Hair care composition comprising pyrithione and a purple, pink or red colouring component

- Conopco, Inc.

Hair care composition comprising a metal pyrithione, characterized by from 0.00001 to 0.005% wt. a purple or pink or red coloring component.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

The present invention relates to an improved hair care composition comprising pyrithione.

Despite the prior art there remains a need for hair care compositions with improved aesthetics. Pyrithione-containing compositions are typically dull and the inclusion of micas or pearlescers typically has no effect on the visual appearance.

Accordingly, the present invention provides a hair care composition according to claim 1.

We have surprisingly found that the visual attractiveness of a pyrithione-containing composition can be greatly enhanced using a pink or purple or red colouring component.

In a preferred embodiment the present invention may comprise pyrithione or a polyvalent metal salt of pyrithione. Any form of polyvalent metal pyrithione salts may be used, including platelet, needle, rod and sphere structures. Preferred salts for use herein include those formed from the polyvalent metals magnesium, barium, bismuth, strontium, copper, zinc, cadmium, zirconium and mixtures thereof, more preferably zinc.

Even more preferred is the zinc salt of 1-hydroxy-2-pyridinethione (known as zinc pyrithione or ZPT), more preferably ZPT in platelet form where the particles have an average size of up to 20 micron, preferably up to 5 micron and most preferably up to 2.5 micron.

Preferably, the minimum size is 0.01 micron.

Preferably, the composition comprises from 0.01 to 3% wt. metal pyrithione, more preferably from 0.1 to 2% wt of the composition.

Preferably, the composition also comprises a pearlescer system comprising a bismuth oxychloride component, more preferably comprising a mica component and a bismuth oxychloride component.

Preferably, the composition comprises from 0.01 to 5% wt. bismuth oxychloride component, more preferably, from 0.1 to 0.5% wt of the composition.

Preferably, the bismuth oxychloride component is present with ethylhexyl hydroxystearate. More preferably, the bismuth oxychloride component comprises from 50 to 100% wt. bismuth oxychloride and from 0 to 50% wt. ethylhexyl hydroxystearate.

Preferably, the composition comprises from 0.01 to 5% wt. mica component, more preferably, from 0.1 to 0.5% wt of the composition.

Preferably, the mica component is titanium dioxide coated mica and comprises from 0.01 to 30% wt. titanium dioxide.

Preferably, the composition is a shampoo. More preferably it comprises from 2 to 50% cleansing surfactant. Preferably, the cleansing surfactant comprises a surfactant selected from anionic surfactants, amphoteric surfactants and nonionic surfactant and mixtures thereof.

Preferably, the purple or pink or red colouring component comprises a dye selected from Acid Red 1, Acid Red 14, Acid Red 18, Acid Red 26, Acid Red 27, Acid Red 33, Acid Red 41, Acid Red 50, Acid Red 52, Acid Red 155 and Acid Red 163. More preferably, the colouring component is Acid Red 33.

Preferably, the purple or red or pink colouring component is present at from 0.00001 to 0.005% wt. of the composition, more preferably from 0.00005 to 0.001% wt. of the composition, even more preferably from 0.00007 to 0.0005% wt. of the composition, and most preferably from 0.0001 to 0.0003% wt. of the composition.

Preferably, the composition will comprise from 50 to 98%, preferably from 60 to 90% water by weight based on the total weight of the composition.

Preferably, the composition according to the invention comprises a silicone.

Particularly preferred silicone conditioning agents are silicone emulsions such as those formed from silicones such as polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone, polydimethyl siloxanes having hydroxyl end groups which have the CTFA designation dimethiconol, and amino-functional polydimethyl siloxanes which have the CTFA designation amodimethicone.

The emulsion droplets may typically have a Sauter mean droplet diameter (D3,2) in the composition of the invention ranging from 0.01 to 20 micrometer, more preferably from 0.2 to 10 micrometer.

A suitable method for measuring the Sauter mean droplet diameter (D3,2) is by laser light scattering using an instrument such as a Malvern Mastersizer.

Suitable silicone emulsions for use in compositions of the invention are available from suppliers of silicones such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size. Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier such as an anionic or nonionic emulsifier, or mixture thereof, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer. Pre-formed silicone emulsions having a Sauter mean droplet diameter (D3,2) of less than 0.15 micrometers are generally termed microemulsions.

Examples of suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2-1784, DC-1785, DC-1786, DC-1788 and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Also suitable are amodimethicone emulsions such as DC2-8177 and DC939 (from Dow Corning) and SME253 (from GE Silicones).

Also suitable are silicone emulsions in which certain types of surface active block copolymers of a high molecular weight have been blended with the silicone emulsion droplets, as described for example in WO03/094874. In such materials, the silicone emulsion droplets are preferably formed from polydiorganosiloxanes such as those described above. One preferred form of the surface active block copolymer is according to the following formula:
HO(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)xH
wherein the mean value of x is 4 or more and the mean value of y is 25 or more.

Another preferred form of the surface active block copolymer is according to the following formula:
(HO(CH2CH2O)a(CH(CH3)CH2O)b)2—N—CH2—CH2—N((OCH2CH(CH3))b(OCH2CH2)aOH)2
wherein the mean value of a is 2 or more and the mean value of b is 6 or more.

Mixtures of any of the above described silicone emulsions may also be used. The above described silicone emulsions will generally be present in a composition of the invention at levels of from 0.05 to 10%, preferably 0.05 to 5%, more preferably from 0.5 to 2% by total weight of silicone based on the total weight of the composition.

The silicone is preferably present at from 0.5 to 10% wt., more preferably from 0.5 to 5% wt. especially from 1 to 3% by weight.

Compositions according to the invention will generally comprise one or more anionic cleansing surfactants which are cosmetically acceptable and suitable for topical application to the hair.

Examples of suitable anionic cleansing surfactants are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphosuccinates, alkyl ether sulphosuccinates, N-alkyl sarcosinates, alkyl phosphates, alkyl ether phosphates, and alkyl ether carboxylic acids and salts thereof, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18, preferably from 10 to 16 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether sulphosuccinates, alkyl ether phosphates and alkyl ether carboxylic acids and salts thereof may contain from 1 to 20 ethylene oxide or propylene oxide units per molecule.

Typical anionic cleansing surfactants for use in shampoo compositions of the invention include sodium oleyl succinate, ammonium lauryl sulphosuccinate, sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate, lauryl ether carboxylic acid and sodium N-lauryl sarcosinate.

Preferred anionic cleansing surfactants are sodium lauryl sulphate, sodium lauryl ether sulphate (n)EO, (where n is from 1 to 3), sodium lauryl ether sulphosuccinate(n)EO, (where n is from 1 to 3), ammonium lauryl sulphate, ammonium lauryl ether sulphate(n)EO, (where n is from 1 to 3), sodium cocoyl isethionate and lauryl ether carboxylic acid (n) EO (where n is from 10 to 20).

Mixtures of any of the foregoing anionic cleansing surfactants may also be suitable.

The total amount of anionic cleansing surfactant in compositions of the invention generally ranges from 0.5 to 45%, preferably from 1.5 to 35%, more preferably from 5 to 20% by total weight anionic cleansing surfactant based on the total weight of the composition.

Optionally, a composition of the invention may contain further ingredients as described below to enhance performance and/or consumer acceptability.

The composition can include co-surfactants, to help impart aesthetic, physical or cleansing properties to the composition.

An example of a co-surfactant is a nonionic surfactant, which can be included in an amount ranging from 0.5 to 8%, preferably from 2 to 5% by weight based on the total weight of the composition.

For example, representative nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (C8-C18) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.

Other representative nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono-isopropanolamide.

Further nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs). Typically, the APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups. Preferred APGs are defined by the following formula:
RO-(G)n
wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group.

R may represent a mean alkyl chain length of from about C5 to about C20. Preferably R represents a mean alkyl chain length of from about C8 to about C12. Most preferably the value of R lies between about 9.5 and about 10.5. G may be selected from C5 or C6 monosaccharide residues, and is preferably a glucoside. G may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.

The degree of polymerisation, n, may have a value of from about 1 to about 10 or more. Preferably, the value of n lies from about 1.1 to about 2. Most preferably the value of n lies from about 1.3 to about 1.5.

Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS10 ex Seppic; Plantaren 1200 and Plantaren 2000 ex Henkel.

Other sugar-derived nonionic surfactants which can be included in compositions of the invention include the C10-C18 N-alkyl (C1-C6) polyhydroxy fatty acid amides, such as the C12-C18 N-methyl glucamides, as described for example in WO 92 06154 and U.S. Pat. No. 5,194,639, and the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.

A preferred example of a co-surfactant is an amphoteric or zwitterionic surfactant, which can be included in an amount ranging from 0.5 to about 8%, preferably from 1 to 4% by weight based on the total weight of the composition.

Examples of amphoteric or zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms. Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine, lauryl betaine, cocamidopropyl betaine and sodium cocoamphoacetate.

A particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine.

Mixtures of any of the foregoing amphoteric or zwitterionic surfactants may also be suitable. Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above. A preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.

The total amount of surfactant (including any co-surfactant, and/or any emulsifier) in a shampoo composition of the invention is generally from 1 to 50%, preferably from 2 to 40%, more preferably from 10 to 25% by total weight surfactant based on the total weight of the composition.

Cationic polymers are preferred ingredients in a shampoo composition of the invention for enhancing conditioning performance.

Suitable cationic polymers may be homopolymers which are cationically substituted or may be formed from two or more types of monomers. The weight average (Mw) molecular weight of the polymers will generally be between 100 000 and 2 million daltons. The polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof. If the molecular weight of the polymer is too low, then the conditioning effect is poor. If too high, then there may be problems of high extensional viscosity leading to stringiness of the composition when it is poured.

The cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition. The ratio of the cationic to non-cationic monomer units is selected to give polymers having a cationic charge density in the required range, which is generally from 0.2 to 3.0 meq/gm. The cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US Pharmacopoeia under chemical tests for nitrogen determination.

Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyl and dialkyl (meth)acrylamides, alkyl (meth)acrylate, vinyl caprolactone and vinyl pyrrolidine. The alkyl and dialkyl substituted monomers preferably have C1-C7 alkyl groups, more preferably C1-3 alkyl groups. Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol.

The cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.

Amine substituted vinyl monomers and amines can be polymerised in the amine form and then converted to ammonium by quaternization.

The cationic polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.

Suitable cationic polymers include, for example:

    • cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallylammoniunn chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively;
    • mineral acid salts of amino-alkyl esters of homo- and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, (as described in U.S. Pat. No. 4,009,256);
    • cationic polyacrylamides (as described in WO95/22311).

Other cationic polymers that can be used include cationic polysaccharide polymers, such as cationic cellulose derivatives, cationic starch derivatives, and cationic guar gum derivatives.

Cationic polysaccharide polymers suitable for use in compositions of the invention include monomers of the formula:
A-O—[R—N+(R1)(R2)(R3)X],
wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual. R is an alkylene, oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof. R1, R2 and R3 independently represent alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms. The total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1, R2 and R3) is preferably about 20 or less, and X is an anionic counterion.

Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from the Amerchol Corporation, for instance under the tradename Polymer LM-200.

Other suitable cationic polysaccharide polymers include quaternary nitrogen-containing cellulose ethers (e.g. as described in U.S. Pat. No. 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S. Pat. No. 3,958,581).

A particularly suitable type of cationic polysaccharide polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimethylammonium chloride (commercially available from Rhodia in their JAGUAR trademark series). Examples of such materials are JAGUAR C13S, JAGUAR C14, JAGUAR C15 and JAGUAR C17.

Mixtures of any of the above cationic polymers may be used.

Cationic polymer will generally be present in a shampoo composition of the invention at levels of from 0.01 to 5%, preferably from 0.05 to 1%, more preferably from 0.08 to 0.5% by total weight of cationic polymer based on the total weight of the composition.

Preferably an aqueous shampoo composition of the invention further comprises a suspending agent. Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives. The long chain acyl derivative is desirably selected from ethylene glycol stearate, alkanolamides of fatty acids having from 16 to 22 carbon atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives, since these impart pearlescence to the composition. Polyacrylic acid is available commercially as Carbopol 420, Carbopol 488 or Carbopol 493. Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used; they are available commercially as Carbopol 910, Carbopol 934, Carbopol 941 and Carbopol 980. An example of a suitable copolymer of a carboxylic acid containing monomer and acrylic acid esters is Carbopol 1342. All Carbopol (trademark) materials are available from Goodrich.

Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2. A suitable heteropolysaccharide gum is xanthan gum, for example that available as Kelzan mu.

Mixtures of any of the above suspending agents may be used. Preferred is a mixture of cross-linked polymer of acrylic acid and crystalline long chain acyl derivative.

Suspending agent will generally be present in a shampoo composition of the invention at levels of from 0.1 to 10%, preferably from 0.5 to 6%, more preferably from 0.9 to 4% by total weight of suspending agent based on the total weight of the composition.

The composition according to the invention may also comprise one or more cationic conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair.

Preferably, the cationic conditioning surfactants have the formula N+(R1)(R2)(R3)(R4), wherein R1, R2, R3 and R4 are independently (C1 to C30) alkyl or benzyl.

Preferably, one, two or three of R1, R2, R3 and R4 are independently (C4 to C30) alkyl and the other R1, R2, R3 and R4 group or groups are (C1-C6) alkyl or benzyl.

More preferably, one or two of R1, R2, R3 and R4 are independently (C6 to C30) alkyl and the other R1, R2, R3 and R4 groups are (C1-C6) alkyl or benzyl groups. Optionally, the alkyl groups may comprise one or more ester (—OCO— or COO—) and/or ether (—O—) linkages within the alkyl chain. Alkyl groups may optionally be substituted with one or more hydroxyl groups. Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic. The alkyl groups may be saturated or may contain one or more carbon-carbon double bonds (e.g., oleyl). Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.

Suitable cationic conditioning surfactants for use in conditioner compositions according to the invention include cetyltrinnethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammoniunn chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldinnethylbenzylammonium chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, dihydrogenated tallow dimethyl ammonium chloride (e.g., Arquad 2HT/75 from Akzo Nobel), cocotrimethylammonium chloride, PEG-2-oleammonium chloride and the corresponding hydroxides thereof. Further suitable cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium-31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese. Another particularly useful cationic surfactant for use in conditioners according to the invention is behenyltrimethylammonium chloride, available commercially, for example as GENAMIN KDMP, ex Clariant.

Another example of a class of suitable cationic conditioning surfactants for use in the invention, either alone or in admixture with one or more other cationic conditioning surfactants, is a combination of (i) and (ii) below:

(i) an amidoamine corresponding to the general formula (I):

    • in which R1 is a hydrocarbyl chain having 10 or more carbon atoms,
    • R2 and R3 are independently selected from hydrocarbyl chains of from 1 to 10 carbon atoms, and
    • m is an integer from 1 to about 10; and
      (ii) an acid.

As used herein, the term hydrocarbyl chain means an alkyl or alkenyl chain.

Preferred amidoamine compounds are those corresponding to formula (I) in which

R1 is a hydrocarbyl residue having from about 11 to about 24 carbon atoms,

R2 and R3 are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms, and

m is an integer from 1 to about 4.

Preferably, R2 and R3 are methyl or ethyl groups.

Preferably, m is 2 or 3, i.e. an ethylene or propylene group.

Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldirriethylamine, behenamidopropyldiethylmine, behenamidoethyldiethylamine, behenamidoethyldinnethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachid-annidoethyldiethylamine, arachidamidoethyldimethylamine, and mixtures thereof.

Particularly preferred amidoamines useful herein are stearamidopropyldinnethylamine, stearamidoethyldiethylamine, and mixtures thereof.

Commercially available amidoamines useful herein include: stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia Pa., USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton N.J., USA).

Acid (ii) may be any organic or mineral acid which is capable of protonating the amidoamine in the hair treatment composition. Suitable acids useful herein include hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid, succinic acid, and mixtures thereof. Preferably, the acid is selected from the group consisting of acetic acid, tartaric acid, hydrochloric acid, fumaric acid, and mixtures thereof.

The primary role of the acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition. The TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant.

Suitably, the acid is included in a sufficient amount to protonate all the amidoamine present, i.e. at a level which is at least equimolar to the amount of amidoamine present in the composition.

In conditioners of the invention, the level of cationic conditioning surfactant will generally range from 0.01 to 10%, more preferably 0.05 to 7.5%, most preferably 0.1 to 5% by total weight of cationic conditioning surfactant based on the total weight of the composition.

Conditioners of the invention will typically also incorporate a fatty alcohol.

Representative fatty alcohols comprise from 8 to 22 carbon atoms, more preferably 16 to 22. Fatty alcohols are typically compounds containing straight chain alkyl groups. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also advantageous in that they contribute to the overall conditioning properties of compositions of the invention.

The level of fatty alcohol in conditioners of the invention will generally range from 0.01 to 10%, preferably from 0.1 to 8%, more preferably from 0.2 to 7%, most preferably from 0.3 to 6% by weight of the composition. If the weight ratio of cationic surfactant to fatty alcohol is too high, this can lead to eye irritancy from the composition. If it is too low, it can make the hair feel squeaky for some consumers.

Compositions of the invention may also take the form of a hair lotion, typically for use in between washes. Lotions are aqueous emulsions comprising water-insoluble oily conditioning materials. Suitable surfactants can also be included in lotions to improve their stability to phase separation.

A composition of the invention may contain other ingredients for enhancing performance and/or consumer acceptability. Such ingredients include fragrance, dyes and pigments, pH adjusting agents, pearlescers or opacifiers, viscosity modifiers, and preservatives or antimicrobials. Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally these optional ingredients are included individually at a level of up to 5% by weight of the total composition.

Hair treatment compositions of the invention are primarily intended for topical application to the hair and/or scalp of a human subject, either in rinse-off or leave-on compositions, for the treatment of dry, damaged and/or unmanageable hair.

The invention will be further illustrated by the following, non-limiting Example, in which all percentages quoted are by weight based on total weight unless otherwise stated.

EXAMPLES Example 1

The following is a formulation of a shampoo composition with an appropriate colouring system. It was shown to have improved attractiveness to consumers versus identical green and blue coloured compositions.

Ingredient % wt. Water To 100 Sodium laureth sulphate 16 Cocamidopropyl betaine 1.4 Fragrance 0.8 Dimethicone 1.0 Carbomer 0.6 Sodium chloride 0.75 Zinc pyrithione 0.2 Preservative 0.22 Guar hydroxypropyltrimonium chloride 0.15 Acid Red 33 0.000125 Mica/titanium dioxide 0.2 Bismuth oxychloride/ethylhexyl hydroxystearate 0.2

Example 2

Shampoos containing 1 wt % Zinc pyrithione and Acid Red 33 in an amount of either 0.0004 wt % or 0.0002 wt % were compared in a consumer test. The shampoo containing 0.0002 wt % of the red colouring component was found to be preferred.

Claims

1. Hair care composition comprising a metal pyrithione, characterized by from 0.00001 to 0.005% wt. a purple or pink or red colouring component selected from the group consisting of Acid Red 1, Acid Red 14, Acid Red 18, Acid Red 26, Acid Red 27, Acid Red 33, Acid Red 41, Acid Red 50, Acid Red 52, Acid Red 155 and Acid Red 163.

2. Composition according to claim 1 wherein the metal is selected from magnesium, barium, bismuth, strontium, copper, zinc, cadmium, zirconium and mixtures thereof.

3. Composition according to claim 1 wherein the metal pyrithione is zinc pyrithione.

4. Composition according to claim 1 comprising from 0.01 to 3% wt. metal pyrithione.

5. Composition according to claim 1 comprising a pearliser system characterized by a bismuth oxychloride component and a mica component.

6. Composition according to claim 1 comprising from 0.01 to 5% wt. bismuth oxychloride component.

7. Composition according to claim 1 comprising from 0.01 to 5% wt. mica component.

8. Composition according to claim 1 comprising from 2 to 50% cleansing surfactant.

9. Composition according to claim 8 wherein the cleansing surfactant comprises a surfactant selected from anionic surfactants, amphoteric surfactants and nonionic surfactant and mixtures thereof.

10. Composition according to claim 1 wherein the colouring component is present in an amount of from 0.00005 to 0.0003 wt %.

Referenced Cited
U.S. Patent Documents
3958581 May 25, 1976 Abegg
3962418 June 8, 1976 Birkofer
4009256 February 22, 1977 Nowak
4235898 November 25, 1980 Watanabe
4329336 May 11, 1982 Su
4345080 August 17, 1982 Bolich, Jr.
5053222 October 1, 1991 Takasu et al.
5194639 March 16, 1993 Connor
5246694 September 21, 1993 Birthwistle
7531497 May 12, 2009 Midha et al.
20030228272 December 11, 2003 Amjad
20050129640 June 16, 2005 Laurent
20060089342 April 27, 2006 Gavin et al.
20070009472 January 11, 2007 Niebauer
Foreign Patent Documents
101804014 August 2010 CN
2187197 September 1987 GB
WO9206154 April 1992 WO
WO9318737 September 1993 WO
WO9522311 August 1995 WO
WO9729733 August 1997 WO
WO0051718 September 2000 WO
WO0176552 October 2001 WO
WO03094874 November 2003 WO
WO2006042174 April 2006 WO
WO2006097192 September 2006 WO
WO2007001842 January 2007 WO
WO2009053931 April 2009 WO
WO2009090617 July 2009 WO
WO2007098889 September 2012 WO
Other references
  • Mintel, “Anti Dandruff Shampoo Black Sesame & Kerani”,Feb. 2005, pp. 1-2 (XP-002688839).
  • Mintel, “Anti-Dandruff Shampoo & Conditioner”, Oct. 2001, p. 1 (XP-002688838).
  • Mintel, “Dandruff Shampoo”, Oct. 2001, pp. 1-2 (XP-002688840).
  • PCT International Search Report in PCT application PCT/CN2011/071675 dated Dec. 22, 2011 with Written Opinion.
  • PCT International Search Report in PCT application PCT/EP2012/052028 dated Jan. 9, 2013 with Written Opinion.
  • PCT International Search Report in PCT application PCT/EP2012/052029 dated Jan. 4, 2013 with Written Opinion.
  • PCT International Search Report in PCT application PCT/CN2011/071684 dated Dec. 15, 2011 with Written Opinion.
  • Co-pending U.S. Appl. No. 14/003,464: Applicant: Cao et al., filed Oct. 14, 2013.
Patent History
Patent number: 8771377
Type: Grant
Filed: Feb 7, 2012
Date of Patent: Jul 8, 2014
Patent Publication Number: 20140018275
Assignee: Conopco, Inc. (Englewood Cliffs, NJ)
Inventors: Qunhua Cao (Shanghai), Amit Jayaswal (Shanghai), Qing Yang (Shanghai), Shuhong Yuan (Shanghai)
Primary Examiner: Eisa Elhilo
Application Number: 14/003,462