Methods for fabricating display structures
An electronic device display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer.
Latest Apple Patents:
This application is a continuation of patent application Ser. No. 13/249,828, filed Sep. 30, 2011, which is a continuation of patent application Ser. No. 12/691,715, filed Jan. 21, 2010, which claims the benefit of provisional patent application No. 61/259,989, filed Nov. 10, 2009, all of which are hereby incorporated by reference herein in their entireties as if fully disclosed herein.
BACKGROUNDThis invention relates to electronic devices and, more particularly, to display structures for electronic devices such as portable computers.
Portable computers typically have upper and lower housing portions that are connected by a hinge. The lower housing portion contains components such as printed circuit boards, disk drives, a keyboard, and a battery. The upper housing portion contains a display. When the computer is in an open configuration, the upper housing portion is vertical and the display is visible to the user of the portable computer. When the computer is closed, the upper housing lies flat against the lower housing. This protects the display and keyboard and allows the portable computer to be transported.
Portable computer displays that are based on liquid crystal display technology include layers of polarizer. The outermost polarizer layer is generally formed on the outer surface of a color filter glass layer. The polarizer layer often has dimensions that are slightly larger than the color filter glass. Use of an oversized polarizer of this type helps to ensure that the color filter glass layer is completely covered with polarizer. However, the overhanging edges of the oversized layer of polarizer can give rise to reliability problems when the display is used in a product. As a result, undersized polarizer layers are sometimes used. With this approach, the size of the polarizer is chosen so as to be smaller than the dimensions of the color filter glass. Overlapping polarizer edges are avoided, but a peripheral region on the surface of the color filter glass is uncovered. This uncovered region can be unsightly unless hidden from view by a bezel. Use of a large bezel, in turn, may not be aesthetically appealing, particularly in modern devices.
It would therefore be desirable to be able to produce improved displays for electronic devices.
SUMMARYAn electronic device display such as a computer may have a housing. A display may be mounted in the housing. The display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. A shim may be used to help prevent the polarizer layer from adhering to the color filter layer in certain regions. Using laser trimming, the edges of the shim may be traced to cut an opening in the polarizer. The opening may be used to form a camera window for a camera module.
The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Ink-jet-printed conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer. A layer of black or non-black ink may be interposed between the driver circuitry and the color filter layer to which the driver circuitry is mounted.
Further features of the invention, its nature and various advantages will be mere apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
An illustrative electronic device such as a portable computer in which display structures may be provided is shown in
In general, the components of portable computer 10 can be formed from any suitable materials. As examples, the components of portable computer 10 may be formed from materials such as metals (e.g., aluminum, stainless steel, alloys of metals, electroplated metals, plated and other coated metals, etc.), plastics (e.g., polycarbonate (PC) plastics, acrylonitrile butadiene styrene (ABS) plastics, thermoplastics, PC/ABS plastic blends, etc.), composite materials (e.g., carbon fibers or other fibers bound by a binder such as a polymer resin), plastics that have been injection molded around metal structures, laminated plastic layers, ceramics, metal, glass, composites, metal-filled epoxy, other suitable materials, and combinations of these and other materials. Components of portable computer 10 which are described herein as being formed from one or more specific materials (e.g., housing 12 which is sometimes described herein as being formed from machined aluminum as an example) can be formed from any of the above-mentioned materials, other suitable materials, or combinations of such materials.
Housing 12 may have an upper portion 26 and a lower portion 28. Lower portion 23 may be referred to as the base or main unit of computer 10 and may contain components such as a hard disk drive, battery, and main logic board. Upper portion 25, which is sometimes referred to as a cover, lid, or display housing, may rotate relative to lower portion 28 about rotational axis 16. Portion 18 of computer 10 may contain a hinge and associated clutch structures and is sometimes referred to as a clutch barrel.
Lower housing portion 28 may have a slot such as slot 22 through which optical disks may be loaded into an optical, disk drive. Lower housing portion may also have a touchpad such as touchpad 24 and may have keys 20. If desired, additional components may be mounted to upper and lower housing portions 26 and 28. For example, upper and lower housing portions 26 and 28 may have ports to which cables can be connected (e.g., universal serial bus ports, an Ethernet port, a Firewire port, audio jacks, card slots, etc.). Buttons and other controls may also be mounted to housing 12. Speaker openings such as speaker openings 30 may be formed in lower housing portion 26 by creating an array of small openings (perforations) in the surface of housing 12.
A display such as display 14 may be mounted within upper housing portion 26. Display 14 may be, for example, a liquid crystal display (LCD), organic light emitting diode (GLSD) display, or plasma display (as examples). Display 14 may contain a number of layers of material. These display structures may include, for example, layers of optically transparent materials such as plastic and glass. Layers of plastic and optical adhesive may also be incorporated into display 14. In a liquid crystal display, which is sometimes described herein as an example, a layer of liquid crystal material may be formed between a color filter glass layer and a thin film transistor glass layer. The thin film transistor glass layer may include an array of thin film transistors. The transistors may drive the image pixels in the display. The color filter glass may be used to impart colors to the pixels. Layers of polarizer may be formed above and below the color filter glass and the chin film transistor glass. Display structures in display 14 may also include backlight structures such as a reflective sheet, a light guide panel, and layers of optical films such as diffuses layers and light collimating layers.
Computer 10 may have input-output components such as touch pad 24. Touch pad 24 may include a touch sensitive surface that allows a user of computer 10 to control computer 10 using touch-based commands (gestures). A portion of touchpad 24 may be depressed by the user when the user desires to “click” on a displayed item on screen 14.
A cross-sectional side view of a portion of upper housing 26 of device 10 (
Display structures 106 may produce an image using any suitable display technology (e.g., light-emitting diodes such as an array of organic light-emitting diodes, liquid crystal display pixels, plasma-based pixels, etc.). An arrangement in which display structures 106 are based on liquid crystal display (LCD) technology is sometimes described herein as an example. The use of LCD structures in display structures 106 is, however, merely illustrative. Display structures 106 may, in general, be formed, from any suitable type of display structures. Moreover, use of displays structures 106 in portable computers and other electronic devices with upper and lower housings is merely illustrative. Display structures 106 may be used in a handheld electronic device, a television, a tablet computer, a desktop computer monitor, or ether electronic equipment.
As shown in
Clearances D2 and D1 help prevent damage to display structure 106 during use of device 110. In a typical arrangement, clearance D2 may be about 1.2 to 1.8 mm and clearance D1 may be about 0.11 mm. End clearance D3 may be about 0.3 mm.
Light from a light-emitting diode array or other backlight source is provided to an edge of light guide panel 92. Panel 92 and the other structures in light guide structures 68 direct this light upwards in direction 108 through thin film transistor layer 98 and color filter layer 100.
Thin-film transistor substrate glass layer 98 may contain thin-film transistors in array 110. Color filter glass layer 100 may contain an array of optical filters of different colors to provide display structures 106 with the ability to display color images. Color filter layer 100 may be formed from glass into which dye of different colors has been impregnated, from a glass layer coated with a pattern of colored dye, from a glass or plastic layer that is covered with a pattern of thin colored filter structures (e.g., filters formed from polymer or glass containing dye), or any other suitable color filter structures. A ground plane structure such as ground plane 111 may be formed on the lower surface of color filter layer 100. Ground plane 111 may, for example, be formed from a rectangular thin film of indium tin oxide or other transparent conductive material. Liquid crystal layer 112 may be controlled by the electric fields produced between the thin-film transistors of array 110 and ground plane 111.
Display structures 106 may, if desired, be covered by a layer of cover glass. The cover glass layer adds bulk to device 10, so when size and weight are to be minimized, the cover glass may be omitted as shown in
Color filter layer 100 may be formed of a durable clear layer (e.g., a strong glass or plastic) that resists damage from contact. Anti-scratch coatings may also be provided on the surface of color filter layer 100 (e.g., as part of polarizer layer 102 or above polarizer layer 102).
To hide the peripheral portions of display structures 106 that lie along the outer edges of display housing 26 from view, an opaque material such as ink layer 114 may be incorporated around the periphery of display structures 106 to form a border. Opaque layer 114 may be formed on the underside of color filter layer 100 or on the upper surface of thin-film transistor plans layer 98 (as examples). The opaque material may have any suitable color (e.g., black, grey, silvery white, blue, red, etc.).
With the arrangement of
As shown in
Minimal overlap between polarizer layer 102 and color filter layer 100 may be obtained using a trimming operation. With one suitable arrangement, which is sometimes described herein as an example, trimming operations may be implemented using a computer-controlled laser trimming tool.
Polarizes layer 102 may be attached to the planer outer surface of color filter layer 100 using any suitable technique. For example, polarizer layer 102 may be laminated onto the surface of color filter layer 100 using pressure sensitive adhesive. A roller or other tool may be used to press the polarizer layer onto the color filter layer with sufficient force to activate the adhesive.
Driver circuitry 118 of
Initially, no color filter layer may be attached to thin film transistor layer 98 (
Following attachment of color filter layer 100 (e.g., using pressure sensitive adhesive) and driver circuits 100, thin film transistor layer 98 may appear as shown in
After transistor array driver circuitry 118 has been formed on thin film transistor layer 98, an encapsulating material such as encapsulant 126 may be deposited on top of circuitry 118 and planarized, as shown in
Following formation of planarized encapsulant 126, polarizer layer 102 may be laminated onto the surface of encapsulant 126 and color filter layer 100, as shown in
If desired, thin film transistor array driver circuits 118 may be mounted on the lower surface of color filter layer 100. This type of arrangement is shown in
Ground planer 111 may be grounded using conductive structures such as structures 128. In conventional liquid crystal displays, structures 128 are applied to the lower surface of color filter layers by applying drops of liquid using ink jet printing. When the liquid solidifies, conductive vertical structures are formed to short ground plane 111 to transistor array 110.
As shown in
Once deposited on color filter layer 100, color filter layer 100 and thin film transistor layer 98 may be attached to each other to encapsulate liquid crystal layer 112. When attached in this way, the circuitry of driver circuits 118 is connected to thin film transistor array circuitry 110 via traces 132 and structures 130.
In conventional displays, thin film transistor driver integrated circuits 134 are connected to the thin film transistor array on thin film transistor glass 138 using conductive traces 136 on thin film transistor glass 138, as shown in
With an arrangement, of the type shown in
Assembly techniques that may be used for forming display structures such as the display structures of
In a typical manufacturing process, structures for multiple displays are initially formed in parallel on a relatively large sheet of “mother glass.” As shown in
Mother glass 142 may be quartered to form smaller panels such as panel 144 of
As shown in
As shown in
After forming a color filter glass layer of a desired shape, polarizer layer 102 may be laminated onto the surface of the color filter glass layer (
Following lamination of oversized polarization layer 102 onto the surface of color filter glass layer 100, excess polarizer may be removed. In particular, a trimming tool may be used to cut away undesired portions of the polarizer layer. The trimming tool may be based on blade-type cutters, saws, press cutting equipment, or other suitable trimming equipment. With the illustrative arrangement of
The position of laser beam 157 may be controlled using controllable mirrors such as mirror 159 and/or by controlling the position of the workpiece (i.e., polarizer 102, adhesive 168, and color filter layer 100) using translation stages such as translation stage 158. Camera 152 may be used to capture images of the workpiece and, using images of fiducial 146 (
Trimming operations may be used to remove pieces of overhanging polarizer along the edges of color filter glass layer 100 so that the edges of polarizer 102 are accurately aligned with the edges of layer 100 (i.e., within a tolerance 100 microns or less, within 50 microns or less, etc.). Trimming operations may also be used to remove portions of polarizer 102 elsewhere on color filter layer 100. For example, trimming operations may be used to remove a circular piece of polarizer 102 to form a window opening for a camera.
Peripheral pieces of polarizer 102 overhang the edges of color filter layer 100 and are therefore not attached to any other structures. During trimming, peripheral pieces of polarizer such as piece 102′ of
One way to facilitate the removal of trimmed pieces of polarizer 102 from color filter layer 100 involves the introduction of harrier layer material under selected portions of adhesive 168. The barrier layer material may be formed from a liquid (e.g., water, solvent, oil, or other substances) or a solid (e.g., plastic, metal, glass, etc.). In areas where the barrier layer material is present, adhesive 168 is prevented from adhering effectively to the upper surface of color filter layer 100, thereby facilitating subsequent removal of the portion of polarizer that lies above the barrier layer material.
If desired, barrier layer structures may be provided in the form of thin layers of plastic (“shims”). An example of this type of arrangement is shown in the cross-sectional, side view of
After the laser cut along the edge of shim 160 has been made, portion 164 of polarizer 102 will be attached only to shim 160 and not to the remaining polarizer on color filter layer 100. Portions 156 of polarizer 102 are attached to color filter layer 100 by adhesive 168, so portions 166 will remain in place following trimming. Shim 160 is not attached to color filter layer 100 by adhesive, so shim 160 and portion 164 may be removed from the workplace. The shape of shim 160 and the shape of the corresponding laser cut in polarizer 102 that is used to liberate shim 160 and portion 164 may be circular, rectangular, etc.
In arrangements in which a layer of ink is formed around the periphery of the color filter layer to block components from view, the portion of the ink layer that lies behind the hole may be omitted to ensure that the camera module will not be blocked by ink. Because no polarizer 102 is present in the opening, camera operation is not adversely affected by the presence of polarizer.
Although formation of a single opening is illustrated in
Illustrative steps involved in forming display structures for device 10 are shown in
At step 170, display structures (e.g., color filters) may be fabricated as part of mother glass 142 of
After forming the color filter mother glass, the mother glass may optionally be divided into smaller panels (e.g., mother glass 142 may be quartered to form panels such as panel 144 of
At step 172, cutting tool 143 (e.g., a diamond, scribing tool) may be used to cut an individual piece of color filter glass from mother glass 142 or panel 144 (i.e., layer 100 of
At step 176, adhesive barrier structures such as shim 160 may be attached to the underside of adhesive layer 166 and associated polarizer layer 102 and the resulting masked polarizer layer may be laminated onto the upper surface of color filter layer 100 using lamination tool 151.
At step 178, laser trimming equipment of the type described in connection with
As illustrated by step 180, some or all of the operations of steps 170, 172, 174, 176, and 178 may be repeated as desired (e.g., to add additional layers of material such as antireflection coating layers that have edges that are aligned with the edges of color filter glass 100). If desired, planarization operations may be performed to help ensure that the top surface of each layer is planar before subsequent layers are laminated. For example, if a circular hole has been formed in the polarizer layer and if is desired to deposit a separate antireflection layer, a liquid such as ultraviolet curable epoxy or other planar luring substance may be deposited into the circular hole. This planarizing substance can foe used to fill the circular hole (i.e., by filling the hole sufficiently that the upper surface of the epoxy fill is vertically aligned and therefore co-planar with the planar outer surface of the polarizer). After planarizing in this way, the surface of the polarizer will be smooth and even, thereby facilitating the attachment of subsequent layers (e.g., the antireflection coating).
Approaches of the type shown in
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Claims
1. A computer, comprising:
- a housing structure; and
- a display in the housing structure that includes: a color filter layer; driver circuitry comprising at least an integrated circuit mounted on the color filter layer; a thin-film transistor layer; an opaque layer formed in a border around a periphery of the display and extending beyond a pixel area of the display that blocks inactive peripheral portions of the display from view; an opening in the opaque layer located beyond the pixel area of the display; and a camera in the housing structure that receives light through the opening in the opaque layer.
2. The computer of claim 1, wherein the opening is at least one of circular or rectangular.
3. The computer of claim 1, further comprising a polarizer layer.
4. The computer of claim 3, wherein the polarizer layer includes a polarizer layer opening that aligns with the opening in the opaque layer.
5. The computer of claim 4, wherein the polarizer layer opening is filled with an epoxy fill.
6. The computer of claim 5, wherein the epoxy fill comprises an ultraviolet curable epoxy.
7. The computer of claim 5, wherein a surface of the epoxy fill is vertically aligned with a planar outer surface of the polarizer layer.
8. The computer of claim 5, wherein a surface of the epoxy fill is co-planar with an outer surface of the polarizer layer.
9. The computer of claim 3, further comprising adhesive attaching a portion of the polarizer layer to the color filter layer.
10. The computer of claim 3, further comprising an antireflection coating layer.
11. The computer of claim 10, wherein the antireflection coating layer is laminated onto a surface of the polarizer layer.
12. The computer of claim 10, wherein edges of the antireflection coating layer are aligned with edges of the color filter layer.
13. The computer of claim 9, wherein the polarizer layer includes multiple polarizer layer openings.
14. The computer of claim 13, wherein one of the multiple polarizer layer openings aligns with the opening in the opaque layer.
15. The computer of claim 3, wherein an outer surface of the polarizer layer is smooth and even.
16. The computer of claim 3, wherein a portion of the polarizer layer is laminated to the color filter layer.
17. The computer of claim 3, wherein edges of the polarizer layer are aligned with edges of the color filter layer.
18. The computer of claim 1, wherein the color filter layer does not include a color filter layer opening aligned with the opening in the opaque layer.
19. The computer of claim 1, wherein the opaque layer is formed in the border around a periphery of the color filter layer.
20. A display structure, comprising:
- a color filter layer;
- driver circuitry comprising at least an integrated circuit mounted on the color filter layer;
- a thin-film transistor layer;
- an opaque layer formed in a border around a periphery of the display and extending beyond a pixel area of the display that blocks inactive peripheral portions of the display from view;
- an opening in the opaque layer located beyond the pixel area of the display; and
- a camera that receives light through the opening.
4769680 | September 6, 1988 | Resor, III et al. |
5032007 | July 16, 1991 | Silverstein et al. |
5359206 | October 25, 1994 | Yamamoto et al. |
5481430 | January 2, 1996 | Miyagawa et al. |
5539550 | July 23, 1996 | Spitzer et al. |
5572343 | November 5, 1996 | Okamura et al. |
5623392 | April 22, 1997 | Ma |
5631753 | May 20, 1997 | Hamaguchi et al. |
5678483 | October 21, 1997 | Johnson |
5708561 | January 13, 1998 | Huilgol et al. |
5739800 | April 14, 1998 | Lebby et al. |
5748270 | May 5, 1998 | Smith |
5760858 | June 2, 1998 | Hodson et al. |
5851411 | December 22, 1998 | An et al. |
5889568 | March 30, 1999 | Scraphim et al. |
5940153 | August 17, 1999 | Castaneda et al. |
5965916 | October 12, 1999 | Chen |
5988827 | November 23, 1999 | Lee et al. |
5990986 | November 23, 1999 | Song et al. |
6104461 | August 15, 2000 | Zhang et al. |
6177214 | January 23, 2001 | Yokoyama et al. |
6278504 | August 21, 2001 | Sung |
6335773 | January 1, 2002 | Kamei et al. |
6429057 | August 6, 2002 | Hong et al. |
6462806 | October 8, 2002 | Zhang et al. |
6483719 | November 19, 2002 | Bachman |
6525786 | February 25, 2003 | Ono |
6532152 | March 11, 2003 | White |
6570757 | May 27, 2003 | DiFonzo et al. |
6583439 | June 24, 2003 | Yamazaki |
6646689 | November 11, 2003 | Matsuda |
6776497 | August 17, 2004 | Huppi et al. |
6842211 | January 11, 2005 | Katsura |
6919678 | July 19, 2005 | Ozolins et al. |
6940564 | September 6, 2005 | Murden et al. |
6977808 | December 20, 2005 | Lam et al. |
7013558 | March 21, 2006 | Bachman |
7035090 | April 25, 2006 | Tanaka et al. |
7092066 | August 15, 2006 | Matsuda |
7110059 | September 19, 2006 | Zhang |
7133104 | November 7, 2006 | Kim et al. |
7161185 | January 9, 2007 | Yamazaki et al. |
7188965 | March 13, 2007 | Chang et al. |
7217588 | May 15, 2007 | Hartzell et al. |
7227185 | June 5, 2007 | Lin |
7237941 | July 3, 2007 | Hsieh et al. |
7245333 | July 17, 2007 | Nam et al. |
7253869 | August 7, 2007 | Russell et al. |
7271871 | September 18, 2007 | Jen et al. |
7282380 | October 16, 2007 | Maruyama et al. |
7286173 | October 23, 2007 | Zhang et al. |
7420608 | September 2, 2008 | Yamasaki |
7425749 | September 16, 2008 | Hartzell et al. |
7443460 | October 28, 2008 | Park |
7468774 | December 23, 2008 | Sakama |
7489291 | February 10, 2009 | Yamazaki et al. |
7506436 | March 24, 2009 | Bachman |
7522236 | April 21, 2009 | Gettemy et al. |
7525629 | April 28, 2009 | Konuma et al. |
7528912 | May 5, 2009 | Zhang et al. |
7551358 | June 23, 2009 | Lee et al. |
7569410 | August 4, 2009 | Hartzell et al. |
7582904 | September 1, 2009 | Fujii et al. |
7585121 | September 8, 2009 | Tsai |
7586565 | September 8, 2009 | Kao |
7618683 | November 17, 2009 | Tsuchimura |
7629613 | December 8, 2009 | Sohn et al. |
7663607 | February 16, 2010 | Hotelling et al. |
7697092 | April 13, 2010 | Yi et al. |
7728906 | June 1, 2010 | Bilbrey |
7728937 | June 1, 2010 | Kume et al. |
7764335 | July 27, 2010 | Tanaka et al. |
7790487 | September 7, 2010 | Shih et al. |
7800707 | September 21, 2010 | Hsieh et al. |
7812920 | October 12, 2010 | Iino |
7813042 | October 12, 2010 | Mather et al. |
7821561 | October 26, 2010 | Tsuboi |
7829391 | November 9, 2010 | Okada et al. |
7830370 | November 9, 2010 | Yamazaki et al. |
7852440 | December 14, 2010 | Kunimori et al. |
7859606 | December 28, 2010 | Higaki et al. |
7868957 | January 11, 2011 | Yamazaki et al. |
7883232 | February 8, 2011 | Bang |
7894021 | February 22, 2011 | Yang et al. |
7898585 | March 1, 2011 | Nam |
7903206 | March 8, 2011 | Nakamura et al. |
7907230 | March 15, 2011 | Goto et al. |
7924362 | April 12, 2011 | Slobodin |
7929046 | April 19, 2011 | Okamura |
7929075 | April 19, 2011 | Lee |
7933123 | April 26, 2011 | Wang et al. |
7936346 | May 3, 2011 | Kunimori et al. |
7995183 | August 9, 2011 | Yamazaki et al. |
8004629 | August 23, 2011 | Miyata |
8013454 | September 6, 2011 | Yamashita et al. |
8018558 | September 13, 2011 | Kubota |
8033708 | October 11, 2011 | Tsubaki |
8049221 | November 1, 2011 | Komori |
8059231 | November 15, 2011 | Kim |
8130354 | March 6, 2012 | Kimura |
8149279 | April 3, 2012 | Guo |
8154679 | April 10, 2012 | Kim |
8194138 | June 5, 2012 | Shen |
8199477 | June 12, 2012 | Mathew et al. |
8203677 | June 19, 2012 | Sakai |
8248559 | August 21, 2012 | Morita |
8253875 | August 28, 2012 | Kim |
8253890 | August 28, 2012 | Zhong et al. |
8274814 | September 25, 2012 | Tokunaga et al. |
8350985 | January 8, 2013 | Hasegawa |
8369702 | February 5, 2013 | Sanford et al. |
8395722 | March 12, 2013 | Mathew et al. |
8408780 | April 2, 2013 | Mathew et al. |
8456586 | June 4, 2013 | Mathew et al. |
8467177 | June 18, 2013 | Mathew et al. |
8508495 | August 13, 2013 | Hotelling et al. |
8711304 | April 29, 2014 | Mathew et al. |
8731618 | May 20, 2014 | Jarvis et al. |
8749496 | June 10, 2014 | Chang et al. |
8767141 | July 1, 2014 | Mathew et al. |
8786557 | July 22, 2014 | Noguchi et al. |
20040095526 | May 20, 2004 | Yamabuchi et al. |
20040212555 | October 28, 2004 | Falco |
20050052737 | March 10, 2005 | Amemiya et al. |
20050264689 | December 1, 2005 | Yang et al. |
20050266591 | December 1, 2005 | Hideo |
20060125982 | June 15, 2006 | Lin et al. |
20060138296 | June 29, 2006 | DeLuga |
20060148425 | July 6, 2006 | Carlson |
20060176417 | August 10, 2006 | Wu et al. |
20060223006 | October 5, 2006 | Shimada et al. |
20060279652 | December 14, 2006 | Yang |
20070002216 | January 4, 2007 | Chang et al. |
20070126966 | June 7, 2007 | Takahashi |
20070197677 | August 23, 2007 | Tsuchimura et al. |
20070291172 | December 20, 2007 | Kouzimoto et al. |
20080239754 | October 2, 2008 | Kang et al. |
20080266469 | October 30, 2008 | Chen et al. |
20090085848 | April 2, 2009 | Huang et al. |
20090091673 | April 9, 2009 | Chen et al. |
20090147179 | June 11, 2009 | Yamashita et al. |
20090153762 | June 18, 2009 | Kuwabara et al. |
20090244410 | October 1, 2009 | Miyata |
20090273550 | November 5, 2009 | Vieri et al. |
20090279284 | November 12, 2009 | Takeuchi et al. |
20090286001 | November 19, 2009 | Kanke et al. |
20100026656 | February 4, 2010 | Hotelling et al. |
20100079942 | April 1, 2010 | Yamamoto et al. |
20100097525 | April 22, 2010 | Mino |
20100100202 | April 22, 2010 | Chen et al. |
20100182538 | July 22, 2010 | Takata |
20100207857 | August 19, 2010 | Gu et al. |
20100225844 | September 9, 2010 | Kamada |
20100302478 | December 2, 2010 | Nakagawa et al. |
20100309102 | December 9, 2010 | Jung |
20100321325 | December 23, 2010 | Springer et al. |
20110001706 | January 6, 2011 | Sanford et al. |
20110005662 | January 13, 2011 | Sung |
20110051411 | March 3, 2011 | Kim et al. |
20110063550 | March 17, 2011 | Gettemy et al. |
20110109829 | May 12, 2011 | Mathew et al. |
20110149139 | June 23, 2011 | Chang |
20110244656 | October 6, 2011 | Dairiki et al. |
20110285948 | November 24, 2011 | Hakoi et al. |
20120014687 | January 19, 2012 | Sanford |
20120020000 | January 26, 2012 | Mathew et al. |
20120020001 | January 26, 2012 | Mathew et al. |
20120020700 | January 26, 2012 | Yamada et al. |
20120050958 | March 1, 2012 | Sanford et al. |
20120050975 | March 1, 2012 | Garelli et al. |
20120105400 | May 3, 2012 | Mathew et al. |
20120106063 | May 3, 2012 | Mathew et al. |
20130188305 | July 25, 2013 | Mathew et al. |
20130215642 | August 22, 2013 | Mathew et al. |
06/245209 | February 1994 | JP |
3387136 | September 1994 | JP |
00/330090 | November 2000 | JP |
01/117077 | April 2001 | JP |
04/135275 | April 2004 | JP |
05/176151 | June 2005 | JP |
09/015272 | January 2009 | JP |
10/219948 | September 2010 | JP |
100400714 | September 2003 | KR |
04/017693 | February 2004 | KR |
100809277 | February 2008 | KR |
1020080058911 | June 2008 | KR |
100856092 | September 2008 | KR |
1020080089908 | October 2008 | KR |
WO 2008/120879 | October 2008 | WO |
- “LCD with Embedded Camera for Picture Telephone,” IBM Corporation Research Disclosure 42572, Sep. 1999.
- U.S. Appl. No. 14/520,079, filed Oct. 21, 2014, Mathew et al.
Type: Grant
Filed: Jul 1, 2014
Date of Patent: Jun 30, 2015
Patent Publication Number: 20140340831
Assignee: Apple Inc. (Cupertino, CA)
Inventors: Dinesh C. Mathew (Cupertino, CA), Thomas W. Wilson, Jr. (Saratoga, CA), Victor H. Yin (Cupertino, CA), Bryan W. Posner (Cupertino, CA), Chris Ligtenberg (Cupertino, CA), Brett W. Degner (Cupertino, CA), Peteris K. Augenbergs (Cupertino, CA), John Z. Zhong (Cupertino, CA), Steve Hotelling (Cupertino, CA), Lynn Youngs (Cupertino, CA), Kuo-Hua Sung (Cupertino, CA)
Primary Examiner: Wen-Ying P Chen
Application Number: 14/321,533
International Classification: G02F 1/1345 (20060101); G02F 1/1333 (20060101); G06F 1/16 (20060101); H01J 9/20 (20060101); G02F 1/1335 (20060101);