component may be other acid-soluble damage present in the subterranean formation (e.g., in the near well bore region). In some embodiments, the water-hydrolysable material is present in the treatment fluid. In other embodiments, the water-hydrolysable material is present in a filter cake that is present in the subterranean formation. For example, the water-hydrolysable material may be introduced into the formation as part of the fluid that forms the filter cake, such that the filter cake contains the water-hydrolysable material. As those of ordinary skill in the art will appreciate, the treatment fluid may need to be shut in for a period of time to allow for the desired amount of acid to be released.

In some embodiments, the acid released by certain water-hydrolysable materials may be used to facilitate a reduction in viscosity of the treatment fluid, for example, wherein the treatment fluid comprises a gelling agent. As previously discussed, at least a portion of the gelling agent may be crosslinked by a reaction comprising a crosslinking agent. The treatment fluid may be recovered from the well bore subsequent to its reduction in viscosity. Where used to facilitate a reduction in viscosity of a treatment fluid, the treatment operation may be any of a variety of subterranean treatments employed in subterranean operations where a viscosified fluid may be used, including, fracturing, gravel packing, chemical diversions, and fluid loss control treatments.

For example, in one certain embodiment, the present invention provides a method of completing a well comprising providing a treatment fluid of the present invention that comprises an aqueous liquid, a water-miscible solvent, a water-hydrolysable material capable of releasing an acid, and a gelling agent; and introducing the treatment fluid of the present invention into a well bore in an amount sufficient to fill a portion of the well bore within a permeable section of a subterranean formation. As previously discussed, at least a portion of the gelling agent may be crosslinked by a reaction comprising a crosslinking agent. As those of ordinary skill in the art will appreciate, with the benefit of this disclosure, the treatment fluids of the present invention further may comprise other additives suitable for a particular application. Generally, in these embodiments, the treatment fluid of the present invention should have sufficient rigidity to resist entry into the permeable section of the subterranean formation. Subsequent to placement of the treatment fluid of the present invention into the portion of the well bore, a high-density completion fluid may be placed into the well bore behind the treatment fluid. In some embodiments, the treatment fluid may have about the same density as the high-density treatment fluid. Among other things, the treatment fluid of the present invention should block the high-density completion fluid from being lost or entering the permeable section of the subterranean formation. Furthermore, the total hydrostatic pressure exerted onto the subterranean formation by the high-density completion fluid plus the treatment fluid of the present invention should be sufficient to provide well control. At a chosen time or after a desired delay period, the water-hydrolysable material should be allowed to hydrolyze so as to release an acid that facilitates a reduction in the treatments fluid's viscosity. The treatment fluid may be recovered from the well bore subsequent to its reduction in viscosity.

To facilitate a better understanding of the present invention, the following example of specific embodiments is given. In no way should the following examples be read to limit, or define, the scope of the invention.

EXAMPLE

Tests were performed on samples of various fluids in order to compare the relative break times of the fluids. Sample Fluid No. 1 was a crosslinked treatment fluid that was prepared without the addition of a water-miscible solvent. Sample Fluid No. 2 was a crosslinked treatment fluid that comprised propylene glycol. The tests were performed at 195° F. in a Fann HPHT Filter Press according to the steps listed in Table 1 below.

TABLE 1 Step No. 1 2 3 4 5 6 7 8 Step Time 0 0 2 999 999 999 999 0 (min) Static 800 800 800 800 800 800 800 0 Pressure (psi) Differential 0 100 100 100 100 100 100 0 Pressure Temperature 195 195 195 195 195 195 195 115 (° F.) Filtrate Off Off Off On On On On Off Valve

Sample Fluid No. 1 was prepared by pouring 500 ml of an 11.6 ppg calcium chloride brine into a Waring blender while mixing. Next, 21.55 ml of WG-33™ gelling agent were added to the blender while mixing. Thereafter, 2.5 ml of 20° Be hydrochloric acid were added to the blender while mixing. The resulting solution was mixed for 5 additional minutes, and the solution was then allowed to hydrate for about 1 hour. After the 1-hour hydration period, 200 ml of the above-prepared solution was used for the remainder of this test. Next, 7 grams of 18/20 mesh particulate poly(lactic acid) was added to the 200 ml of the solution. Thereafter, 0.72 grams of CL-30™ crosslinker were added to the blender while mixing. The resultant solution was emptied into a jar and remained static at room temperature for 1 hour to ensure crosslinking.

After the 1-hour waiting period, Sample Fluid No. 1 was placed into the HPHT cell using a 35-micron disc with a piston on top. The results from this test are illustrated in FIG. 1. As shown illustrated by FIG. 1, Sample Fluid No. 1 had a break time of about 49 hours.

Sample Fluid No. 2 was prepared by pouring 220.5 ml of propylene glycol into a Waring blender while mixing. Next, 13.5 ml of WG-33™ gelling agent were added to the blender while mixing. The resulting solution was mixed for 5 minutes. Thereafter, 1.6 ml of 20° Be hydrochloric acid were added to the blender while mixing. Next, 94.5 ml of an 11.6 ppg calcium chloride brine was added to the blender while mixing. The resulting solution was mixed for 5 additional minutes, and the solution was then allowed to hydrate for about 1 hour. After the 1-hour hydration period, 200 ml of the above-prepared solution was used for the remainder of this test. Next, 7 grams of 18/20 mesh particulate poly(lactic acid) was added to the 200 ml of the solution. Thereafter, 0.72 grams of CL-30™ crosslinker were added to the blender while mixing. The resultant solution was emptied into a jar and remained static at room temperature for 1 hour to ensure crosslinking.

After the 1-hour waiting period, Sample Fluid No. 2 was placed into the HPHT cell using a 35 micron disc with a piston on top. The results from this test are illustrated in FIG. 2. As shown illustrated by FIG. 2, Sample Fluid No. 2 had a break time of about 67 hours.

Therefore, this example shows that the inclusion of a water-miscible solvent in the treatment fluids of the present invention may control the hydrolysis rate of a water-hydrolysable material included therein.

Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those which are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims

1. A treatment fluid comprising:

an aqueous liquid;
propylene carbonate in an amount of from about 20% to about 99% by weight of the treatment fluid;
a gelling agent selected from the group consisting of a galactomannan gum, a modified cellulose, and any combination thereof; and,
about 1% to about 30% by weight of a mixture of anhydrous borate and an ester, wherein the ester is selected from the group consisting of a poly(lactic acid), a poly(glycolide), a poly(ε-caprolactone), a poly(hydroxybutyrate), a poly(orthoester), a blend of poly(lactic acid) and a lactide, any copolymer thereof and any combination thereof.

2. The treatment fluid of claim 1 wherein the gelling agent comprises a cellulose grafted with an allyl or a vinyl monomer.

3. The treatment fluid of claim 1 wherein at least a portion of the gelling agent is crosslinked.

4. The treatment fluid of claim 1 wherein the propylene carbonate is present in an amount of from about 20% to about 80% by weight of the treatment fluid.

5. The treatment fluid of claim 1 wherein the mixture is present in an amount of from about 3% to about 10% by weight of the treatment fluid.

6. The treatment fluid of claim 1 wherein the mixture is capable of releasing an acid.

7. The treatment fluid of claim 1 wherein the mixture comprises a poly(lactic acid).

8. The treatment fluid of claim 1 wherein the treatment fluid further comprises at least one of the following: a polysaccharide; a chitin; a chitosan; a protein; an aliphatic polycarbonate; a poly(amino acid); a poly(ethylene oxide); a polyphosphazene; a polyvinyl alcohol; any copolymer thereof; and any combination thereof.

9. The treatment fluid of claim 1 wherein the ester comprises a blend of poly(lactic acid) and a lactide.

10. A treatment fluid comprising:

an aqueous liquid;
propylene carbonate in an amount from about 20% to about 99% by weight of the treatment fluid;
about 1% to about 30% by weight of the treatment fluid of a mixture of anhydrous borate and an ester, wherein the ester is selected from the group consisting of a poly(lactic acid), a poly(glycolide), a poly(ε-caprolactone), a poly(hydroxybutyrate), a poly(orthoester), any copolymer thereof, and any combination thereof; and
a gelling agent in an amount from about 0.25% to about 10% by weight of the treatment fluid, wherein the gelling agent is selected from the group consisting of a galactomannan gum, a modified cellulose and any combination thereof.

11. The treatment fluid of claim 10 wherein at least a portion of the gelling agent is crosslinked.

12. The treatment fluid of claim 10 wherein the gelling agent comprises a cellulose grafted with an allyl or a vinyl monomer.

13. The treatment fluid of claim 10 wherein the propylene carbonate is present in an amount of from about 20% to about 80% by weight of the treatment fluid.

14. The treatment fluid of claim 10 wherein the mixture is present in an amount of from about 3% to about 10% by weight of the treatment fluid.

Referenced Cited
U.S. Patent Documents
2238671 April 1941 Woodhouse
2703316 March 1955 Schneider
3173484 March 1965 Huitt
3195635 July 1965 Fast
3272650 September 1966 MacVittie
3302719 February 1967 Fischer
3364995 January 1968 Atkins et al.
3366178 January 1968 Malone et al.
3455390 July 1969 Gallus
3784585 January 1974 Schmitt et al.
3806465 April 1974 Karl et al.
3819525 June 1974 Hattenbrun
3828854 August 1974 Templeton et al.
3868998 March 1975 Lybarger et al.
3912692 October 1975 Casey et al.
3948672 April 6, 1976 Harnsberger
3955993 May 11, 1976 Curtice et al.
3960736 June 1, 1976 Free et al.
3968840 July 13, 1976 Tate
3998272 December 21, 1976 Maly
3998744 December 21, 1976 Arnold et al.
4068718 January 17, 1978 Cooke, Jr. et al.
4169798 October 2, 1979 DeMartino
4172066 October 23, 1979 Zweigle et al.
4261421 April 14, 1981 Watanabe
4387769 June 14, 1983 Erbstoesser et al.
4392964 July 12, 1983 House et al.
4460052 July 17, 1984 Gockel
4470915 September 11, 1984 Conway
4498995 February 12, 1985 Gockel
4521316 June 4, 1985 Sikorski
4526695 July 2, 1985 Erbstoesser et al.
4694905 September 22, 1987 Armbruster
4715967 December 29, 1987 Bellis et al.
4716964 January 5, 1988 Erbstoesser et al.
4772346 September 20, 1988 Anderson et al.
4785884 November 22, 1988 Armbruster
4793416 December 27, 1988 Mitchell
4797262 January 10, 1989 Dewitz
4809783 March 7, 1989 Hollenbeck et al.
4817721 April 4, 1989 Pober
4843118 June 27, 1989 Lai et al.
4848467 July 18, 1989 Cantu et al.
4886354 December 12, 1989 Welch et al.
4957165 September 18, 1990 Cantu et al.
4961466 October 9, 1990 Himes et al.
4982793 January 8, 1991 Holtmyer et al.
4986353 January 22, 1991 Clark et al.
4986354 January 22, 1991 Cantu et al.
4986355 January 22, 1991 Casad et al.
5067565 November 26, 1991 Holtmyer et al.
5082056 January 21, 1992 Tackett, Jr.
5122549 June 16, 1992 Holtmyer et al.
5142023 August 25, 1992 Gruber et al.
5216050 June 1, 1993 Sinclair
5247059 September 21, 1993 Gruber et al.
5249628 October 5, 1993 Surjaatmadia
5295542 March 22, 1994 Cole et al.
5304620 April 19, 1994 Holtmyer et al.
5325923 July 5, 1994 Surjaatmadja et al.
5330005 July 19, 1994 Card et al.
5359026 October 25, 1994 Gruber
5360068 November 1, 1994 Sprunt et al.
5363916 November 15, 1994 Himes et al.
5373901 December 20, 1994 Norman et al.
5386874 February 7, 1995 Laramay et al.
5396957 March 14, 1995 Surjaatmadja et al.
5402846 April 4, 1995 Jennings, Jr. et al.
5439055 August 8, 1995 Card et al.
5460226 October 24, 1995 Lawson et al.
5464060 November 7, 1995 Hale et al.
5475080 December 12, 1995 Gruber et al.
5484881 January 16, 1996 Gruber et al.
5497830 March 12, 1996 Boles et al.
5499678 March 19, 1996 Surjaatmadja et al.
5505787 April 9, 1996 Yamaguchi
5512071 April 30, 1996 Yam et al.
5521242 May 28, 1996 Supcoe et al.
5536807 July 16, 1996 Gruber et al.
5591700 January 7, 1997 Harris et al.
5594095 January 14, 1997 Gruber et al.
5604186 February 18, 1997 Hunt et al.
5607905 March 4, 1997 Dobson, Jr. et al.
5670473 September 23, 1997 Scepanski
5698322 December 16, 1997 Tsai et al.
5765642 June 16, 1998 Surjaatmadja
5783205 July 21, 1998 Berggren et al.
5791415 August 11, 1998 Nguyen et al.
5833000 November 10, 1998 Weaver et al.
5849401 December 15, 1998 El-Afandi et al.
5853048 December 29, 1998 Weaver et al.
5893416 April 13, 1999 Read
5908073 June 1, 1999 Nguyen et al.
5924488 July 20, 1999 Nguyen et al.
5964291 October 12, 1999 Bourne et al.
5996694 December 7, 1999 Dewprashad et al.
6004400 December 21, 1999 Bishop et al.
6024170 February 15, 2000 McCabe et al.
6028113 February 22, 2000 Scepanski
6047772 April 11, 2000 Weaver et al.
6114410 September 5, 2000 Betzold
6123965 September 26, 2000 Jacob et al.
6131661 October 17, 2000 Conner et al.
6135987 October 24, 2000 Tsai et al.
6143698 November 7, 2000 Murphey et al.
6162766 December 19, 2000 Muir et al.
6169058 January 2, 2001 Le et al.
6172011 January 9, 2001 Card et al.
6189615 February 20, 2001 Sydansk
6202751 March 20, 2001 Chatterji et al.
6209643 April 3, 2001 Nguyen et al.
6209646 April 3, 2001 Reddy et al.
6214773 April 10, 2001 Harris et al.
6242390 June 5, 2001 Mitchell et al.
6260622 July 17, 2001 Blok et al.
6311773 November 6, 2001 Todd et al.
6323307 November 27, 2001 Bigg et al.
6326458 December 4, 2001 Gruber et al.
6328105 December 11, 2001 Betzold
6357527 March 19, 2002 Norman et al.
6364945 April 2, 2002 Chatterji et al.
6380138 April 30, 2002 Ischy et al.
6387986 May 14, 2002 Moradi-Araghi et al.
6390195 May 21, 2002 Nguyen et al.
6394185 May 28, 2002 Constien
6422314 July 23, 2002 Todd et al.
6454003 September 24, 2002 Chang et al.
6485947 November 26, 2002 Rajgarhia et al.
6488763 December 3, 2002 Brothers et al.
6494263 December 17, 2002 Todd
6508305 January 21, 2003 Brannon et al.
6509301 January 21, 2003 Vollmer
6527051 March 4, 2003 Reddy et al.
6554071 April 29, 2003 Reddy et al.
6569814 May 27, 2003 Brady et al.
6599863 July 29, 2003 Palmer et al.
6667279 December 23, 2003 Hessert et al.
6669771 December 30, 2003 Tokiwa et al.
6681856 January 27, 2004 Chatterji et al.
6686328 February 3, 2004 Binder
6702023 March 9, 2004 Harris et al.
6710019 March 23, 2004 Sawdon et al.
6761218 July 13, 2004 Nguyen et al.
6763888 July 20, 2004 Harris et al.
6793018 September 21, 2004 Dawson et al.
6817414 November 16, 2004 Lee
6837309 January 4, 2005 Boney et al.
6840318 January 11, 2005 Lee et al.
6852173 February 8, 2005 Banerjee et al.
6861394 March 1, 2005 Ballard et al.
6886635 May 3, 2005 Hossaini et al.
6896058 May 24, 2005 Munoz, Jr. et al.
6949491 September 27, 2005 Cooke, Jr.
6983801 January 10, 2006 Dawson et al.
6997259 February 14, 2006 Nguyen
7000701 February 21, 2006 Todd et al.
7021377 April 4, 2006 Todd et al.
7032663 April 25, 2006 Nguyen
7036586 May 2, 2006 Roddy et al.
7036587 May 2, 2006 Munoz, Jr. et al.
7044220 May 16, 2006 Nguyen et al.
7044224 May 16, 2006 Nguyen
7049272 May 23, 2006 Sinclair et al.
7063151 June 20, 2006 Nguyen et al.
7066258 June 27, 2006 Justus et al.
7066260 June 27, 2006 Sullivan et al.
7080688 July 25, 2006 Todd et al.
7093664 August 22, 2006 Todd et al.
7096947 August 29, 2006 Todd et al.
7131491 November 7, 2006 Blauch et al.
7132389 November 7, 2006 Lee
7140438 November 28, 2006 Frost et al.
7156174 January 2, 2007 Roddy et al.
7168489 January 30, 2007 Frost et al.
7172022 February 6, 2007 Reddy et al.
7178596 February 20, 2007 Blauch et al.
7195068 March 27, 2007 Todd
7204312 April 17, 2007 Roddy et al.
7205264 April 17, 2007 Boles
7219731 May 22, 2007 Sullivan et al.
7261156 August 28, 2007 Nguyen et al.
7264051 September 4, 2007 Nguyen et al.
7265079 September 4, 2007 Willberg et al.
7276466 October 2, 2007 Todd et al.
7299869 November 27, 2007 Kalman
7299876 November 27, 2007 Lord et al.
7306037 December 11, 2007 Nguyen et al.
7353876 April 8, 2008 Savery et al.
7353879 April 8, 2008 Todd et al.
7413017 August 19, 2008 Nguyen et al.
7419937 September 2, 2008 Rimmer et al.
7448450 November 11, 2008 Luke et al.
7455112 November 25, 2008 Moorehead et al.
7461697 December 9, 2008 Todd et al.
7475728 January 13, 2009 Pauls et al.
7476644 January 13, 2009 Cooke, Jr.
7484564 February 3, 2009 Welton et al.
7497258 March 3, 2009 Savery et al.
7497278 March 3, 2009 Schriener et al.
7506689 March 24, 2009 Surjaatmadja et al.
7547665 June 16, 2009 Welton et al.
7553800 June 30, 2009 Munoz, Jr.
7595280 September 29, 2009 Welton et al.
7598208 October 6, 2009 Todd
7608566 October 27, 2009 Saini et al.
7608567 October 27, 2009 Saini
7648946 January 19, 2010 Munoz, Jr.
7829507 November 9, 2010 Todd et al.
20010016562 August 23, 2001 Muir et al.
20030130133 July 10, 2003 Vollmer
20030181532 September 25, 2003 Parris et al.
20030220203 November 27, 2003 Harris et al.
20040072700 April 15, 2004 Gupta et al.
20040138070 July 15, 2004 Jones et al.
20040152601 August 5, 2004 Still et al.
20040231845 November 25, 2004 Cooke, Jr.
20050028976 February 10, 2005 Nguyen
20050034861 February 17, 2005 Saini et al.
20050059556 March 17, 2005 Munoz, Jr. et al.
20050113264 May 26, 2005 Vollmer
20050126785 June 16, 2005 Todd
20050183741 August 25, 2005 Surjaatmadja et al.
20050277554 December 15, 2005 Blauch et al.
20060032633 February 16, 2006 Nguyen
20060046938 March 2, 2006 Harris et al.
20060105917 May 18, 2006 Munoz, Jr.
20060169182 August 3, 2006 Todd et al.
20060169448 August 3, 2006 Savery et al.
20060169452 August 3, 2006 Savery et al.
20060169453 August 3, 2006 Savery et al.
20060172893 August 3, 2006 Todd et al.
20060205608 September 14, 2006 Todd
20060243449 November 2, 2006 Welton et al.
20060247135 November 2, 2006 Welton et al.
20060254774 November 16, 2006 Saini et al.
20060283597 December 21, 2006 Schriener et al.
20070042912 February 22, 2007 Welton et al.
20070049501 March 1, 2007 Saini et al.
20070066492 March 22, 2007 Funkhouser et al.
20070066493 March 22, 2007 Funkhouser et al.
20070078063 April 5, 2007 Munoz, Jr.
20070078064 April 5, 2007 Munoz et al.
20070238623 October 11, 2007 Saini et al.
20070281868 December 6, 2007 Pauls et al.
20080026955 January 31, 2008 Munoz et al.
20080026959 January 31, 2008 Munoz et al.
20080026960 January 31, 2008 Munoz et al.
20080027157 January 31, 2008 Munoz et al.
20080070810 March 20, 2008 Mang
20080139415 June 12, 2008 Todd et al.
20080169102 July 17, 2008 Carbajal et al.
20090062157 March 5, 2009 Munoz et al.
20090258798 October 15, 2009 Munoz
Foreign Patent Documents
2 491 934 January 2004 CA
2 560 938 October 2005 CA
0 510 762 October 1992 EP
0 879 935 November 1998 EP
0 879 935 November 1998 EP
1 413 710 April 2004 EP
2412389 September 2005 GB
2004181820 July 2004 JP
WO 93/15127 August 1993 WO
WO 94/07949 April 1994 WO
WO 94/08078 April 1994 WO
WO 94/08090 April 1994 WO
WO 95/09879 April 1995 WO
WO 97/11845 April 1997 WO
WO 99/27229 June 1999 WO
WO 00/57022 September 2000 WO
WO 01/02698 January 2001 WO
WO 01/87797 November 2001 WO
WO 02/12674 February 2002 WO
WO02/055843 July 2002 WO
WO 03/027431 April 2003 WO
WO 03/027431 April 2003 WO
WO 2004/007905 January 2004 WO
WO 2004/037946 May 2004 WO
WO 2004/038176 May 2004 WO
Other references
  • Office Action for U.S. Appl. No. 11/046,043 dated Jul. 26, 2007.
  • Office Action for U.S. Appl. No. 11/046,043 dated Nov. 2, 2007.
  • Office Action for U.S. Appl. No. 11/046,043 dated Jan. 14, 2008.
  • NatureWorks Product Bulletin entitled NatureWorks PLA Polymer 3001D, Injection Molding Process Guide, 2005.
  • NatureWorks Product Bulletin entitled NatureWorks PLA Polymer 4060D, for Heat Seal Layer in Coextruded Oriented Films, 2005.
  • NatureWorks article entitled NatureWorks, Crystallizing and Drying of PLA, 2005.
  • Skrabal et al., The Hydrolysis Rate of Orthoformic Acid Ethyl Ether, Chemical Institute of the University of Graz, pp. 1-38, 1921.
  • Heller, et al., Poly(ortho esters)—From Concept to Reality, Biomacromolecules, vol. 5, No. 5, pp. 1625-1632, 2004.
  • Schwach-Abdellaoui, et al., Hydrolysis and Erosion Studies of Autocatalyzed Poly(ortho esters) Containing Lactoyl Lactyl Acid Dimers, American Chemical Society, vol. 32, No. 2, pp. 301-307, 1999.
  • Ng, et al., Synthesis and Erosion Studies of Self-Catalyzed Poly(ortho ester)s, American Chemical Society, vol. 30, No. 4, pp. 770-772, 1997.
  • Ng, et al., Development of a Poly(ortho ester) Prototype With a Latent Acid in the Polymer Backbone for 5-Fluorouracil Delivery, Journal of Controlled Release 65, pp. 367-374, 2000.
  • Rothen-Weinhold, et al., Release of BSA from Poly(ortho ester) Extruded Thin Strands, Journal of Controlled Release, 71, pp. 31-37, 2001.
  • Heller, et al., Poly(ortho ester)s—Their Development and Some Recent Applications, European Journal of Pharmaceutics and Biopharmaceutics, 50, pp. 121-128, 2000.
  • Heller, et al., Poly(ortho esters); Synthesis, Characterization, Properties and Uses, Advanced Drug Delivery Reviews, 54, pp. 1015-1039, 2002.
  • Heller, et al., Poly(ortho esters) for the Pulsed and Continuous Delivery of Peptides and Proteins, Controlled Release and Biomedical Polymers Department, SRI International, pp. 39-56, not dated.
  • Zignani, et al., Subconjunctival Biocompatibility of a Viscous Bioerodable Poly(ortho ester), J. Biomed Mater Res., 39, pp. 277-285, 1998.
  • Toncheva, et al., Use of Block Copolymers of Poly(Ortho Esters) and Poly(Ethylene Glycol), Journal of Drug Targeting, vol. 11(6), pp. 345-353, 2003.
  • Schwach-Abdellaoui, et al., Control of Molecular Weight for Auto-Catalyzed Poly(ortho ester) Obtained by Polycondensation Reaction, International Journal of Polymer Anal. Charact., 7:145-161, pp. 145-161, 2002.
  • Heller, et al., Release of Norethindrone from Poly(Ortho Esters), Polymer Engineering and Science, vol. 21, No. 11, pp. 727-731, 1981.
  • Simmons, et al., Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation, Biomacromolecules, vol. 2, No. 2, pp. 658-663, 2001.
  • Yin, et al., Preparation and Characterization of Substituted Polylactides, American Chemical Society, vol. 32, No. 23, pp. 7711-7718, 1999.
  • Yin, et al., Synthesis and Properties of Polymers Derived from Substituted Lactic Acids, American Chemical Society, Ch. 12, pp. 147-159, 2001.
  • Cantu, et al., Laboratory and Field Evaluation of a Combined Fluid-Loss-Control Additive and Gel Breaker for Fracturing Fluids, SPE 18211, Society of Petroleum Engineers, 1990.
  • Love, et al., Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production, SPE 50422, Society of Petroleum Engineers, 1998.
  • McDaniel, et al., Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion, SPE 78697, Society of Petroleum Engineers, 2002.
  • Albertsson, et al., Aliphatic Polyesters: Synthesis, Properties and Applications, Advances in Polymer Science, vol. 157, Degradable Aliphatic Polyesters, 2002.
  • Dechy-Cabaret, et al., Controlled Ring-Opening Polymerization of Lactide and Glycolide, American Chemical Society, Chemical Reviews, A-Z, AA-AD, received 2004.
  • Funkhouser, et al., Synthetic Polymer Fracturing Fluid for High-Temperature Applications, SPE 80236, Society of Petroleum Engineers, 2003.
  • Chelating Agents, Encyclopedia of Chemical Technology, vol. 5, pp. 764-795, not dated.
  • Vichaibun, et al., A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report, ScienceAsia, vol. 29, pp. 297-300, 2003.
  • Halliburton, SurgiFracSM Service, A Quick and Cost-Effective Method to Help Boost Production from Openhole Horizontal Completions, Halliburton Communications, HO 3297, 2002.
  • Halliburton, Cobra FracSM Service, Coiled Tubing Fracturing—Cost-Effective Method for Stimulating Untapped Reserves, HO 2319R, Halliburton Energy Services, 2002.
  • Halliburton, CobraJet FracSM Service, Cost-Effective Technology That Can Help Reduce Cost Per Boe Produced, Shorten Cycle Time and Reduce Capex, Halliburton Communications, 2000.
  • Y. Chiang, et al., Hydrolysis of Ortho Esters: Further Investigation of the Factors Which Control the Rate-Determining Step, Engineering Information Inc., NY, NY, vol. 105, No. 23, (XP-002322842), 1983.
  • M. Ahmand, et al., Ortho Ester Hydrolysis: Direct Evidence for a Three-Stage Reaction Mechanism, Engineering Information Inc., NY, NY, vol. 101, No. 10, (XP-002322843), 1979.
  • Cordes, et al., Mechanism and Catalysis for Hydrolysis of Acetals, Ketals, and Other Esters, Department of Chemistry, Indiana University, Blomington, Indiana, Chemical Reviews, vol. 74, No. 5, pp. 581-603, 1974.
  • Todd, et al., A Chemical “Trigger” Useful for Oilfield Applications, Society of Petroleum Engineers, Inc., SPE 92709, 2005.
  • Office Action for U.S. Appl. No. 11/046,652 dated Oct. 2, 2007.
  • Office Action for U.S. Appl. No. 11/046,652 dated Sep. 4, 2008.
  • Office Action for U.S. Appl. No. 11/046,652 dated Dec. 14, 2009.
  • Office Action for U.S. Appl. No. 11/046,043 dated Dec. 16, 2010.
  • Office Action for U.S. Appl. No. 11/046,043 dated Apr. 7, 2011.
Patent History
Patent number: 8030251
Type: Grant
Filed: Apr 14, 2010
Date of Patent: Oct 4, 2011
Patent Publication Number: 20100197527
Assignee: Halliburton Energy Services, Inc. (Duncan, OK)
Inventors: Bradley L. Todd (Duncan, OK), Karen Savery (Duncan, OK)
Primary Examiner: Alicia Toscano
Attorney: McDermott Will & Emery LLP
Application Number: 12/760,385