Selection of optimal channel for rate determination

- Zoll Medical Corporation

According to at least one example, an ambulatory medical device is provided. The device includes a plurality of electrodes disposed at spaced apart positions about a patient's body and a control unit. The control unit includes a sensor interface, a memory and a processor. The sensor interface is coupled to the plurality of electrodes and configured to receive a first ECG signal from a first pairing of the plurality of electrodes and to receive a second ECG signal from a second pairing of the plurality of electrodes. The memory stores information indicating a preferred pairing, the preferred pairing being either the first pairing or the second pairing. The processor is coupled to the sensor interface and the memory and is configured to resolve conflicts between interpretations of first ECG signal and the second ECG signal in favor of the preferred pairing.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 61/467,599, entitled “SELECTION OF OPTIMAL CHANNEL FOR RATE DETERMINATION,” filed on Mar. 25, 2011, which is hereby incorporated herein by reference in its entirety.

BACKGROUND

1. Technical Field

Examples disclosed herein relate generally to the detection of cardiac function in a patient, and more particularly to the detection of cardiac function and the treatment of cardiac conditions in an ambulatory medical device, such as a wearable defibrillator.

2. Discussion

With a wearable defibrillator worn by an ambulatory patient, the patient's electrocardiogram (ECG) signal is obtained from body surface electrodes. Determining the true characteristics of an ambulatory patient's cardiac cycle based on an ECG signal in this manner can be difficult. Electrical noise and electrode fall-off frequently degrade the quality of the ECG signal. In addition, the characteristics of ECG signals vary from patient to patient due to factors such as the patient's state of health, individual physiology, and electrode positions on the body surface.

Known ambulatory wearable defibrillators, such as the LifeVest® Wearable Cardioverter Defibrillator available from Zoll Medical Corporation of Chelmsford, Mass., use four ECG sensing electrodes in a dual-channel configuration. That is, an electrical signal provided by one of the four ECG sensing electrodes is paired with the electrical signal provided by another of the four ECG sensing electrodes to form a channel. This arrangement of ECG sensing electrodes is usually suitable because in most cases it is rare that noise or electrode movement affects the entire body circumference. The dual-channel configuration provides redundancy and allows the system to operate on a single channel if necessary. Because signal quality also varies from patient to patient, having two channels provides the opportunity to have improved signal pickup, since the ECG sensing electrodes are located in different body positions.

SUMMARY

Examples disclosed herein are directed to a wearable medical device that monitors ECG signals received on a plurality of channels and interprets the ECG signals according to a set of preferences. This set of preferences indicates which to channels and detection methods are more likely to provide accurate results for the patient wearing the wearable medical device. By interpreting ECG signals according to the set of preferences, the wearable medical device decreases the frequency of falsely detected cardiac malfunctions.

According to one example, an ambulatory medical device is provided. The device includes a plurality of electrodes disposed at spaced apart positions about a patient's body and a control unit. The control unit includes a sensor interface coupled to the plurality of electrodes and configured to receive a first ECG signal from a first pairing of the plurality of electrodes and to receive a second ECG signal from a second pairing of the plurality of electrodes, a memory storing information indicating a preferred pairing, the preferred pairing being either the first pairing or the second pairing and a processor coupled to the sensor interface and the memory and configured to resolve conflicts between interpretations of first ECG signal and the second ECG signal in favor of the preferred pairing. In some examples, the first pairing includes electrodes that are distinct from the electrodes included in the second pairing. In other examples, one of the plurality of electrodes is common between the first and second pairings. The device may include a plurality of electrodes that are integrated into a garment that is worn about a patient's body. In addition, the interpretations of the ECG signals may detect heartbeats.

According to another example, a method of monitoring ECG signals is provided. In some examples, the method is executed by an ambulatory medical device as described herein. The method includes acts of determining a first interpretation of a first ECG signal provided by a first channel of the plurality of channels, determining a second interpretation of a second ECG signal provided by a second channel of the plurality of channels, determining which one of the first channel and the second channel provides a more reliable ECG signal and resolving a conflict between the first interpretation and the second interpretation based upon which of the first channel and the second channel is determined to provide the more reliable ECG signal.

According to at least one example, an ambulatory medical device is provided. The device includes a plurality of electrodes disposed at spaced apart positions about to a patient's body and a control unit. The control unit includes a sensor interface, a memory and a processor. The sensor interface is coupled to the plurality of electrodes and configured to receive a first ECG signal from a first pairing of the plurality of electrodes and to receive a second ECG signal from a second pairing of the plurality of electrodes. The memory stores information indicating a preferred pairing, the preferred pairing being either the first pairing or the second pairing. The processor is coupled to the sensor interface and the memory and is configured to resolve conflicts between interpretations of first ECG signal and the second ECG signal in favor of the preferred pairing.

The device may further comprise a garment that is configured to be worn about the patient's body. The plurality of electrodes may be integrated into the garment. The plurality of electrodes may include adhesive electrodes. In some examples, the interpretations of the ECG signals may detect heartbeats.

In the device, the information indicating the preferred pairing may include information indicating a first heart rate detection method preferred for the first pairing and a second heart rate detection method preferred for the second pairing. The processor may be further configured to interpret the first ECG signal using the first heart rate detection method and interpret the second ECG signal using the second heart rate detection method.

In the device, the processor may be further configured to determine a first confidence level for the first pairing, determine a second confidence level for the second pairing, determine the preferred pairing with reference to the first confidence level and the second confidence level and store the information indicating the preferred pairing in the memory. In addition, the processor may be configured to determine the first confidence level by comparing the first ECG signal to benchmark information. The benchmark information may reflect a particular patient's normal rhythm. In addition, the processor may be configured to compare the first ECG signal to the benchmark information by comparing a morphology of the first ECG signal to a morphology indicated within the benchmark information.

According to another example, a method of monitoring ECG signals using an ambulatory medical device is provided. The method includes acts of receiving, by the to ambulatory medical device, a first ECG signal from a first pairing of a plurality of electrodes, receiving a second ECG signal from a second pairing of the plurality of electrodes and resolving conflicts between interpretations of first ECG signal and the second ECG signal in favor of a preferred pairing being either the first paring or the second pairing.

In the method, the act of resolving the conflicts between the interpretations may include resolving conflicts between interpretations that detect heartbeats. The method may further comprise acts of interpreting the first ECG signal using a first heart rate detection method and interpreting the second ECG signal using a second heart rate detection method. The first heart rate detection method may be different from the second heart rate detection method.

The method may further comprise acts of determining a first confidence level for the first pairing, determining a second confidence level for the second pairing and determining the preferred pairing with reference to the first confidence level and the second confidence level. In the method, the act of determining the first confidence level may include an act of comparing the first ECG signal to benchmark information. The act of comparing the first ECG signal to the benchmark information may include comparing the first ECG signal to benchmark information that reflects a particular patient's normal rhythm. In addition, the act of comparing the first ECG signal to the benchmark information may include comparing a morphology of the first ECG signal to a morphology indicated within the benchmark information.

In another example, a non-transitory computer readable medium having stored thereon sequences of instruction for monitoring ECG signals is provided. The instructions instruct at least one processor to receive a first ECG signal from a first pairing of the plurality of electrodes, receive a second ECG signal from a second pairing of the plurality of electrodes and resolve conflicts between interpretations of first ECG signal and the second ECG signal in favor of a preferred pairing being either the first pairing or the second pairing.

Furthermore, the instructions may further instruct the at least one processor to determine a first confidence level for the first pairing, determine a second confidence to level for the second pairing and determine the preferred pairing with reference to the first confidence level and the second confidence level. The instructions that instruct the at least one processor to determine the first confidence level may include instructions that instruct the at least one processor to compare the first ECG signal to benchmark information. The instructions that instruct the at least one processor to compare the first ECG signal to the benchmark information may include instructions that instruct the at least one processor to compare a morphology of the first ECG signal to a morphology indicated within the benchmark information.

Still other aspects, examples, and advantages of these exemplary aspects and examples, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects, and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. References to “an example,” “some examples,” “an alternate example,” “various examples,” “one example,” “at least one example,” “this and other examples” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described in connection with the example may be included in that example and other examples. The appearances of such terms herein are not necessarily all referring to the same example.

Furthermore, in the event of inconsistent usages of terms between this document and documents incorporate herein by reference, the term usage in the incorporated references is supplementary to that of this document; for irreconcilable inconsistencies, the term usage in this document controls. In addition, the accompanying drawings are included to provide illustration and a further understanding of the various aspects and examples, and are incorporated in and constitute a part of this specification. The drawings, together with the remainder of the specification, serve to explain principles and operations of the described and claimed aspects and examples.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the to drawings, components that are identical or nearly identical may be represented by a like numeral. For purposes of clarity, not every component is labeled in every drawing. In the drawings:

FIG. 1 is a functional schematic diagram of an exemplary control unit used to control electrode systems;

FIG. 2 is a flow chart of an exemplary process for configuring ECG signal processing preferences;

FIG. 3 is a schematic diagram of an ECG signal produced by a normal cardiac cycle;

FIG. 4 is a flow chart of an exemplary process for detecting cardiac function from a portion of an ECG signal;

FIG. 5 is a flow chart of an exemplary process for interpreting ECG signals according to a set of ECG signal processing preferences; and

FIG. 6 is an exemplary ECG signal produced by an idiosyncratic cardiac cycle.

DETAILED DESCRIPTION

Examples disclosed herein manifest an appreciation that some patients regularly produce ECG signals that are highly idiosyncratic. In these instances, the electrical signals generated during these patient's cardiac cycles can cause conventional heart rate detection methods to detect an erroneous number of heartbeats over a given period of time. These errors are particularly problematic to a wearable medical device, such as a wearable defibrillator, because, within this context, a real-time determination of heart rate can be matter of life and death importance. For this reason, wearable medical devices that monitor heart rate tend to interpret ECG signals in a conservative light and err on the side of reporting potential arrhythmias or other cardiac malfunction to a patient, physician or others. An unfortunate side-effect of this approach is that, in some instances, patients are forced to regularly deal with falsely indicated cardiac malfunction.

The conventional heart rate detection methods mentioned above include derivative-based QRS detectors that detect heartbeats by identifying QRS complexes, to which are representative of ventricular depolarization, within an ECG signal. Conventional derivative-based QRS detectors identify QRS complexes by comparing a slope of the ECG signal to established thresholds. For example, a conventional derivative-based QRS detector may compare a magnitude of the slope of the R wave portion of the QRS complex to a threshold, and if the magnitude exceeds the threshold, the QRS detector may indicate the occurrence of a heartbeat. Typically, such derivative-based QRS detectors are configured (via hardware or software) to the morphology of the heart, and the patient.

For instance, to prevent over counting, the QRS detector may be configured to detect an occurrence of a QRS complex only after a minimum amount of time has transpired after a prior QRS complex. In some examples this minimum amount of time, which is referred to herein as the “refractory period” or the “programmed refractory period,” is typically configured to be about 200 milliseconds. Moreover, the QRS detector may also be configured to use an adaptive threshold that is based upon prior samples of the patient's ECG signal, to account for variations from one patient to another, or to changes in the patient's medical condition. Upon identifying a QRS complex in this manner, conventional derivative-based QRS detectors indicate the occurrence of a heartbeat.

Given their reliance on slope, conventional derivative-based QRS detectors may double count heartbeats where a patient's normal rhythm presents an elongated QRS complex or an abnormally sharp T wave. For example, if the QRS complex generated by the patient's normal rhythm has a duration that exceeds the configured refractory period of the QRS detector, the QRS detector may detect a heartbeat at the beginning of the QRS complex and, after the refractory period has expired, detect another heartbeat near the end of the QRS complex. In another example, if the amplitude of the ECG signal is small, the adaptive thresholds used by the QRS detector may adjust to low values. In this situation, even a moderate spike in one of the other waves, such as the T wave, that occurs after expiration of the refractory period may result in a slope steep enough to cause the QRS detector to indicate the occurrence of a false heartbeat.

To address these difficulties, some exemplary wearable medical devices to disclosed herein process ECG signals from multiple channels according to a set of preference information that is tailored to fit the characteristics of the patient wearing the wearable medical device. The set of preference information may include, among other information, information indicating preferred channels and rate detection methods for the patient. For instance, in at least one example, a wearable medical device processes ECG signals received via two channels, namely a front to back channel and a side to side channel, using one or more QRS rate detectors, which may include, for example, one or more conventional QRS rate detectors. According to this example, the wearable medical device resolves conflicts between these two channels in favor of a previously identified, preferred channel. Further, in some examples, the set of preference information is automatically configured by the wearable medical device and continuously adjusted during its operation. For example, the set of preference information may be adjusted based on the current health of the patient, the activity of the patient, and the present locations of the electrodes relative to the patient's body.

The examples of the processes and apparatuses described herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The methods and apparatuses are capable of implementation in other examples and of being practiced or of being carried out in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting. In particular, acts, elements and features discussed in connection with any one or more examples are not intended to be excluded from a similar role in any other examples.

Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Any references to examples or elements or acts of the systems and methods herein referred to in the singular may also embrace examples including a plurality of these elements, and any references in plural to any example or element or act herein may also embrace examples including only a single element. References in the singular or plural form are not intended to limit the presently disclosed systems or methods, their components, acts, or elements. to The use herein of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms.

Electrode System

Co-pending application Ser. No. 13/109,382, entitled WEARABLE AMBULATORY MEDICAL DEVICE WITH MULTIPLE SENSING ELECTRODES, filed May 17, 2011 (hereinafter the “'382 application”), which is incorporated by reference herein in its entirety, describes an apparatus and method for processing ECG signals using one or more channels. With reference to FIGS. 1A and 1B, the '382 application discloses an electrode system 100 that incorporates a control unit 30. As described with reference to FIG. 4 in the '382 application, at least one example of the control unit 30 includes a processor 410, data storage 412, a sensor interface 414, a therapy delivery interface 416, a user interface 418 and a battery 420.

Some of the examples disclosed herein for processing ECG signals according to a set of preferences are implemented using the electrode system 100 disclosed in the '382 application. FIG. 1 illustrates the control unit 30 of one such example. As shown in FIG. 1, the control unit 30 includes two additional components: a cardiac function analyzer 102 and preference information 104.

The cardiac function analyzer 102 is configured to analyze a portion of the ECG signal to configure preference information, such as the preference information 104, and to determine cardiac functions of the patient using the preference information. The cardiac function analyzer 102 may be implemented using hardware or a combination of hardware and software. For instance, in one example, the cardiac function analyzer 102 is implemented as a software component that is stored within the data storage 412 and executed by the processor 410. In this example, the instructions included in the cardiac function analyzer 102 program the processor 410 to configure preference information and determine the heart rate of the patient using to the preference information. In other examples, the cardiac function analyzer 102 may be an application-specific integrated circuit (ASIC) that is coupled to the sensor interface 414 and tailored to determine the heart rate of the patient. Thus, examples of the cardiac function analyzer 102 are not limited to a particular hardware or software implementation. In addition, particular examples of the processes that the cardiac function analyzer 102 is configured to perform are discussed further below with reference to FIGS. 2-6.

The preference information 104 includes data that describes parameters used by the cardiac function analyzer 102 during its analysis of ECG signals. More particularly, according to the illustrated example, the preference information 104 identifies one or more channels from which the cardiac function analyzer 102 receives ECG signals. In this example, the preference information 104 also includes information that ranks each channel relative to the other identified channels. As is discussed further below, the cardiac function analyzer 102 uses this ranking information to resolve conflicts generated from the interpretation of two or more ECG signals received via the identified channels.

In some examples, the preference information 104 also includes information indicating one or more preferred rate detectors for each channel. In these examples, the cardiac function analyzer 102 uses the preferred rate detectors of each channel to interpret the ECG signal received from each channel. In other examples, the preference information 104 includes an association that groups channel and rate detector preference information into individual profiles. In these examples, the preference information 104 also includes data that indicates an active profile that is used by the cardiac function analyzer 102 to analyze ECG signals. These examples provide the added advantage of easily configuring channel and rate detector information preferences simply by changing the indicator of the active profile from the active profile to another profile.

The preference information 104 may be stored in any logical construction capable of storing information on a computer readable medium including, among other structures, flat files, indexed files, hierarchical databases, relational databases or object oriented databases. In addition, various examples organize the preference to information 104 into particularized and, in some cases, unique structures to perform the functions disclosed herein. In these examples, the data structures are sized and arranged to store values for particular types of data.

In some examples, the components disclosed herein, such as the cardiac function analyzer 102, may read parameters that affect the functions performed by the components. These parameters may be physically stored in any form of suitable memory including volatile memory, such as RAM, or nonvolatile memory, such as a magnetic hard drive. In addition, the parameters may be logically stored in a propriety data structure, such as a database or file defined by a user mode application, or in a commonly shared data structure, such as an application registry that is defined by an operating system. In addition, some examples provide for both system and user interfaces, as may be implemented using the user interface 418, that allow external entities to modify the parameters and thereby configure the behavior of the components.

Preferential ECG Signal Processing

FIG. 2 illustrates a process 200 for configuring the preference information 104 according to one example. As shown, the process 200 includes acts of receiving an ECG signal from each channel, determining a confidence level for each channel and establishing preferences. The process 200 begins at 202.

In act 204, an electrode system, such as the electrode system 100 discussed above, receives one or more ECG signals via one or more channels. According to one example, the electrode system receives ECG signals from a front-to-back channel and from a side-to-side channel. The front-to-back channel includes an electrode positioned on the chest of the patient and another electrode positioned on the back of the patient. The side-to-side channel includes an electrode positioned on the left side of the chest and another electrode positioned on the right side of the patient. Other examples may employ additional, or fewer, electrodes or electrodes located in other positions on the patient's body. In addition, act 204 may include a variety of acts designed to render an accurate interpretation of the ECG signal. For instance, in one example, a control unit, such as the control unit 30 discussed above with reference to to FIG. 1, filters or otherwise manipulates the ECG signal to remove or lower the effect of noise generated by sources other than the patient's heart, such as other muscle movement or electrical disturbances near the patient.

In act 206, the filtered ECG signals are analyzed to determine a confidence level for the interpretation of each filtered ECG signal. According to the illustrated example, the filtered ECG signal of each channel is compared to benchmark information to determine a level of confidence that interpretations of the filtered ECG signal are accurate. As discussed further below, this benchmark information may include benchmark ECG signals and benchmark values that characterize attributes of a normal cardiac cycle.

The source of the benchmark information varies from example to example. For instance, according to one example, a standardized representation of a normal sinus rhythm, such as the ECG signal illustrated in FIG. 3, is utilized as a benchmark ECG signal. In other examples, the benchmark ECG signal includes idiosyncratic characteristics of a particular patient's normal rhythm. In these examples, the benchmark ECG signal may be received by the control unit via one or more designated channels. For instance, in one of these examples, the control unit records a benchmark ECG signal when the electrode system is initially prescribed and fitted to a patient. In addition, according to these examples, the benchmark ECG signal may adapt over time. For instance, the cardiac function analyzer 102 may adjust the benchmark ECG signal to match a composite ECG signal made up of filtered ECG signals falling within a moving window of a predefined duration. Alternatively, the benchmark ECG signal may be replaced by a newly received ECG signal with desirable characteristics such as higher amplitudes, less noise or that more closely match the normal rhythm of the patient.

Like the source of the benchmark ECG signal, the comparison operation used within the act 206 to determine the quality of interpretations of the filtered ECG signals varies between examples. In some examples, the morphology of the filtered ECG signal is compared to the morphology of the benchmark ECG signal. In these examples, the level of confidence associated with the channel that received the filtered ECG signal is directly related to the fit of the filtered ECG signal to the benchmark to ECG signal. More particularly, according to one example, a full cardiac cycle that includes P, Q, R, S and T waves is interpreted from the filtered signal. In this example, a deviation from the interpreted benchmark wave sequence of P, Q, R, S and T waves, such as one or more repeated R waves, indicates a potential double counting of a heartbeat and results in a decreased level of confidence associated with the channel. In some examples, this comparison operation is conducted by a user, such as a physician, through visual inspection.

In another example, the heart rate detected by each combination of channel and heart rate detection method is compared to the actual heart rate as determined by a user, such as a physician. In this example, the heart rate detection methods used may include derivative-based QRS detectors, spectrum analyzers or axis analyzers, as described in commonly owned U.S. Pat. No. 5,944,669 (hereinafter referred to as the “'669 patent”), which is incorporated herein by reference in its entirety. In this example, the level of confidence associated with the channel receiving the filtered ECG signal is inversely related to any difference between the heart rate detected and the actual heart rate. In addition, a level of confidence for each combination of channel and heart rate detection method may be established using this example.

In other examples, the refractory period is automatically configured to more closely fit the duration of detected QRS complexes. According to these examples, a valid QRS complex is identified by matching the morphology of the benchmark ECG signal to the morphology of the filtered ECG signal. In these examples, the refractory period is adjusted (in most cases lengthened) to encompass the duration of the valid QRS complex while the morphology of the benchmark ECG signal continues to match the morphology of the filtered ECG signal. In at least one example, an axis analyzer, such as the axis analyzer described in the '669 patent, identifies the valid QRS complex and monitors the filtered ECG signal to ensure that a match between the filtered ECG signal and the benchmark ECG is maintained. Channels with refractory periods adjusted in this manner are associated with a high level of confidence.

In act 208, preferences are established for determining the cardiac function of a given patient. In one example, preference information, such as preference information 104, is stored within the data storage 412. This preference information includes a ranking of channels based on the results of the comparison performed in act 206 with channels having a higher level of confidence being ranked above channels with a lower level of confidence. In another example, the preference information also ranks heart rate detection methods by channel, with heart rate detection methods having a higher level of confidence being ranked above heart rate detection methods having a lower level of confidence. In other examples, the ranking information may include the strength of the fit detected between the filtered ECG signal and the benchmark ECG signal or the output of the axis analyzer. In some of these examples, the strength of the fit reflects any differences in timing between interpreted ECG signal characteristics, such as QRS complexes, and interpreted benchmark ECG signal characteristics. According to a variety of examples, act 208 can be repeated at periodic intervals or as requested by a user, such as a patient or a physician. The process 200 ends at 210.

Processes in accord with the process 200 configure an electrode system, such as the electrode system 100 discussed above, to include a set of preferences for processing ECG signals. According to some examples, the process 200 is conducted by an electrode system, such as the electrode system 100 discussed above. In these examples, the data storage 412 includes the benchmark information and the cardiac function analyzer 102 conducts the acts included in the process 200. In other examples, some aspects of the process 200 are conducted by users. For instance, in one example, a user, such as a physician, performs the act 206 by determining the confidence level associated with each channel and heart rate detection method and if the user notices that the amplitude or signal to noise ratio of a particular channel is superior, the confidence level associated with that channel is increased. Further, in this example, the user performs the act 208 by storing the preference information in the electrode system, via a user interface, such as the user interface 418.

According to another example, the user, such as a physician, performs the act 208 by causing the preference information to be stored on the control unit of an electrode system via a network interface. In this example, a processor included in the control unit of the electrode system, such as the processor 410 of the control unit 30, to is coupled to a network interface such as the network interface 206 described in co-pending application Ser. No. 12/833,096, entitled SYSTEM AND METHOD FOR CONSERVING POWER IN A MEDICAL DEVICE, filed Jul. 9, 2010, which is incorporated by reference herein in its entirety.

FIG. 4 illustrates an exemplary process 400 for interpreting ECG signals using preference information. As shown, the process 400 includes acts of retrieving preferences, acquiring ECG signals from preferred channels and processing the ECG signals according to the retrieved preferences. The process 400 begins at 402.

In act 404, the cardiac function analyzer 102, discussed above, retrieves preference information, such as preference information 104 discussed above, from data storage. According to one example, the preference information includes information ranking the channels through which ECG signals can be received and further indicating a preferred set of ranked channels. In another example, the preference information includes information ranking the heart rate detection methods available for each ranked channel and indicating a preferred set of heart rate detection methods.

In act 406, the cardiac function analyzer 102 acquires ECG signals from each of the preferred set of ranked channels. The electrode system may perform a variety of acts designed to render an accurate interpretation of the ECG signal. For instance, in one example, a control unit, such as the control unit 30 discussed above with reference to FIG. 1, filters or otherwise manipulates the ECG signal to remove or lower the effect of noise generated by sources other than the patient's heart, such as other muscle movement or electrical disturbances near the patient.

In act 408, the cardiac function analyzer 102 processes the ECG signals to determine a heart rate for the patient. FIG. 5 illustrates an exemplary process 500 in accord with act 408. As shown, the process 500 begins at 502.

In act 504, the cardiac function analyzer 102 processes a portion of the filtered ECG signal received by each preferred channel using one or more of the heart rate detection methods discussed above with reference to the process 200. For instance, the cardiac function analyzer 102 may utilize conventional derivative-based QRS to detectors, axis detectors or others. According to a particular example discussed further below, when the cardiac cycle appears to be in a normal sinus rhythm, the cardiac function analyzer 102 determines a heart rate using both a QRS detector and an axis detector. In this example, the axis detector indicates the occurrence of a heartbeat when a peak in the magnitude indicated by the axis detector corresponds to a zero phase crossing. In another example, the axis detector may concurrently compare the quality of the fit of multiple ECG signals coming from multiple channels to a benchmark ECG and may use the heart rate determined in this manner provided that the quality of the fit between the benchmark ECG signal and the multiple ECG signals meets a predetermined value. In still another example, a single channel fit is performed using the axis detector. In these examples that utilize an axis detector, the quality of the fit is determined by summing errors calculated between samples of the benchmark ECG signal and one or more ECG signals over an identified period.

In act 506, if the results of these methods agree (for example, if each method detects a single heartbeat from the portion of the interpreted ECG signal) then the cardiac function analyzer 102 proceeds to act 510. Otherwise, the cardiac function analyzer 102 proceeds to act 508. In act 508, the cardiac function analyzer 102 resolves conflicts between channels and heart rate detection methods. The particular conflict resolution procedure employed varies from example to example and examples are not limited to a particular approach to resolving conflicting results between channels or combinations of channels and heart rate detection methods. For instance, according to one example, the cardiac function analyzer 102 resolves conflicts that involve multiple channels in favor of the highest ranking preferred channel. In another example, the cardiac function analyzer 102 resolves conflicts that involve multiple channels and heart rate detectors in favor of the result indicated by a majority of the channel and heart rate detector combinations. Continuing with the particular example discussed above involving the QRS and axis detectors, conflicts between QRS detector results on separate channels are resolved in favor of the channel with a result that agrees with the axis detector result.

In act 510, if the all of the interpretations, or the favored interpretations, of the ECG signals indicate that a heartbeat has occurred, the cardiac function analyzer 102 to records the occurrence of a heartbeat in act 512. Otherwise, the cardiac function analyzer 102 determines if an interruption in monitoring is about to commence, such as an interruption caused by shutdown of the electrode system, in act 514. If so, the cardiac function analyzer ends the process 500 at 516. Otherwise, the cardiac function analyzer 102 returns to act 504 and the process 500 continues.

Examples in accord with process 500 enable an electrode system to more accurately track patient heart rate. More accurate heart rate tracking results in several benefits. These benefits include more accurate patient historical information and generation of fewer falsely indicated arrhythmias. Fewer false arrhythmias, in turn, may result in avoidance of unnecessary alarms and delivery of therapy to a patient, thereby increasing the runtime between charges of the electrode system and avoiding unnecessary patient discomfort.

Each of the processes disclosed herein depicts one particular sequence of acts in a particular example. The acts included in each of these processes may be performed by, or using, an electrode system specially configured as discussed herein. Although described herein in association with an electrode system of a wearable defibrillator such as the LIFEVEST Cardioverter defibrillator, embodiments disclosed herein may be used with any electrode system, including conventional stick-on adhesive electrodes, dry capacitive ECG electrodes, radio transparent electrodes, etc. Some acts are optional and, as such, may be omitted in accord with one or more examples. Additionally, the order of acts can be altered, or other acts can be added, without departing from the scope of the systems and methods discussed herein. In addition, as discussed above, in at least one example, the acts are performed on a particular, specially configured machine, namely an electrode system configured according to the examples disclosed herein.

Usage Scenario

FIG. 6 illustrates two exemplary idiosyncratic ECG signals 600 and 602 received by an exemplary electrode system. As shown, the ECG signal 600 was acquired via a side-to-side (SS) channel and includes QRS complex 604. The ECG signal 602 was acquired via a front-to-back (FB) channel and includes QRS complex to 606. As illustrated, the ECG signal 600 may be double counted by conventional derivative-based QRS complex detectors because the QRS complexes presented within the ECG signal 600, such as the portion of the ECG signal indicated by reference number 604, are elongated and exceed the default configuration of the refractory period. Thus, conventional derivative-based QRS complex detectors may detect a first QRS complex at the onset of the QRS complex 604 and detect a second QRS complex near the end of the QRS complex 604 after the refractory period has expired.

According to one example, a user, such as a physician, may perform act 206 of process 200 and thereby determine that the SS channel is susceptible to double counting by comparing the morphology of the ECG signal acquired via the SS channel to an ECG signal representative to a normal sinus rhythm. Further, the user may perform act 208 by configuring preference information to rank the FB channel higher than the SS channel. After receiving this preference information and during the execution of process 400, the exemplary electrode system favors the FB channel over the SS channel if the two channels yield differing heart rates. This approach results in a decreased likelihood of heartbeat double counting because the QRS complexes displayed within the FB channel do not extend beyond the programmed refractory period and are, therefore, less likely to be double counted.

Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

Claims

1. An ambulatory medical device, comprising:

a plurality of electrodes disposed at spaced apart positions about a patient's body; and
a control unit including: a sensor interface coupled to the plurality of electrodes and configured to receive a first ECG signal from a first pairing of the plurality of electrodes and to receive a second ECG signal from a second pairing of the plurality of electrodes; a memory storing a configurable parameter indicating a preferred pairing, the preferred pairing being either the first pairing or the second pairing; and a processor coupled to the sensor interface and the memory, the processor comprising a cardiac function analyzer to process the first ECG signal to determine a first ECG signal interpretation of a physical condition of the patient, to process the second ECG signal to determine a second ECG signal interpretation of the physical condition of the patient, to detect a conflict between ECG signal interpretations wherein the conflict comprises a difference in the physical condition of the patient under the first ECG signal interpretation and the second ECG signal interpretation, and to resolve the conflict by retrieving the preferred pairing from the configurable parameter stored in the memory and resolving the conflict in favor of the preferred pairing.

2. The ambulatory medical device of claim 1, further comprising a garment that is configured to be worn about the patient's body, wherein the plurality of electrodes is integrated into the garment.

3. The ambulatory medical device of claim 1, wherein the plurality of electrodes includes adhesive electrodes.

4. The ambulatory medical device of claim 1, wherein the first ECG signal interpretation and the second ECG signal interpretation indicate heartbeats.

5. The ambulatory medical device of claim 4, wherein the configurable parameter includes information indicating a second heart rate detection method preferred for the second paring, and wherein the processor is further configured to:

interpret the first ECG signal using the first heart rate detection method; and
interpret the second ECG signal using the second heart rate detection method.

6. The ambulatory medical device of claim 1, wherein the processor is further configured to:

determine a first confidence level for the first pairing;
determine a second confidence level for the second pairing;
determine the preferred pairing with reference to the first confidence level and the second confidence level; and
store the information indicating the preferred pairing in the memory.

7. The ambulatory medical device of claim 6, wherein the processor is configured to determine the first confidence level by comparing the first ECG signal to benchmark information.

8. The ambulatory medical device of claim 7, wherein the benchmark information reflects a normal rhythm of the patient.

9. The ambulatory medical device of claim 7, wherein the processor is configured to compare the first ECG signal to the benchmark information by comparing a morphology of the first ECG signal to a morphology indicated within the benchmark information.

10. The ambulatory medical device of claim 1, wherein the ambulatory medical device includes a treatment device.

11. The ambulatory medical device of claim 1, wherein the control unit further includes a user interface configured to receive input from a user to configure the configurable parameter.

12. The ambulatory medical device of claim 1, wherein the physical condition is a detected heart rate of the patient.

13. A method of monitoring ECG signals using an ambulatory medical device including a memory and a plurality of electrodes, the method comprising:

storing, in the memory, a configurable parameter indicating a preferred pairing, the preferred pairing being either a first pairing of the plurality of electrodes or a second pairing of the plurality of electrodes;
receiving, by the ambulatory medical device, a first ECG signal from the first pairing of the plurality of electrodes;
receiving a second ECG signal from the second pairing of the plurality of electrodes;
processing the first ECG signal to determine a first ECG signal interpretation of a physical condition of the patient;
processing the second ECG signal to determine a second ECG signal interpretation of the physical condition of the patient;
detecting a conflict between ECG signal interpretations wherein the conflict comprises a difference in the physical condition of the patient under the first ECG signal interpretation and the second ECG signal interpretation; and
resolving the conflict by retrieving the preferred pairing from the configurable parameter stored in the memory and resolving the conflict in favor of the preferred pairing.

14. The method of claim 13, wherein processing the first ECG signal to determine the first ECG signal interpretation includes processing the first ECG signal to detect a heartbeat of the patient and wherein processing the second ECG signal to determined the second ECG signal interpretation includes processing the second ECG signal to detect the heartbeat of the patient.

15. The method of claim 13, further comprising:

interpreting the first ECG signal using a first heart rate detection method; and
interpreting the second ECG signal using a second heart rate detection method.

16. The method of claim 13, further comprising:

determining a first confidence level for the first pairing;
determining a second confidence level for the second pairing; and
determining the preferred pairing with reference to the first confidence level and the second confidence level.

17. The method of claim 16, wherein determining the first confidence level includes comparing the first ECG signal to benchmark information.

18. The method of claim 17, wherein comparing the first ECG signal to the benchmark information includes comparing the first ECG signal to benchmark information that reflects a normal rhythm of the patient.

19. The method of claim 17, wherein comparing the first ECG signal to the benchmark information includes comparing a morphology of the first ECG signal to a morphology indicated within the benchmark information.

20. A non-transitory computer readable medium having stored thereon sequences of instruction for monitoring ECG signals including instructions that instruct at least one processor to:

store, in a memory, a configurable parameter indicating a preferred pairing, the preferred pairing being either a first pairing of a plurality of electrodes or a second pairing of a plurality of electrodes;
receive a first ECG signal from the first pairing of the plurality of electrodes;
receive a second ECG signal from the second pairing of the plurality of electrodes;
process the first ECG signal to determine a first ECG signal interpretation of a physical condition of the patient;
process the second ECG signal to determine a second ECG signal interpretation of the physical condition of the patient;
detect a conflict between ECG signal interpretations wherein the conflict comprises a difference in the physical condition of the patient under the first ECG signal interpretation and the second ECG signal interpretation; and
resolve the conflict by retrieving the preferred pairing stored in the configurable parameter in the memory and resolve the conflict in favor of the preferred pairing.

21. The computer readable medium of claim 20, wherein the instructions further instruct the at least one processor to:

determine a first confidence level for the first pairing;
determine a second confidence level for the second pairing; and
determine the preferred pairing with reference to the first confidence level and the second confidence level.

22. The computer readable medium of claim 21, wherein the instructions that instruct the at least one processor to determine the first confidence level include instructions that instruct the at least one processor to compare the first ECG signal to benchmark information.

23. The computer readable medium of claim 22, wherein the instructions that instruct the at least one processor to compare the first ECG signal to the benchmark information include instructions that instruct the at least one processor to compare a morphology of the first ECG signal to a morphology indicated within the benchmark information.

Referenced Cited
U.S. Patent Documents
4094310 June 13, 1978 McEachern et al.
4632122 December 30, 1986 Johansson et al.
4928690 May 29, 1990 Heilman et al.
4978926 December 18, 1990 Zerod et al.
4991217 February 5, 1991 Garrett et al.
5062834 November 5, 1991 Gross et al.
5078134 January 7, 1992 Heilman et al.
5348008 September 20, 1994 Bornn et al.
5365932 November 22, 1994 Greenhut
5381798 January 17, 1995 Burrows
5472453 December 5, 1995 Alt
5662689 September 2, 1997 Elsberry et al.
5718242 February 17, 1998 McClure et al.
5738102 April 14, 1998 Lemelson
5741306 April 21, 1998 Glegyak et al.
5758443 June 2, 1998 Pedrazzini
5792190 August 11, 1998 Olson et al.
5827196 October 27, 1998 Yeo et al.
5887978 March 30, 1999 Lunghofer et al.
5929601 July 27, 1999 Kaib et al.
5944669 August 31, 1999 Kaib
6016445 January 18, 2000 Baura
6045503 April 4, 2000 Grabner et al.
6047203 April 4, 2000 Sackner et al.
6065154 May 23, 2000 Hulings et al.
6097982 August 1, 2000 Glegyak et al.
6097987 August 1, 2000 Milani
6148233 November 14, 2000 Owen et al.
6169397 January 2, 2001 Steinbach et al.
6253099 June 26, 2001 Oskin et al.
6280461 August 28, 2001 Glegyak et al.
6390996 May 21, 2002 Halperin et al.
6406426 June 18, 2002 Reuss et al.
6681003 January 20, 2004 Linder et al.
6690969 February 10, 2004 Bystrom et al.
6804554 October 12, 2004 Ujhelyi et al.
6827695 December 7, 2004 Palazzolo et al.
6908437 June 21, 2005 Bardy
6925330 August 2, 2005 Kleine
6961612 November 1, 2005 Elghazzawi et al.
6990373 January 24, 2006 Jayne et al.
7149579 December 12, 2006 Koh et al.
7220235 May 22, 2007 Geheb et al.
7340296 March 4, 2008 Stahmann et al.
7453354 November 18, 2008 Reiter et al.
7488293 February 10, 2009 Marcovecchio et al.
7712373 May 11, 2010 Nagle et al.
7831303 November 9, 2010 Rueter et al.
7974689 July 5, 2011 Volpe et al.
7991460 August 2, 2011 Fischell et al.
8121683 February 21, 2012 Bucher et al.
8140154 March 20, 2012 Donnelly et al.
8271082 September 18, 2012 Donnelly et al.
20030004547 January 2, 2003 Owen et al.
20030095648 May 22, 2003 Kaib et al.
20030109904 June 12, 2003 Silver et al.
20030149462 August 7, 2003 White et al.
20030158593 August 21, 2003 Heilman et al.
20030174049 September 18, 2003 Beigel et al.
20030195567 October 16, 2003 Jayne et al.
20030212311 November 13, 2003 Nova et al.
20040010294 January 15, 2004 Kleine
20040049233 March 11, 2004 Edwards
20040162510 August 19, 2004 Jayne et al.
20040249419 December 9, 2004 Chapman et al.
20050049515 March 3, 2005 Misczynski et al.
20050131465 June 16, 2005 Freeman et al.
20050246199 November 3, 2005 Futch
20050283198 December 22, 2005 Haubrich et al.
20060036292 February 16, 2006 Smith et al.
20060085049 April 20, 2006 Cory et al.
20060178706 August 10, 2006 Lisogurski et al.
20060211934 September 21, 2006 Hassonjee et al.
20060270952 November 30, 2006 Freeman et al.
20070118056 May 24, 2007 Wang et al.
20070143864 June 21, 2007 Cabana et al.
20070161913 July 12, 2007 Farrell et al.
20070169364 July 26, 2007 Townsend et al.
20070197878 August 23, 2007 Shklarski
20070239214 October 11, 2007 Cinbis
20070239220 October 11, 2007 Greenhut et al.
20070265671 November 15, 2007 Roberts et al.
20080004536 January 3, 2008 Baxi et al.
20080021532 January 24, 2008 Kveen et al.
20080030656 February 7, 2008 Watson et al.
20080033495 February 7, 2008 Kumar
20080045815 February 21, 2008 Derchak et al.
20080046015 February 21, 2008 Freeman et al.
20080058884 March 6, 2008 Matos
20080103402 May 1, 2008 Stickney et al.
20080167535 July 10, 2008 Stivoric et al.
20080177341 July 24, 2008 Bowers
20080183090 July 31, 2008 Farringdon et al.
20080249591 October 9, 2008 Gaw et al.
20080287749 November 20, 2008 Reuter
20080294019 November 27, 2008 Tran
20080306560 December 11, 2008 Macho et al.
20080312520 December 18, 2008 Rowlandson et al.
20080312522 December 18, 2008 Rowlandson et al.
20080312709 December 18, 2008 Volpe et al.
20090018428 January 15, 2009 Dias et al.
20090073991 March 19, 2009 Landrum et al.
20090076336 March 19, 2009 Mazar et al.
20090076340 March 19, 2009 Libbus et al.
20090076341 March 19, 2009 James et al.
20090076342 March 19, 2009 Amurthur et al.
20090076343 March 19, 2009 James et al.
20090076344 March 19, 2009 Libbus et al.
20090076345 March 19, 2009 Manicka et al.
20090076346 March 19, 2009 James et al.
20090076348 March 19, 2009 Manicka et al.
20090076349 March 19, 2009 Libbus et al.
20090076350 March 19, 2009 Bly et al.
20090076363 March 19, 2009 Bly et al.
20090076364 March 19, 2009 Libbus et al.
20090076397 March 19, 2009 Libbus et al.
20090076405 March 19, 2009 Amurthur et al.
20090076410 March 19, 2009 Libbus et al.
20090076559 March 19, 2009 Libbus et al.
20090093687 April 9, 2009 Telfort et al.
20090138059 May 28, 2009 Ouwerkerk
20090146822 June 11, 2009 Soliman
20090234410 September 17, 2009 Libbus et al.
20090264792 October 22, 2009 Mazar
20090275848 November 5, 2009 Brockway et al.
20090281394 November 12, 2009 Russell et al.
20090287120 November 19, 2009 Ferren et al.
20090292194 November 26, 2009 Libbus et al.
20090295326 December 3, 2009 Daynes et al.
20090307266 December 10, 2009 Fleizach et al.
20090318779 December 24, 2009 Tran
20100052892 March 4, 2010 Allen et al.
20100052897 March 4, 2010 Allen et al.
20100056881 March 4, 2010 Libbus et al.
20100069735 March 18, 2010 Berkner
20100076513 March 25, 2010 Warren et al.
20100081962 April 1, 2010 Hamaguchi et al.
20100114243 May 6, 2010 Nowak et al.
20100234716 September 16, 2010 Engel
20100241181 September 23, 2010 Savage et al.
20100295674 November 25, 2010 Hsieh et al.
20100298899 November 25, 2010 Donnelly et al.
20110015533 January 20, 2011 Cox et al.
20110093840 April 21, 2011 Pynenburg et al.
20110098765 April 28, 2011 Patel
20110288604 November 24, 2011 Kaib et al.
20110288605 November 24, 2011 Kaib et al.
20120011382 January 12, 2012 Volpe et al.
20120053479 March 1, 2012 Hopenfeld
20120112903 May 10, 2012 Kaib et al.
20120146797 June 14, 2012 Oskin et al.
20120150008 June 14, 2012 Kaib et al.
20120158075 June 21, 2012 Kaib et al.
Foreign Patent Documents
2644236 April 1981 DE
0295497 September 1993 EP
0335356 March 1996 EP
1455640 January 2008 EP
1720446 July 2010 EP
5115450 May 1993 JP
2002200059 July 2002 JP
0002484 January 2000 WO
2004054656 July 2004 WO
2004067083 August 2004 WO
2004078259 September 2004 WO
2005082454 September 2005 WO
2006050325 May 2006 WO
2007019325 February 2007 WO
2009034506 March 2009 WO
2010025432 March 2010 WO
2010077997 July 2010 WO
Other references
  • American Journal of Respiratory and Critical Care Medicine, vol. 166, pp. 111-117 (2002), American Thoracic Society, ATS Statement: Guidelines for the Six-Minute Walk Test, available at http://ajrccm.atsjournals.org/cgi/content/full/166/1/111.
  • DeBock, et al., “Captopril treatment of chronic heart failure in the very old,” J. Gerontol. (1994) 49: M148-M152.
  • O'Keeffe et al., “Reproducability and responsiveness of quality of life assessment and six minute walk test in elderly heart failure patients,” Heart (1998) 80: 377-382.
  • http://web.archive.org/web/20030427001846/http:/www.lifecor.com/imagelib/imageproduct.asp. Published by LifeCor, Inc., 2002, on a webpage owned by LifeCor, Inc.
Patent History
Patent number: 8897860
Type: Grant
Filed: Mar 23, 2012
Date of Patent: Nov 25, 2014
Patent Publication Number: 20120302860
Assignee: Zoll Medical Corporation (Chelmsford, MA)
Inventors: Shane S. Volpe (Saltsburg, PA), Thomas E. Kaib (North Huntingdon, PA)
Primary Examiner: Carl H Layno
Assistant Examiner: Erin Piateski
Application Number: 13/428,329
Classifications
Current U.S. Class: Detecting Heartbeat Electric Signal (600/509); Garment (600/388); Adhesive (600/391); Orthogonal Heartbeat Electric Signals Combined To Form Vector Signal (600/512)
International Classification: A61B 5/0408 (20060101); A61B 5/0432 (20060101); A61B 5/0452 (20060101); A61N 1/39 (20060101); A61N 1/04 (20060101); A61B 5/00 (20060101);