Covert laser remote sensing and vibrometry
Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.
Latest California Institute of Technology Patents:
- OPTICAL PARAMETRIC OSCILLATOR-BASED MOLECULAR SENSOR
- CROSS-RAY ULTRASOUND TOMOGRAPHY (CRUST) METHODS AND SYSTEMS
- Freeze-cast ceramic membrane for size based filtration
- DNA sequence modification-based gene drive
- Systems and methods for detecting abnormalities in electrical and electrochemical energy units
This application claims the benefit of the U.S. Provisional Application No. 60/998,688 entitled “Space-born non-cooperative covert remote hearing and vibrometry” and filed Oct. 12, 2007, the disclosure of which is incorporated by reference as part of the specification of this application.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTThe invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
BACKGROUNDThis application relates to optical sensors including optical vibrometry measurements.
Laser vibrometry measurements use two coherent laser beams from a single laser: one as a probe beam and another as a reference beam. The probe beam is directed to a target and gets reflected back to optically interfere with the reference beam to produce an interference signal. This interference signal is detected to extract the vibration information of the target which indices a Doppler shift in the reflected probe light.
The system in this document can be used to provide an acousto-photonic system for remote detection and analysis as well as for covert recognition of distant non-cooperative objects (targets of tactical and/or strategic importance). For example, the targets can belong to particular types of mechanical tooling operating under the roof of a factory or deep underground. The acousto-photonic system can be used for remote recognition of a fake construction such as a garage or a factory, remote recognition of fake weaponry placed on the battlefield and identification of fake launched warheads.
Our system has two distinct features:
a) The target recognition can be covert. The power of the optical carrier will always be kept below the natural illumination background to be completely unrecognizable by modern detectors. Our advanced filtering at selected optical wavelength will remove all the ambient illumination which would saturate optical detector of the vibrometer. Additional stage of the detection will include lock-in amplification of the received signal which will increase the signal level at least by 30 dB.
b) Our system will allow recognition of very remote targets. The receiving part of the system will require only very moderate power and it will detect the intensity of the returned light, not the square of it as usually. Estimations show that 1000 mile recognition distance will be feasible with 200 mW optical source. This will allow usage of our systems in space for listening the ground or vibrations of other spacecrafts.
The operational principle of the acousto-photonic system is based on laser vibrometry. Conventional remote optical vibrometry suffers from low signal-to-noise ratio resulting from unavailability of narrowband optical filters suitable for cutting out the noise from the optical signal returned from a vibrating target. We propose to develop a system that substantially increasing signal-to-noise ratio for an optical vibrometer by providing sub-kilohertz notch pre-filtering in optical domain with subsequent phase-sensitive optical signal detection (
Let us discuss the system more specifically. Laser beam of moderate power illuminates the target. Reflected light (“sparkle”) is received by optical antenna. Doppler shift is compensated by laser frequency detuning. The received signal is refined by a kilohertz bandpass optical filter. Output of the filter is amplified, demodulated, and sent to an acoustical spectrum analyzer and simultaneously to a loudspeaker.
Extremely narrowband optical filtering with amplification allows reducing optical power down and hiding it within regular target's night or day illumination. To ensure the sparkle is not visible when level of ambient illumination is reducing, say at dusk, the feedback circuit will adjust the emitting power constantly keeping it substantially below the illumination. This way overall power of sparkle will be at least 50 dB below natural illumination and this way undetectable by regular observer.
The last stage of the hearing setup provides with covertness even when technically advanced counter-reconnaissance systems are present. The sparkle still can be detected if the counter-system has real-time information about exact current frequency of the remote-hearing laser. In this case the covertness is compromised since opponent directly detects the sparkle. This stage allows reducing power 20 dB below the noise within acoustic band using phase sensitive technique.
To intercept the process of remote hearing at this point the opponent has to obtain real-time optical frequency of the remote-hearing laser and a current phase of the phase sensitive receiver. This does not seem realistic.
The narrowband filtering is possible because of availability of ultra-high Q crystalline whispering gallery mode (WGM) resonators. Recently we have developed a novel approach for fabrication of ultra-high Q crystalline WGM microresonators and demonstrated high contrast optical modes characterized with a kilohertz bandwidth (Q>1011) at room temperature. Theoretical simulations show that the Q-factor could be even higher if appropriate crystalline materials are chosen. The resonators are small in size and suitable for integration with other optical elements. We have also developed a computerized fabrication technique for the crystalline microresonators. The technique is based on a special diamond turning apparatus. The quality of the surface of the resonators produced with this technique is characterized by less than 0.2 nm surface roughness. The quality factor of the microresonators exceeds 107.
An optical filter can be fabricated from CaF2 or MgF2. The geometry of the resonator will be engineered in a way to obtain a so-called “single-mode” optical resonator. Such geometry significantly improves spectral resolution as well as signal-to-noise ratio. The filter will improve sensitivity of the remote hearing for a wide range of the optical frequencies scaling from 200 to 400 THz. One example of such a filer is a whispering gallery mode resonator filter.
Proposed setup will be of great interest because of its unique ability to recognize actual sound and vibration of the extremely remote targets. Deployed system will allow recognition of, for example, the particular type of U238/U235 inertial separators working at WDM facilities by vibrational spectra of the facility itself. On the battlefield it would allow recognition of false tanks on the ground or false jetfighters on the airstrip.
Proposed system will result in remote covert recognition since the weak laser carrier will be safely hidden in wideband stray light. The target under recognition will not be able to detect this process since at present time there are no methods to extract such a weak narrowband optical signal from noisy background but our proposed filtering process.
Remote optical hearing and vibrometry has been widely used, e.g. in industry, for detection of defects within operating mechanisms or recognition of their operational status. There exists a significant technical difficulty, though, in optical recognition of a weak vibration introducing modulation sidebands in the vicinity of the optical carrier. It is difficult to separate the signal from the strong ambient optical noise even using heterodyne detection scheme. We propose a novel as well as a feasible solution of the problem that will improve sensitivity of existing remote hearing devices by several orders of magnitude.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or a variation of a subcombination.
Only a few implementations are disclosed. However, it is understood that variations, enhancements and other implementations can be made based on what is described and illustrated in this patent application.
Claims
1. A method for detecting vibrations of a target based on optical sensing, comprising:
- operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target;
- collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture;
- using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies;
- using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal;
- using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal;
- processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and
- controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.
2. The method as in claim 1, comprising:
- setting the optical receiver aperture to be equal to or greater than an optical aperture of the laser probe beam at the laser.
3. The method as in claim 1, wherein:
- the optical power of the laser probe beam at the target is comparable to the optical power of background illumination at the target.
4. The method as in claim 1, wherein:
- the optical power of the laser probe beam at the target is controlled so that the laser probe beam at the target is covert in the background illumination at the target.
5. The method as in claim 1, comprising:
- measuring optical power of the background illumination at the target; and
- using a feedback control in response to the measured optical power to control the laser so that the optical power of the laser probe beam at the target is covert in the background illumination at the target.
6. The method as in claim 1, comprising:
- controlling the laser probe beam at the laser frequency to have a spectral linewidth of around one kilohertz.
7. A method for detecting vibrations of a target based on optical sensing, comprising:
- operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target;
- collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture;
- using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies;
- using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal;
- using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; and
- processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light,
- wherein:
- the processing of the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light comprises generating an acoustic signal indicating the vibrations of the target.
8. The method as in claim 7, comprising:
- controlling the laser probe beam at the laser frequency to have a spectral linewidth of around one kilohertz.
9. The method as in claim 7, comprising:
- setting the optical receiver aperture to be equal to or greater than an optical aperture of the laser probe beam at the laser.
10. A method for detecting vibrations of a target based on optical sensing, comprising:
- directing a laser probe beam at a laser frequency, which is modulated at a modulation frequency, onto a target;
- measuring optical power of the background illumination at the target;
- using a feedback control in response to the measured optical power to control the optical power of the laser probe beam at the target to be covert in the background illumination at the target;
- collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture;
- using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies;
- converting the filtered light from the narrow-band optical filter into a receiver electrical signal;
- detecting and amplifying the receiver electrical signal at the modulation frequency, while rejecting signal components at other frequencies, to produce an amplified receiver electrical signal; and
- extracting from the amplified receiver electrical signal an acoustic signature of the target.
11. The method as in claim 10, comprising:
- setting the optical receiver aperture to be equal to or greater than an optical aperture of the laser probe beam at the laser.
12. The method as in claim 10, comprising:
- controlling the laser probe beam at the laser frequency to have a spectral linewidth of around one kilohertz.
13. A device for detecting vibrations of a target based on optical sensing, comprising:
- a laser module to produce a laser probe beam at a laser frequency, which is modulated at a modulation frequency;
- means for directing the laser probe beam onto a target;
- means for measuring background illumination at the target;
- a feedback control that is responsive to the measured background illumination at the target and controls the optical power of the laser probe beam at the target to be covert in the background illumination at the target;
- an antenna collecting light from the target to produce collected light;
- a narrow-band optical filter centered at the laser frequency to filter the collected light from the antenna to produce filtered light at the laser frequency while blocking light at other frequencies;
- an optical detector to convert the filtered light from the narrow-band optical filter into a receiver electrical signal;
- an amplifier that detects and amplifies the receiver electrical signal at the modulation frequency, while rejecting signal components at other frequencies, to produce an amplified receiver electrical signal; and
- means for extracting from the amplified receiver electrical signal an acoustic signature of the target.
14. The device as in claim 13, wherein:
- the antenna has an optical receiver aperture that is equal to or greater than an optical aperture for projecting the laser probe beam of the device onto the project.
15. The device as in claim 13, comprising:
- means for controlling the laser probe beam at the laser frequency to have a spectral linewidth of around one kilohertz.
16. A device for detecting vibrations of a target based on optical sensing, comprising:
- a laser module to produce a laser probe beam at a laser frequency, which is modulated at a modulation frequency;
- means for directing the laser probe beam onto a target;
- means for measuring background illumination at the target;
- a feedback control that is responsive to the measured background illumination at the target and controls the optical power of the laser probe beam at the target to be covert in the background illumination at the target;
- an antenna collecting light from the target to produce collected light;
- an optical detector to convert the collected light into a receiver electrical signal;
- an amplifier that detects and amplifies the receiver electrical signal at the modulation frequency, while rejecting signal components at other frequencies, to produce an amplified receiver electrical signal; and
- means for extracting from the amplified receiver electrical signal an acoustic signature of the target.
17. The device as in claim 16, wherein:
- the antenna has an optical receiver aperture that is equal to or greater than an optical aperture for projecting the laser probe beam of the device onto the project.
18. A method for detecting vibrations of a target based on optical sensing, comprising:
- directing a laser probe beam at a laser frequency, which is modulated at a modulation frequency, onto a target;
- measuring optical power of the background illumination at the target;
- using a feedback control in response to the measured optical power to control the optical power of the laser probe beam at the target to be covert in the background illumination at the target;
- collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture;
- converting the collected light into a receiver electrical signal;
- detecting and amplifying the receiver electrical signal at the modulation frequency, while rejecting signal components at other frequencies, to produce an amplified receiver electrical signal; and
- extracting from the amplified receiver electrical signal an acoustic signature of the target.
19. The method as in claim 18, comprising:
- setting the optical receiver aperture to be equal to or greater than an optical aperture of the laser probe beam at the laser.
4129041 | December 12, 1978 | Bickel |
4607341 | August 19, 1986 | Monchalin |
4659224 | April 21, 1987 | Monchalin |
4928152 | May 22, 1990 | Gerardin |
5204640 | April 20, 1993 | Logan, Jr. |
5220292 | June 15, 1993 | Bianchini et al. |
5723856 | March 3, 1998 | Yao et al. |
5737085 | April 7, 1998 | Zollars et al. |
5751747 | May 12, 1998 | Lutes et al. |
5777778 | July 7, 1998 | Yao |
5838439 | November 17, 1998 | Zang et al. |
5917179 | June 29, 1999 | Yao |
5929430 | July 27, 1999 | Yao et al. |
5985166 | November 16, 1999 | Unger et al. |
6080586 | June 27, 2000 | Baldeschwieler et al. |
6178036 | January 23, 2001 | Yao |
6186004 | February 13, 2001 | Kaduchak et al. |
6203660 | March 20, 2001 | Unger et al. |
6389197 | May 14, 2002 | Iltchenko et al. |
6417957 | July 9, 2002 | Yao |
6473218 | October 29, 2002 | Maleki et al. |
6476959 | November 5, 2002 | Yao |
6487233 | November 26, 2002 | Maleki et al. |
6488861 | December 3, 2002 | Iltchenko et al. |
6490039 | December 3, 2002 | Maleki et al. |
6535328 | March 18, 2003 | Yao |
6567436 | May 20, 2003 | Yao et al. |
6580532 | June 17, 2003 | Yao et al. |
6594061 | July 15, 2003 | Huang et al. |
6762869 | July 13, 2004 | Maleki et al. |
6795481 | September 21, 2004 | Maleki et al. |
6798947 | September 28, 2004 | Iltchenko |
6853479 | February 8, 2005 | Ilchenko et al. |
6871025 | March 22, 2005 | Maleki et al. |
6873631 | March 29, 2005 | Yao et al. |
6879752 | April 12, 2005 | Ilchenko et al. |
6901189 | May 31, 2005 | Savchenkov et al. |
6906309 | June 14, 2005 | Sayyah et al. |
6922497 | July 26, 2005 | Savchenkov et al. |
6928091 | August 9, 2005 | Maleki et al. |
6943934 | September 13, 2005 | Ilchenko et al. |
6987914 | January 17, 2006 | Savchenkov et al. |
7024069 | April 4, 2006 | Savchenkov et al. |
7043117 | May 9, 2006 | Matsko et al. |
7050212 | May 23, 2006 | Matsko et al. |
7061335 | June 13, 2006 | Maleki et al. |
7062131 | June 13, 2006 | Ilchenko |
7092591 | August 15, 2006 | Savchenkov et al. |
7133180 | November 7, 2006 | Ilchenko et al. |
7173749 | February 6, 2007 | Maleki et al. |
7184451 | February 27, 2007 | Ilchenko et al. |
7187870 | March 6, 2007 | Ilchenko et al. |
7218662 | May 15, 2007 | Ilchenko et al. |
7248763 | July 24, 2007 | Kossakovski et al. |
7260279 | August 21, 2007 | Gunn et al. |
7283707 | October 16, 2007 | Maleki et al. |
7356214 | April 8, 2008 | Ilchenko |
7362927 | April 22, 2008 | Ilchenko et al. |
7369722 | May 6, 2008 | Yilmaz et al. |
7389053 | June 17, 2008 | Ilchenko et al. |
7400796 | July 15, 2008 | Kossakovski et al. |
7440651 | October 21, 2008 | Savchenkov et al. |
7460746 | December 2, 2008 | Maleki et al. |
7480425 | January 20, 2009 | Gunn et al. |
7798000 | September 21, 2010 | Murray et al. |
20010038651 | November 8, 2001 | Maleki et al. |
20020018611 | February 14, 2002 | Maleki et al. |
20020018617 | February 14, 2002 | Iltchenko et al. |
20020021765 | February 21, 2002 | Maleki et al. |
20020081055 | June 27, 2002 | Painter et al. |
20020085266 | July 4, 2002 | Yao |
20020097401 | July 25, 2002 | Maleki et al. |
20030160148 | August 28, 2003 | Yao et al. |
20040100675 | May 27, 2004 | Matsko et al. |
20040109217 | June 10, 2004 | Maleki et al. |
20040218880 | November 4, 2004 | Matsko et al. |
20040240781 | December 2, 2004 | Savchenkov et al. |
20050017816 | January 27, 2005 | Ilchenko et al. |
20050063034 | March 24, 2005 | Maleki et al. |
20050074200 | April 7, 2005 | Savchenkov et al. |
20050099634 | May 12, 2005 | Dubois et al. |
20050123306 | June 9, 2005 | Ilchenko et al. |
20050128566 | June 16, 2005 | Savchenkov et al. |
20050175358 | August 11, 2005 | Ilchenko et al. |
20050248823 | November 10, 2005 | Maleki et al. |
20070009205 | January 11, 2007 | Maleki et al. |
20070153289 | July 5, 2007 | Yilmaz et al. |
20080001062 | January 3, 2008 | Gunn et al. |
20080075464 | March 27, 2008 | Maleki et al. |
20080170235 | July 17, 2008 | Rogers et al. |
20080310463 | December 18, 2008 | Maleki et al. |
20090097516 | April 16, 2009 | Maleki et al. |
20090135860 | May 28, 2009 | Maleki et al. |
20090289198 | November 26, 2009 | Youngner |
01/096936 | December 2001 | WO |
2005/038513 | April 2005 | WO |
2005/055412 | June 2005 | WO |
2005/067690 | July 2005 | WO |
2005/122346 | December 2005 | WO |
2006/076585 | July 2006 | WO |
2007/143627 | December 2007 | WO |
- Aguanno, M.V., et al., “Full-field laser vibrometry employing a novel CMOS-DSP camera,” Proceedings of the SPIE 5th International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, vol. 4827, pp. 123-132, May 2002.
- Braginsky, V.B., et al., “Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes,” Physics Letters A, 137(7, 8):393-397, May 1989.
- Eliyahu, D., et al., “Low Phase Noise and Spurious Levels in Multi-Loop Opto-Electronic Oscillators,” Proceedings of the 2003 IEEE International Frequency Control Sympsoium and PDA Exhibition, pp. 405-410, May 2003.
- Eliyahu, D., et al., “Modulation Response (S21) of the Coupled Opto-Electronic Oscillator,” Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, pp. 850-856, Aug. 2005.
- Eliyahu, D., et al., “Tunable, Ultra-Low Phase Noise YIG Based Opto-Electronic Oscillator,” IEEE MTT-S International Microwave Symposium Digest, 3:2185-2187, Jun. 2003.
- Gorodetsky, M.L., et al., “Optical Microsphere Resonators: Optimal Coupling to High-Q Whispering-Gallery Modes,” J.Opt. Soc. Am. B, 16(1):147-154, Jan. 1999.
- Gorodetsky, M.L., et al., “Rayleigh Scattering in High-Q Microspheres,” J. Opt. Soc. Am. B, 17(6):1051-1057, Jun. 2000.
- Gorodetsky, M.L., et al., “Ultimate Q of Optical Microsphere Resonators,” Optics Letters, 21(7):453-455, Apr. 1996.
- Hryniewicz, J.V., et al., “Higher Order Filter Response in Coupled Microring Resonators,” IEEE Photonics Technology Letters, 12(3):320-322, Mar. 2000.
- Huang, S., et al., “A ‘Turnkey’ Optoelectronic Oscillator with Low Acceleration Sensitivity,” 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, pp. 269-279, Jun. 2000.
- Ilchenko, V., et al., “Electrooptically Tunable Photonic Microresonators and Photonic Bandgap Waveguide Coupling for Micro-Optoelectronic Oscillators,” GOMACTech 2003, Tampa, Florida, pp. 1-4.
- Ilchenko, V., et al., “High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator,” Proceedings SPIE Microresonators and Whispering-Gallery Modes, vol. 3611, pp. 190-198, Jan. 1999.
- Ilchenko, V., et al., “Microsphere Integration in Active and Passive Photonics Devices,” Proc. of SPIE Laser Resonators III, vol. 3930, pp. 154-162, Jan. 2000.
- Ilchenko, V., et al., “Microtorus: A High-Finesse Microcavity with Whispering-Gallery Modes,” Optics Letters, 26(5):256-258, Mar. 2001.
- Ilchenko, V., et al., “Pigtailing the High-Q Microsphere Cavity: A Simple Fiber Coupler for Optical Whispering-Gallery Modes,” Optics Letters, 24(11):723-725, Jun. 1999.
- Ilchenko, V., et al., “Sub-Micro Watt Photonic Microwave Receiver,” IEEE Photonics Technology Letters, 14(11):1602-1604, Nov. 2002.
- Ilchenko, V., et al., “Tunability and Synthetic Lineshapes in High-Q Optical Whispering Gallery Modes,” Proc. of SPIE Laser Resonators and Beam Control VI, vol. 4969, pp. 195-206, Jan. 2003.
- Ilchenko, V., et al., “Whispering-Gallery-Mode Electro-Optic Modulator and Photonic Microwave Receiver,” J. Opt. Soc. Am. B, 20(2):333-342, Feb. 2003.
- Ito, H., et al., “InP/InGaAs Uni-Travelling-Carrier Photodiode with 310 GHz Bandwidth,” Electronics Letters, 36(21):1809-1810, Oct. 2000.
- Logan, R., et al., “Stabilization of Oscillator Phase Using a Fiber-Optic Delay-Line,” IEEE 45th Annual Symposium on Frequency Control, pp. 508-512, May 1991.
- Maleki, L., “The Opto-Electronic Oscillator: Prospects for Extending the State of the Art in Reference Frequency Generation,” International Topical Meeting on Microwave Photonics, pp. 195-198, Oct. 1998.
- Matsko, A., et al., “Active Mode Locking with Whispering-Gallery Modes,” J. Opt. Soc. Am. B, 20(11):2292-2296, Nov. 2003.
- Matsko, A., et al., “Whispering-Gallery-Mode based Optoelectronic Microwave Oscillator,” Journal of Modern Optics, 50(15-17):2523-2542, Feb. 2004.
- Matsko, A., et al., “Whispering-Gallery-Mode Resonators as Frequency References. I. Fundamental Limitations,” J. Opt. Soc. Am. B, 24(6):1324-1335, Jun. 2007.
- Myers, L.E., et al., “Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3,” J. Opt. Soc. Am. B, 12(11):2102-2116, Nov. 1995.
- Redman, B.C., et al., “Direct-detection laser vibrometry with an amplitude-modulated ladar,” Proceedings of the SPIE Laser Radar Technology and Applications IX, vol. 5412, pp. 218-228, Sep. 2004.
- Savchenkov, A., et al., “Whispering-Gallery-Mode Resonators as Frequency References. II. Stabilization,” J. Opt. Soc. Am. B, 24(12): 2988-2997, Dec. 2007.
- Vassiliev, V.V., et al., “Narrow-Line-Width Diode Laser with a High-Q Microsphere Resonator,” Optics Communications, 158(1-6):305-312, Dec. 1998.
- Yao, X.S., et al., “A Novel Photonic Oscillator,” Digest of the LEOS Summer Topical Meetings, pp. 17-18, Aug. 1995.
- Yao, X.S., et al., “A Novel Photonic Oscillator,” TDA Progress Report 42-122, pp. 32-43, Aug. 1995.
- Yao, X.S., et al., “Converting Light into Spectrally Pure Microwave Oscillation,” Optics Letters, 21(7):483-485, Apr. 1996.
- Yao, X.S., et al., “Coupled Optoelectronic Oscillators for Generating Both RF Signal and Optical Pulses,” Journal of Lightwave Tecnhology, 18(1):73-78, Jan. 2000.
- Yao, X.S., et al., “Dual Microwave and Optical Oscillator,” Optics Letters, 22(24):1867-1869, Dec. 1997.
- Yao, X.S., et al., “Multiloop Optoelectronic Oscillator,” IEEE Journal of Quantum Electronics, 36(1):79-84, Jan. 2000.
- Yao, X.S., et al., “Optoelectronic Microwave Oscillator,” J. Opt. Soc. Am. B, 13(8):1725-1735, Aug. 1996.
- Yao, X.S., et al., “Optoelectronic Oscillator for Photonic Systems,” IEEE Journal of Quantum Electronics, 32(7):1141-1149, Jul. 1996.
- Yu, J., et al., “Compact Optoelectronic Oscillator with Ultra-Low Phase Noise Performance,” Electronics Letters, 35(18):1554-1555, Sep. 1999.
Type: Grant
Filed: Oct 14, 2008
Date of Patent: Jul 3, 2012
Assignee: California Institute of Technology (Pasadena, CA)
Inventors: Lutfollah Maleki (Pasadena, CA), Nan Yu (Arcadia, CA), Andrey B. Matsko (Pasadena, CA), Anatoliy Savchenkov (Glendale, CA)
Primary Examiner: Hezron E Williams
Assistant Examiner: Rose M Miller
Attorney: Perkins Coie LLP
Application Number: 12/288,011
International Classification: G01N 29/24 (20060101); G01N 29/46 (20060101);