System and method for monitoring overheat of a compressor
A system and method for monitoring an overheat condition of a compressor is provided. A compressor connected to an evaporator. A suction sensor outputs a suction signal corresponding to a temperature of refrigerant entering the compressor. A control module is connected to the evaporator sensor and the suction sensor and determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheat condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold.
Latest Emerson Climate Technologies, Inc. Patents:
This application claims the benefit of U.S. Provisional Application No. 60/978,312, filed on Oct. 8, 2007. This application also claims the benefit of U.S. Provisional Application No. 60/978,258, filed on Oct. 8, 2007. The entire disclosures of each of the above applications are incorporated herein by reference.
FIELDThe present disclosure relates to compressors and more particularly to a system and method for monitoring an overheat condition of a compressor.
BACKGROUNDThe statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors may be used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. In any of the foregoing applications, the compressor should provide consistent and efficient operation to insure that the particular application (i.e., refrigeration, heat pump, HVAC, or chiller system) functions properly. A variable speed compressor may be used to vary compressor capacity according to refrigeration system load. Operating parameters of the compressor and of the refrigeration system may be used by protection, control, and diagnostic systems to insure optimal operation of the compressor and refrigeration system components. For example, evaporator temperature and/or condenser temperature may be used to diagnose, protect, and control the compressor and other refrigeration system components.
SUMMARYA system is provided comprising a compressor connected to an evaporator, a suction sensor that outputs a suction signal corresponding to a temperature of refrigerant entering the compressor, and a control module connected to the evaporator sensor and the suction sensor that determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheat condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold and that adjusts at least one of a speed of the compressor and an expansion valve associated with the compressor based on the monitoring.
In other features, the control module stops the compressor when the suction superheat is greater than the predetermined suction superheat threshold.
In other features, the predetermined suction superheat threshold is fifty degrees Fahrenheit.
In other features, the control module determines whether the suction superheat is within a predetermined suction superheat range, an upper limit of the predetermined suction superheat range corresponding with the predetermined suction superheat threshold.
In other features, the predetermined suction superheat range is between thirty degrees Fahrenheit and fifty degrees Fahrenheit and the predetermined suction superheat threshold is fifty degrees Fahrenheit.
In other features, the control module adjusts the speed of the compressor when the control module determines that the suction superheat is within the predetermined suction superheat range for a predetermined time period.
A method is provided comprising determining an evaporator temperature of an evaporator connected to a compressor, receiving a suction signal that corresponds to a temperature of refrigerant entering the compressor, calculating a suction superheat temperature based on the evaporator temperature and the suction signal, monitoring an overheat condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold and adjusting at least one of a speed of the compressor and an expansion valve associated with the compressor based on the monitoring.
In other features, the method includes stopping the compressor when the suction superheat is greater than the predetermined suction superheat threshold.
In other features, the predetermined suction superheat threshold is fifty degrees Fahrenheit.
In other features, the method includes determining whether the suction superheat is within a predetermined suction superheat range, an upper limit of the predetermined suction superheat range corresponding with the predetermined suction superheat threshold.
In other features, the predetermined suction superheat range is between thirty degrees Fahrenheit and fifty degrees Fahrenheit and the predetermined suction superheat threshold is fifty degrees Fahrenheit.
In other features, the method includes adjusting the speed of the compressor when the suction superheat is within the predetermined suction superheat range for a predetermined time period.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the terms module, control module, and controller refer to one or more of the following: An application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. As used herein, computer readable medium refers to any medium capable of storing data for a computer. Computer-readable medium includes, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.
With reference to
Compressor 10 may be monitored and controlled by a control module 25. Control module 25 includes a computer readable medium for storing data including the software executed by a processor to monitor and control compressor 10 and to perform the algorithms of the present teachings.
As described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, suction superheat (SSH) may be used to monitor or predict an overheat condition of compressor 10. As described therein, an overheat condition is undesirable and may result in damage to compressor 10, a compressor component, or a refrigeration system component.
A compressor floodback or overheat condition is undesirable and may cause damage to compressor 10 or other refrigeration system components. Suction super heat (SSH) and/or discharge super heat (DSH) may be correlated to a flood back or overheating condition of compressor 10 and may be monitored to detect and/or predict a flood back or overheating condition of compressor 10. DSH is the difference between the temperature of refrigerant vapor leaving the compressor, referred to as discharge line temperature (DLT) and the saturated condenser temperature (Tcond). Suction super heat (SSH) is the difference between the temperature of refrigerant vapor entering the compressor, referred to as suction line temperature (SLT) and saturated evaporator temperature (Tevap).
SSH and DSH may be correlated as shown in
A flood back condition may occur when SSH is approaching zero degrees or when DSH is approaching twenty to forty degrees Fahrenheit. With respect to overheating, when SSH is between thirty degrees Fahrenheit and fifty degrees Fahrenheit, the onset of an overheating condition may occur. When SSH is greater than fifty degrees Fahrenheit or when DSH is greater than one-hundred degrees Fahrenheit, a severe overheating condition may be present.
In
With reference to
A suction sensor 34 monitors a temperature of refrigerant entering compressor 10 (i.e., SLT). Alternatively, a combination suction temperature/pressure sensor may be used. In such case, control module 25 may receive SLT from the temperature portion of the sensor and Tevap from the pressure portion of the sensor, as Tevap may be derived or measured based on suction pressure. Further, Tevap may be derived from other system parameters, as disclosed in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference.
For example, Tevap may be derived as a function of Tcond and DLT, as described in commonly assigned U.S. application Ser. No. 11/059,646, U.S. Publication No. 2005/0235660. For variable speed compressors, the correlation may also reflect compressor speed. In this way, Tevap may be derived as a function of Tcond, DLT and compressor speed.
As shown in
Tcond and Tevap may be calculated based on a single derivation.
In addition, iterative calculations may be made based on the following equations:
Tcond=f(compressor power, compressor speed, Tevap) Equation 1
Tevap=f(Tcond, DLT, compressor speed) Equation 2
Multiple iterations of these equations may be performed to achieve convergence. For example, three iterations may provide optimal convergence. As discussed above, more or less iteration, or no iterations, may be used.
Tevap and Tcond may also be determined by using compressor map data, for different speeds, based on DLT and compressor power, based on the following equations:
Tevap=f(compressor power, compressor speed, DLT) Equation 3
Tcond=f(compressor power, compressor speed, DLT) Equation 4
Control module 25 may calculate Tevap or receive Tevap data from the pressure portion of sensor 34. Control module 25 may then calculate SSH as a difference between SLT and Tevap.
As shown in
Control module 25 may monitor an overheat condition of compressor 10 by comparing SSH with a predetermined overheat threshold. As shown in
In step 308, control module compares SSH with a predetermined threshold to determine whether an overheat condition exists.
Control module 25 may determine that compressor 10 is operating within a normal temperature range when SSH is between zero and thirty degrees Fahrenheit. When SSH is between thirty degrees Fahrenheit and fifty degrees Fahrenheit, control module 25 may detect an overheat condition and take responsive measures. A SSH temperature above fifty degrees Fahrenheit may indicate that components of the compressor, including the compressor scrolls, bearings, etc., are at risk of being damaged.
Control module 25 may also determine whether SSH is greater than a predetermined threshold for a predetermined period of time. For example, control module 25 may determine when SSH is between thirty degrees and fifty degrees Fahrenheit, or greater than fifty degrees Fahrenheit, for a predetermined period. For example, the predetermined period may be a number of minutes (e.g., one minute, two minutes, five minutes, etc.). A first predetermined period (e.g., five minutes) may be used for monitoring when SSH is between thirty degrees and fifty degrees Fahrenheit. A second predetermined period, shorter than the first predetermined period, (e.g., one minute or two minutes) may be used for monitoring when SSH is greater than fifty degrees Fahrenheit. It is understood that any time period may be used as appropriate.
As described in the disclosure titled “VARIABLE SPEED COMPRESSOR PROTECTION SYSTEM AND METHOD”, U.S. Application Ser. No. 60/978,258, which is incorporated herein by reference, in response to an overheat condition, control module 25 may adjust compressor operation and/or adjust expansion valve 14. In a severe overheat condition, control module 25 may stop operation of compressor 10. Control module 25 may also generate an alarm or notification that an overheat condition exists.
As shown in
For example, at a SSH between thirty degrees Fahrenheit and fifty degrees Fahrenheit, control module 25 may reduce compressor speed or cause expansion valve 14 to open. At a SSH greater than fifty degrees Fahrenheit, control module 25 may stop operation of compressor 25.
Claims
1. A system comprising:
- a compressor connected to an evaporator;
- a suction sensor that outputs a suction signal corresponding to a temperature of refrigerant entering said compressor;
- a control module connected to said suction sensor that determines an evaporator temperature, that calculates a suction superheat temperature based on said evaporator temperature and said suction signal, that monitors an overheat condition of said compressor by comparing said suction superheat temperature with a predetermined temperature range having an upper limit temperature and a lower limit temperature, and that reduces a speed of said compressor to a reduced speed and operates said compressor at said reduced speed when it is determined that said suction superheat temperature is between said upper limit temperature and said lower limit temperature, said reduced speed being determined based on said suction superheat temperature.
2. The system of claim 1 wherein said control module stops said compressor when said suction superheat is greater than said upper limit temperature of said predetermined temperature range.
3. The system of claim 1 wherein said upper limit temperature of said predetermined temperature range is fifty degrees Fahrenheit.
4. The system of claim 1 wherein said lower limit temperature of said predetermined temperature range is thirty degrees Fahrenheit and said upper limit temperature is fifty degrees Fahrenheit.
5. The system of claim 1 wherein said control module adjusts said speed of said compressor when said control module determines that said suction superheat temperature is between said upper limit temperature and said lower limit temperature for a predetermined time period.
6. The system of claim 1, further comprising an expansion valve connected to said evaporator, wherein said control module increases an opening of said expansion valve when said suction superheat temperature is between said upper limit temperature and said lower limit temperature.
7. A system comprising:
- a compressor connected to an evaporator;
- an expansion valve connected to said evaporator;
- a suction sensor that outputs a suction signal corresponding to a temperature of refrigerant entering said compressor;
- a control module connected to said suction sensor that determines an evaporator temperature, that calculates a suction superheat temperature based on said evaporator temperature and said suction signal, that monitors an overheat condition of said compressor by comparing said suction superheat temperature with a predetermined temperature range having an upper limit temperature and a lower limit temperature, and that increases an opening of said expansion valve when said suction superheat temperature is determined to be between said upper limit temperature and said lower limit temperature, said increase of said opening of said expansion valve being determined based on said suction superheat temperature.
8. The system of claim 7, wherein said control module reduces a speed of said compressor to a reduced speed and operates said compressor at said reduced speed when said suction superheat temperature is between said upper limit temperature and said lower limit temperature.
9. The system of claim 7 wherein said upper limit temperature of said predetermined temperature range is fifty degrees Fahrenheit.
10. The system of claim 7 wherein said lower limit temperature of said predetermined temperature range is thirty degrees Fahrenheit and said upper limit temperature is fifty degrees Fahrenheit.
11. A method comprising:
- determining an evaporator temperature of an evaporator connected to a compressor;
- receiving a suction signal that corresponds to a temperature of refrigerant entering said compressor;
- calculating a suction superheat temperature based on said evaporator temperature and said suction signal;
- monitoring an overheat condition of said compressor by comparing said suction superheat with a predetermined temperature range having an upper limit temperature and a lower limit temperature; and
- performing, when said suction superheat temperature is determined to be within said predetermined temperature range, at least one of: reducing a speed of said compressor to a reduced speed determined based on said suction superheat temperature and operating said compressor at said reduced speed; and increasing an opening of said expansion valve, said increase being based on said suction superheat temperature.
12. The method of claim 11 further comprising stopping said compressor when said suction superheat is greater than said upper limit temperature of said predetermined temperature range.
13. The method of claim 11 wherein said upper limit temperature of said predetermined temperature range is fifty degrees Fahrenheit.
14. The method of claim 11 wherein said lower limit temperature of said predetermined temperature range is thirty degrees Fahrenheit and said upper limit temperature is fifty degrees Fahrenheit.
15. The method of claim 11 further comprising reducing said speed of said compressor when said suction superheat temperature is between said upper limit temperature and said lower limit temperature for a predetermined time period.
2883255 | April 1959 | Anderson |
2981076 | April 1961 | Gaugler et al. |
3082609 | March 1963 | Ryan et al. |
3242321 | March 1966 | Chope |
3600657 | August 1971 | Pfaff et al. |
4130997 | December 26, 1978 | Hara et al. |
4280910 | July 28, 1981 | Baumann |
4370564 | January 25, 1983 | Matsushita |
4460861 | July 17, 1984 | Rosa |
4461153 | July 24, 1984 | Lindner et al. |
4527399 | July 9, 1985 | Lord |
4653280 | March 31, 1987 | Hansen et al. |
4750338 | June 14, 1988 | Hingst |
4940929 | July 10, 1990 | Williams |
5056712 | October 15, 1991 | Enck |
5182918 | February 2, 1993 | Manz et al. |
5258901 | November 2, 1993 | Fraidlin |
5269146 | December 14, 1993 | Kerner |
5291115 | March 1, 1994 | Ehsani |
5315214 | May 24, 1994 | Lesea |
5347467 | September 13, 1994 | Staroselsky et al. |
5359276 | October 25, 1994 | Mammano |
5359281 | October 25, 1994 | Barrow et al. |
5410221 | April 25, 1995 | Mattas et al. |
5410235 | April 25, 1995 | Ehsani |
5440218 | August 8, 1995 | Oldenkamp |
5502970 | April 2, 1996 | Rajendran |
5519300 | May 21, 1996 | Leon et al. |
5603222 | February 18, 1997 | Dube |
5603227 | February 18, 1997 | Holden et al. |
5646499 | July 8, 1997 | Doyama et al. |
5663627 | September 2, 1997 | Ogawa |
5712551 | January 27, 1998 | Lee |
5712802 | January 27, 1998 | Kumar et al. |
5742103 | April 21, 1998 | Ashok |
5786992 | July 28, 1998 | Vinciarelli et al. |
5903138 | May 11, 1999 | Hwang et al. |
5960207 | September 28, 1999 | Brown |
5963442 | October 5, 1999 | Yoshida et al. |
6005365 | December 21, 1999 | Kaneko et al. |
6028406 | February 22, 2000 | Birk |
6035653 | March 14, 2000 | Itoh et al. |
6041609 | March 28, 2000 | Hornsleth et al. |
6065298 | May 23, 2000 | Fujimoto |
6073457 | June 13, 2000 | Kampf et al. |
6091215 | July 18, 2000 | Lovett et al. |
6091233 | July 18, 2000 | Hwang et al. |
6102665 | August 15, 2000 | Centers et al. |
6116040 | September 12, 2000 | Stark |
6222746 | April 24, 2001 | Kim |
6226998 | May 8, 2001 | Reason et al. |
6236183 | May 22, 2001 | Schroeder |
6236193 | May 22, 2001 | Paul |
6259614 | July 10, 2001 | Ribarich et al. |
6281656 | August 28, 2001 | Masaki et al. |
6281658 | August 28, 2001 | Han et al. |
6316918 | November 13, 2001 | Underwood et al. |
6326750 | December 4, 2001 | Marcinkiewicz |
6344725 | February 5, 2002 | Kaitani et al. |
6370888 | April 16, 2002 | Grabon |
6373200 | April 16, 2002 | Nerone et al. |
6396229 | May 28, 2002 | Sakamoto et al. |
6404154 | June 11, 2002 | Marcinkiewicz et al. |
6406265 | June 18, 2002 | Hahn et al. |
6414462 | July 2, 2002 | Chong |
6424107 | July 23, 2002 | Lu |
6446618 | September 10, 2002 | Hill |
6462492 | October 8, 2002 | Sakamoto et al. |
6471486 | October 29, 2002 | Centers et al. |
6523361 | February 25, 2003 | Higashiyama |
6532754 | March 18, 2003 | Haley et al. |
6539734 | April 1, 2003 | Weyna |
6583593 | June 24, 2003 | Iijima et al. |
6636011 | October 21, 2003 | Sadasivam et al. |
6657877 | December 2, 2003 | Kashima et al. |
6670784 | December 30, 2003 | Odachi et al. |
6688124 | February 10, 2004 | Stark et al. |
6698217 | March 2, 2004 | Tanimoto et al. |
6708507 | March 23, 2004 | Sem et al. |
6714425 | March 30, 2004 | Yamada et al. |
6735284 | May 11, 2004 | Cheong et al. |
6749404 | June 15, 2004 | Gennami et al. |
6753670 | June 22, 2004 | Kadah |
6756753 | June 29, 2004 | Marcinkiewicz |
6756757 | June 29, 2004 | Marcinkiewicz et al. |
6758050 | July 6, 2004 | Jayanth et al. |
6767851 | July 27, 2004 | Rokman et al. |
6788024 | September 7, 2004 | Kaneko et al. |
6815925 | November 9, 2004 | Chen et al. |
6825637 | November 30, 2004 | Kinpara et al. |
6828751 | December 7, 2004 | Sadasivam et al. |
6831439 | December 14, 2004 | Won et al. |
6876171 | April 5, 2005 | Lee |
6915646 | July 12, 2005 | Kadle et al. |
6955039 | October 18, 2005 | Nomura et al. |
6966759 | November 22, 2005 | Hahn et al. |
6967851 | November 22, 2005 | Yang et al. |
6982533 | January 3, 2006 | Seibel et al. |
6984948 | January 10, 2006 | Nakata et al. |
7005829 | February 28, 2006 | Schnetzka |
7049774 | May 23, 2006 | Chin et al. |
7095208 | August 22, 2006 | Kawaji et al. |
7138777 | November 21, 2006 | Won et al. |
7154237 | December 26, 2006 | Welchko et al. |
7176644 | February 13, 2007 | Ueda et al. |
7184902 | February 27, 2007 | El-Ibiary |
7208895 | April 24, 2007 | Marcinkiewicz et al. |
7234305 | June 26, 2007 | Nomura et al. |
7272018 | September 18, 2007 | Yamada et al. |
7307401 | December 11, 2007 | Gataric et al. |
7342379 | March 11, 2008 | Marcinkiewicz et al. |
7375485 | May 20, 2008 | Shahi et al. |
7458223 | December 2, 2008 | Pham |
7554271 | June 30, 2009 | Thiery et al. |
7580272 | August 25, 2009 | Taguchi et al. |
7595613 | September 29, 2009 | Thompson et al. |
7605570 | October 20, 2009 | Liu et al. |
7613018 | November 3, 2009 | Lim et al. |
7660139 | February 9, 2010 | Garabandic |
7667986 | February 23, 2010 | Artusi et al. |
7675759 | March 9, 2010 | Artusi et al. |
7683568 | March 23, 2010 | Pande et al. |
7688608 | March 30, 2010 | Oettinger et al. |
7723964 | May 25, 2010 | Taguchi |
7733678 | June 8, 2010 | Notohamiprodjo et al. |
7738228 | June 15, 2010 | Taylor |
7782033 | August 24, 2010 | Turchi et al. |
7821237 | October 26, 2010 | Melanson |
7895003 | February 22, 2011 | Caillat |
20010022939 | September 20, 2001 | Morita et al. |
20020047635 | April 25, 2002 | Ribarich et al. |
20020062656 | May 30, 2002 | Suitou et al. |
20020108384 | August 15, 2002 | Higashiyama |
20020117989 | August 29, 2002 | Kawabata et al. |
20020157408 | October 31, 2002 | Egawa et al. |
20020162339 | November 7, 2002 | Harrison et al. |
20030019221 | January 30, 2003 | Rossi et al. |
20030077179 | April 24, 2003 | Collins et al. |
20030085621 | May 8, 2003 | Potega |
20030094004 | May 22, 2003 | Pham et al. |
20030146290 | August 7, 2003 | Wang et al. |
20030182956 | October 2, 2003 | Kurita et al. |
20040011020 | January 22, 2004 | Nomura et al. |
20040061472 | April 1, 2004 | Won et al. |
20040070364 | April 15, 2004 | Cheong et al. |
20040085785 | May 6, 2004 | Taimela |
20040100221 | May 27, 2004 | Fu |
20040119434 | June 24, 2004 | Dadd |
20040183491 | September 23, 2004 | Sidey |
20040221594 | November 11, 2004 | Suzuki et al. |
20040261448 | December 30, 2004 | Nishijima et al. |
20050047179 | March 3, 2005 | Lesea |
20050204760 | September 22, 2005 | Kurita et al. |
20050235660 | October 27, 2005 | Pham |
20050235661 | October 27, 2005 | Pham |
20050235662 | October 27, 2005 | Pham |
20050235663 | October 27, 2005 | Pham |
20050247073 | November 10, 2005 | Hikawa et al. |
20050262849 | December 1, 2005 | Nomura et al. |
20050270814 | December 8, 2005 | Oh |
20060041335 | February 23, 2006 | Rossi et al. |
20060042276 | March 2, 2006 | Doll et al. |
20060048530 | March 9, 2006 | Jun et al. |
20060056210 | March 16, 2006 | Yamada et al. |
20060090490 | May 4, 2006 | Grimm et al. |
20060117773 | June 8, 2006 | Street et al. |
20060123809 | June 15, 2006 | Ha et al. |
20060130501 | June 22, 2006 | Singh et al. |
20060130504 | June 22, 2006 | Agrawal et al. |
20060150651 | July 13, 2006 | Goto et al. |
20060158912 | July 20, 2006 | Wu et al. |
20060185373 | August 24, 2006 | Butler et al. |
20060187693 | August 24, 2006 | Tang |
20060198172 | September 7, 2006 | Wood |
20060198744 | September 7, 2006 | Lifson et al. |
20060247895 | November 2, 2006 | Jayanth |
20060255772 | November 16, 2006 | Chen |
20060261830 | November 23, 2006 | Taylor |
20060290302 | December 28, 2006 | Marcinkiewicz et al. |
20070012052 | January 18, 2007 | Butler et al. |
20070029987 | February 8, 2007 | Li |
20070040524 | February 22, 2007 | Sarlioglu et al. |
20070040534 | February 22, 2007 | Ghosh et al. |
20070089424 | April 26, 2007 | Venkataramani et al. |
20070118307 | May 24, 2007 | El-Ibiary |
20070118308 | May 24, 2007 | El-Ibiary |
20070132437 | June 14, 2007 | Scollo et al. |
20070144354 | June 28, 2007 | Muller et al. |
20080089792 | April 17, 2008 | Bae et al. |
20080112823 | May 15, 2008 | Yoshida et al. |
20080143289 | June 19, 2008 | Marcinkiewicz et al. |
20080160840 | July 3, 2008 | Bax et al. |
20080209925 | September 4, 2008 | Pham |
20080216494 | September 11, 2008 | Pham et al. |
20080232065 | September 25, 2008 | Lang et al. |
20080252269 | October 16, 2008 | Feldtkeller et al. |
20080265847 | October 30, 2008 | Woo et al. |
20080272745 | November 6, 2008 | Melanson |
20080272747 | November 6, 2008 | Melanson |
20080273356 | November 6, 2008 | Melanson |
20080278101 | November 13, 2008 | Shahi et al. |
20080284399 | November 20, 2008 | Oettinger et al. |
20080285318 | November 20, 2008 | Tan et al. |
20090015214 | January 15, 2009 | Chen |
20090015225 | January 15, 2009 | Turchi et al. |
20090016087 | January 15, 2009 | Shimizu |
20090026999 | January 29, 2009 | Atarashi |
20090033296 | February 5, 2009 | Hammerstrom |
20090039852 | February 12, 2009 | Fishelov et al. |
20090059625 | March 5, 2009 | Viitanen et al. |
20090071175 | March 19, 2009 | Pham |
20090091961 | April 9, 2009 | Hsia et al. |
20090094997 | April 16, 2009 | McSweeney |
20090140680 | June 4, 2009 | Park |
20090237963 | September 24, 2009 | Prasad et al. |
20090243561 | October 1, 2009 | Tan et al. |
20090273330 | November 5, 2009 | Sisson |
20090290395 | November 26, 2009 | Osaka |
20090295347 | December 3, 2009 | Popescu et al. |
20090303765 | December 10, 2009 | Shimizu et al. |
20090316454 | December 24, 2009 | Colbeck et al. |
20100007317 | January 14, 2010 | Yang |
20100014326 | January 21, 2010 | Gu et al. |
20100014329 | January 21, 2010 | Zhang et al. |
20100052601 | March 4, 2010 | Pummer |
20100052641 | March 4, 2010 | Popescu et al. |
20100066283 | March 18, 2010 | Kitanaka |
20100079125 | April 1, 2010 | Melanson et al. |
20100080026 | April 1, 2010 | Zhang |
20100109615 | May 6, 2010 | Hwang et al. |
20100109626 | May 6, 2010 | Chen |
20100118571 | May 13, 2010 | Saint-Pierre |
20100118576 | May 13, 2010 | Osaka |
20100128503 | May 27, 2010 | Liu et al. |
20100156377 | June 24, 2010 | Siegler |
20100165683 | July 1, 2010 | Sugawara |
20100181930 | July 22, 2010 | Hopwood et al. |
20100187914 | July 29, 2010 | Rada et al. |
20100202169 | August 12, 2010 | Gaboury et al. |
20100226149 | September 9, 2010 | Masumoto |
20100246220 | September 30, 2010 | Irving et al. |
20100246226 | September 30, 2010 | Ku et al. |
20100253307 | October 7, 2010 | Chen et al. |
20100259230 | October 14, 2010 | Boothroyd |
20100270984 | October 28, 2010 | Park et al. |
20100301787 | December 2, 2010 | Gallegos-Lopez et al. |
20100301788 | December 2, 2010 | Chen et al. |
20110138826 | June 16, 2011 | Lifson et al. |
1697954 | November 2005 | CN |
1806478 | July 2006 | CN |
1987258 | June 2007 | CN |
55155134 | December 1980 | JP |
61272483 | December 1986 | JP |
01167556 | July 1989 | JP |
2004163 | January 1990 | JP |
03129255 | June 1991 | JP |
04344073 | November 1992 | JP |
07035393 | February 1995 | JP |
09196524 | July 1997 | JP |
1998097331 | April 1998 | JP |
10153353 | June 1998 | JP |
10160271 | June 1998 | JP |
H10-153353 | June 1998 | JP |
11159895 | June 1999 | JP |
11287497 | October 1999 | JP |
2000297970 | October 2000 | JP |
2001317470 | November 2001 | JP |
2002013858 | January 2002 | JP |
2002243246 | August 2002 | JP |
2003156244 | May 2003 | JP |
2004135491 | April 2004 | JP |
2005-003710 | January 2005 | JP |
2005132167 | May 2005 | JP |
2005282972 | October 2005 | JP |
2006177214 | July 2006 | JP |
2006188954 | July 2006 | JP |
2006233820 | September 2006 | JP |
2007198230 | August 2007 | JP |
2007198705 | August 2007 | JP |
10-1996-0024115 | July 1996 | KR |
2001-0044273 | June 2001 | KR |
2003-0011415 | February 2003 | KR |
2005-0059842 | June 2005 | KR |
20050085544 | August 2005 | KR |
20070071407 | July 2007 | KR |
2004059822 | July 2004 | WO |
WO-2004083744 | September 2004 | WO |
2005101939 | October 2005 | WO |
2009048566 | May 2009 | WO |
- JP 2000-297970 (English Abstract).
- International Search Report regarding International Application No. PCT/US2008/011576 dated Mar. 23, 2009.
- Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011576 dated Mar. 20, 2009.
- International Search Report regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009.
- Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011442, dated Apr. 7, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011596, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011441, dated Apr. 7, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011570, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011464, dated Apr. 7, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011593, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011597, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011590, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011589, dated Apr. 13, 2010.
- International Preliminary Report on Patentability for International Application No. PCT/US2008/011576, dated Apr. 13, 2010.
- International Search Report for International Application No. PCT/US2008/011442 dated Feb. 3, 2009.
- International Search Report for International Applicatoin No. PCT/US2008/011596, dated Feb. 25, 2009.
- International Search Report for International Application No. PCT/US2008/011441, dated Jan. 30, 2009.
- International Search Report for International Application No. PCT/US2008/011570, dated May 26, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011570, dated May 26, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011593, dated Jun. 17, 2009.
- International Search Report for International Application No. PCT/US2008/011593, dated Jun. 17, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011597, dated Jun. 19, 2009.
- International Search Report for International Application No. PCT/US2008/011597, dated Jun. 19, 2009.
- International Search Report for International Application No. PCT/US2008/011590, dated Feb. 27, 2009.
- International Search Report for International Application No. PCT/US2008/011589, dated Feb. 27, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011442, dated Feb. 3, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011596, dated Feb. 25, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011441, dated Jan. 30, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011589, dated Feb. 27, 2009.
- Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011590, dated Feb. 27, 2009.
- Non-Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jan. 4, 2011.
- Non-Final Office Action regarding U.S. Appl. No. 12/247,001, dated Feb. 25, 2011.
- Non-Final Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 3, 2011.
- Non-Final Office Action regarding U.S. Appl. No. 12/246,893, dated Apr. 1, 2011.
- Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 8, 2011. Translation provided by Unitalen Attorneys At Law.
- Notice of Grounds for Rejection from the Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7009374, dated May 31, 2011. Translation provided by Y.S. Change & Associates.
- Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jun. 14, 2011.
- Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 21, 2011.
- Office Action regarding U.S. Appl. No. 12/246,893, dated Aug. 1, 2011.
- Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 17, 2011.
- Final Office Action regarding U.S. Appl. No. 12/247,001, dated Sep. 1, 2011.
- Office Action regarding U.S. Appl. No. 12/247,020, dated Sep. 1, 2011.
- Office Action regarding U.S. Appl. No. 12/246,927, dated Sep. 6, 2011.
- Notification of the Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 5, 2012. Translation provided by Unitalen Attorneys at Law.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated May 22, 2012. Translation provided by Y.S. Chang & Associates.
- Non-Final Office Action regarding U.S. Appl. No. 12/246,927, dated Jun. 6, 2012.
- Final Office Action regarding U.S. Appl. No. 12/247,020, dated Jun. 6, 2012.
- Non-Final Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 13, 2012.
- Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Feb. 1, 2012
- Examiner's Answer to Appellant's Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Mar. 26, 2012.
- Final Office Action regarding U.S. Appl. No. 12/244,416, dated Nov. 15, 2011.
- Final Office Action regarding U.S. Appl. No. 12/246,959, dated Oct. 12, 2011.
- Notice of Appeal from the Examiner to the Board of Patent Appeals and Interferences and Pre-Appeal Brief Request for Review regarding U.S. Appl. No. 12/247,001, dated Dec. 1, 2011.
- Notice of Final Rejection from the Korean Intellectual Property Office regarding Korean Application No. 10-2010-7009374, dated Nov. 18, 2011. Translation provided by Y.S. Chang & Associates.
- Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 12/247,001, dated Dec. 27, 2011.
- Notification of First Office action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110484.8, dated Dec. 23, 2011. Translation provided by Unitalen Attorneys at Law.
- Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110590.6, dated Feb. 29, 2012. Translation provided by Unitalen Attorneys at Law.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007375, dated Dec. 7, 2011. Translation provided by Y.S. Chang & Associates.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007581, dated Nov. 14, 2011. Translation provided by Y.S. Chang & Associates.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007583 from the Korean Intellectual Property Office, dated Dec. 28, 2011. Translation provided by Y.S. Chang & Associates.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7009659, dated Feb. 8, 2012. Translation provided by Y.S. Chang & Associates.
- Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880111091.9 dated Nov. 23, 2011. Translation provided by Unitalen Attorneys at Law.
- Office Action regarding U.S. Appl. No. 12/246,825, dated Oct. 12, 2011.
- Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 1, 2012.
- Office Action regarding U.S. Appl. No. 12/244,416, dated Aug. 8, 2011.
- Office Action regarding U.S. Appl. No. 12/246,893, dated Dec. 7, 2011.
- “Electrical Power vs Mechanical Power,” by Suvo, http://www.brighthubengineering.com/machine-design/62310-electrical-power-vs-mechanical-power/; dated Jan. 25, 2010; 2 pages.
- “Solving System of Equations by Substitution,” by http://cstl.syr.edu/fipse/algebra/unit5/subst.htm, dated Aug. 30, 2012; 4 pages.
- Applicant-Initiated Interview Summary regarding U.S. Appl. No. 12/246,927, dated Sep. 5, 2012.
- Applicant-Initiated Interview Summary regarding U.S. Appl. No. 12/247,020, dated Sep. 6, 2012.
- Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 13, 2012.
- Final Office Action regarding U.S. Appl. No. 12/246,959, dated Dec. 4, 2012.
- Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/246,959, dated Feb. 14, 2013.
- Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/246,927, dated Dec. 21, 2012.
- Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/247,020, dated Jan. 4, 2013.
- Notification of Final Rejection from Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7006707, dated Apr. 2, 2013. Translation provided by Y.S. Chang & Associates.
- Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Jul. 4, 2012. Translation provided by Unitalen Attorneys at Law.
- Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated Oct. 23, 2012. Translation provided by Y.S. Chang & Associates.
- Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Application No. 2008801110726, dated Jun. 5, 2012. Translation provided by Unitalen Attorneys at Law.
- Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Apr. 1, 2013. Translation provided by Unitalen Attorneys at Law.
- Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Dec. 28, 2012. Translation provided by Unitalen Attorneys at Law.
- Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 2008801110726, dated Mar. 15, 2013. Translation provided by Unitalen Attorneys at Law.
- Third Chinese Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 20088011109.9, dated Feb. 18, 2013. Translation provided by Unitalen Attorneys at Law.
Type: Grant
Filed: Oct 7, 2008
Date of Patent: Sep 24, 2013
Patent Publication Number: 20090090117
Assignee: Emerson Climate Technologies, Inc. (Sidney, OH)
Inventor: Daniel L. McSweeney (Sidney, OH)
Primary Examiner: Marc Norman
Assistant Examiner: Jonathan Bradford
Application Number: 12/247,033
International Classification: F25B 49/02 (20060101);