Specialized processing block with fixed- and floating-point structures
Circuitry for performing arithmetic operations on a plurality of inputs efficiently performs both fixed-point operations and floating-point operations. Each of at least first and second respective operator circuits operates on a respective subplurality of the plurality of inputs. Other circuitry selectively interconnects the respective operator circuits so that they can operate together or separately, according to user selection, on selected ones of (a) the full plurality of inputs, (b) individual ones of the respective subpluralities of the plurality of inputs, or (c) combinations of portions of the respective subpluralities of the plurality of inputs. At least one of the respective operator circuits includes circuits for simultaneously computing multiple different results and for selecting among the multiple different results based on an output of another one of the respective operator circuits. One or more of the multiple different results are selectably usable to perform both fixed-point operations and floating-point operations.
Latest Altera Corporation Patents:
- Circuits And Methods For Generating Adjustable Signal Pulses That Control Writes To Memory Cells
- Floating-point decomposition circuitry with dynamic precision
- At-speed burst sampling for user registers
- Rank-based dot product circuitry
- Seemingly monolithic interface between separate integrated circuit die
This invention relates to a programmable integrated circuit device, and particularly to a specialized processing block in a programmable integrated circuit device.
BACKGROUND OF THE INVENTIONConsidering a programmable logic device (PLD) as one example of an integrated circuit device, as applications for which PLDs are used increase in complexity, it has become more common to design PLDs to include specialized processing blocks in addition to blocks of generic programmable logic resources. Such specialized processing blocks may include a concentration of circuitry on a PLD that has been partly or fully hardwired to perform one or more specific tasks, such as a logical or a mathematical operation. A specialized processing block may also contain one or more specialized structures, such as an array of configurable memory elements. Examples of structures that are commonly implemented in such specialized processing blocks include: multipliers, arithmetic logic units (ALUs), barrel-shifters, various memory elements (such as FIFO/LIFO/SIPO/RAM/ROM/CAM blocks and register files), AND/NAND/OR/NOR arrays, etc., or combinations thereof.
One particularly useful type of specialized processing block that has been provided on PLDs is a digital signal processing (DSP) block, which may be used to process, e.g., audio signals. Such blocks are frequently also referred to as multiply-accumulate (“MAC”) blocks, because they include structures to perform multiplication operations, and sums and/or accumulations of multiplication operations.
For example, PLDs sold by Altera Corporation, of San Jose, Calif., as part of the STRATIX® and ARRIA® families include DSP blocks, each of which includes a plurality of multipliers. Each of those DSP blocks also includes adders and registers, as well as programmable connectors (e.g., multiplexers) that allow the various components of the block to be configured in different ways.
Typically, the arithmetic operators (adders and multipliers) in such specialized processing blocks have been fixed-point operators. If floating-point operators were needed, the user would construct them outside the specialized processing block using general-purpose programmable logic of the device, or using a combination of the fixed-point operators inside the specialized processing block with additional logic in the general-purpose programmable logic.
One impediment to incorporating floating-point operators directly into specialized processing blocks is the need for large addition operations as part of many floating-point operations. For example, floating-point multiplication may require two carry-propagate adders. The carry-propagate adder used in a multiplication operation is an expensive component of the multiplier in terms of both area and latency.
SUMMARY OF THE INVENTIONIn accordance with embodiments of the present invention, specialized processing blocks such as the DSP blocks described above may be enhanced by including floating-point addition among the functions available in the DSP block, without increasing the number of carry-propagate adders. This is accomplished, in part, by simultaneously computing a sum, as well as that sum plus 1 (in its least significant bit) and that sum plus 2 (in its least significant bits), and then selecting the appropriate result based on the result of another part of the operation. The same structures, and, in particular, at least the sum and sum-plus-1 computations, may be used for both fixed-point operations and floating-point operations.
An adder circuit capable of both fixed-point addition and floating-point addition may be incorporated into the DSP block, and can be independently accessed, or used in combination with multipliers in the DSP block, or even multipliers in adjacent DSP blocks. A DSP block incorporating a fixed-and-floating-point-capable adder in accordance with the invention remains backward-compatible with fixed-point functionality of known DSP blocks.
Therefore, in accordance with embodiments of the present invention there is provided circuitry for performing arithmetic operations on a plurality of inputs. The circuitry includes at least first and second respective operator circuits. Each of the at least first and second respective operator circuits operates on a respective subplurality of the plurality of inputs. Other circuitry selectively interconnects the at least first and second respective operator circuits so that they can operate together or separately, according to user selection, on selected ones of (a) the full plurality of inputs, (b) individual ones of the respective subpluralities of the plurality of inputs, or (c) combinations of portions of the respective subpluralities of the plurality of inputs. At least one of the respective operator circuits includes circuits for simultaneously computing multiple different results and for selecting among the multiple different results based on an output of another one of the respective operator circuits. One or more of said multiple different results are selectably usable for both fixed-point operations and floating-point operations.
A specialized processing block incorporating the circuitry, and a programmable integrated circuit device incorporating the specialized processing block, are also provided.
Further features of the invention, its nature and various advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
In a specialized processing block—particularly a DSP block—in accordance with embodiments of the present invention, the adder is decomposed into a prefix structure aligned with both fixed-point and floating-point modes. In known floating-point structures, a carry-propagate adder is used, followed by normalization and then by rounding, which involves a second carry-propagate adder. But according to embodiments of the invention, three floating-point steps can be combined into a single level of carry-propagate adder by calculating different subsets of the carry propagate adder inputs as sum, sum-plus-1, and sum-plus-2. Other subsets of the larger carry-propagate adder are also calculated at the same time. The different subset results can be combined in multiple ways to implement either a floating-point adder or multiplier or multiple different types of fixed-point adder or multiplier combinations. The different subset results can be assembled into the required floating-point or fixed-point values by concatenation, thereby avoiding the need to propagate additional carry values over the subset results to obtain the correct output values.
In the logical representation of
The four dimensionless output vectors 111, 112, 121, 122 are combined by 4:2 compressor 104 into two dimensionless output vectors 114, 124. Multiplexers 105, 106 can be used to align vectors 111, 121 and 121, 122, respectively, according to the type of operation being performed, as determined by the user logic design. Specifically, the vectors can be totally offset from one another (e.g., to perform two separate smaller multiplications, such as two 9×9 multiplications), totally aligned with one another (e.g., to perform one larger multiplication, such as one 18×18 multiplication), or partially aligned with one another (e.g., to perform a “rectangular” multiplication, such as a 9×18 multiplication). In one implementation, each of the input and output vectors of compressor 104 may be up to 74 bits wide.
Another vector 117 may be input from another similar block. Vector 117, along with vectors 114, 124 are input to a 3:2 compressor 108 to provide vectors 118, 128. A further multiplexer 109 selects between vectors 114, 124 and vectors 118, 128, allowing compressor 108 to be bypassed if cascade input 117 is not used. AND gate 107 allows input 117 to be zeroed when, for example, the structure is being used in an accumulator mode and the accumulator has to be reset. Output vectors 119, 129, each up to 74 bits wide, are input to adder 200 to provide the resultant product of the multiplication operation, which can be a fixed-point output 130 or a floating-point output 131. In a floating-point case, the exponent may be handled at 132.
When multiplying two floating-point numbers according to the IEEE754-1985 standard, the input multiplicands are normalized numbers between 1.010 and 1.
In one embodiment, this is accomplished by decomposing adder 200 into three adders—a low adder 201, a middle adder 202 and a high adder 203. Adders 201, 202, 203 can be used together for a single large fixed-point addition (e.g., adding two 74-bit numbers). For other types of additions (which may result from different multiplication operations), adders 201, 202, 203 can be used in different combinations.
For example, in the example shown in
When performing two addition operations as just described, each addition operation could be a fixed-point operation. Alternatively, one or both of the two addition operations could be floating-point operations. In the implementation depicted in
Because an addition operation will be spanning the boundary between low adder 201 and middle adder 202, information must be carried across that boundary. As can be seen in
In a floating-point context, the location of the least significant bit of the result could actually straddle the boundary—sometimes falling on one side and sometimes falling on the other—depending on the precision and on the particular input values. Information from low adder 201 is needed, along with other information, to establish the location of the least significant bit. Floating-point rounding logic 204 uses the carry information 211, along with the lowermost bits 232 from adder 202 and round-to-nearest-even signal 221 (which combines all but the highest bit from adder 201 in OR-gate 214 to determine the presence of a ‘1’ in any bit location, signifying, when the highest bit from adder 201 is a ‘1’, whether the result from adder 201 is exactly 0.510 or greater than 0.510) to generate selection signal 224 to select the correct floating-point output using multiplexer 242.
As discussed briefly above, depending on the particular inputs, the correct output from adder 202 may be either the sum of its inputs (205), the sum of its inputs with 1 added to the least significant bit (206), or the sum of its inputs with 210 added to the least significant bits (207). In one embodiment, the latter possibility is a possibility only in a floating-point addition, while the other two possibilities are possibilities for either fixed-point addition or floating-point addition. Moreover, where the middle adder 202 is being split between two operations, the upper range output 208 of sum 205 may be output separately.
As also discussed in part above, the selection of the appropriate output(s) from adder 202 is made by multiplexers 212, 222, 242. In the floating-point case, as discussed above, one of sum 205, sum-plus-1 206 and sum-plus-2 207 is selected by multiplexer 242 based on selection signal 224 from floating-point rounding logic 204. In a fixed-point case, multiplexers 212, 222 select between the respective ranges of sum 205 and sum-plus-1 206 based on carry signal 211 from low adder 201 (as noted above, sum plus-2 207 is used only in a floating-point case) or, for multiplexer 212 only, the upper range 208 of the sum.
One possible implementation of middle adder 202 is shown in
The lower vectors 333, 343 are input to prefix network 314 to provide generate and propagate vectors 315, 325. The upper vectors 353, 363 are input to prefix network 324 to provide generate and propagate vectors 335, 345. Vectors 335, 345 are input to prefix network 334 along with the prefix(g,p) output 305 of the highest node of network 314. Network 334 outputs generate and propagate vectors 355, 365, which are concatenated with generate and propagate vectors 315, 325 to provide generate and propagate vectors 375, 385.
In order to provide sum output 205, bits 31:2 of half-add vectors 313, 323 are XORed at 306 to provide vector 316, bits 31:3 of which are then XORed at 307 with bits 31:3 of concatenated generate vector 375 to provide vector 317. Vector 317 is then concatenated with the least significant bit 326 of vector 316, and then concatenated with the least significant bit of half-add-sum vector 313 to provide sum 205.
In order to provide sum-plus-1 output 206, bits 31:2 of half-add vectors 313, 323 are XORed at 306 to provide vector 316, bits 31:3 of which are then XORed at 308 with the result of ORing (309) bits 29:1 of concatenated generate vector 375, with the result of ANDing (310) bits 29:1 of concatenated propagate vector 385 and the least significant bit of half-add-sum vector 313, to provide vector 327. Vector 327 is then concatenated with the XOR 318 of the least significant bit of half-add-sum vector 313 and the least-significant bit 326 of vector 316, and then concatenated with the inverse 328 (where nodes 350 are controllable to selectably bypass, or not bypass, inverter 328) of the least significant bit of half-add-sum vector 313 to provide sum-plus-1 206.
Outputs 205 and 206 can be used for both fixed-point and floating-point calculations and therefore are computed to 31 bits of precision. However, in some embodiments sum-plus-2 output 207 might only be used for floating-point operations. Because the mantissa in IEEE754-1985 floating-point operations is 23 bits wide, in such an embodiment sum-plus-2 output 207 need only be 25 bits wide (although in other embodiments, output 207 might be 31 bits wide like the other sum outputs). In order to provide a 25-bit-wide sum-plus-2 output 207, bits 25:2 of half-add vectors 313, 323 are XORed at 306 to provide vector 316, bits 25:3 of which are then XORed at 308 with the result of ORing (309) bits 23:1 of concatenated generate vector 375 with bits 23:1 of concatenated propagate vector 385 to provide vector 327 (where nodes 360 are controllable to selectably bypass, or not bypass, adder 310). Vector 327 is then concatenated with inverse 338 (where nodes 370 are controllable to selectably bypass, or not bypass, inverter 338) of the XOR 318 of the least significant bit of half-add-sum vector 313 and the least-significant bit 326 of vector 316, and then concatenated with the least significant bit of half-add-sum vector 313 to provide sum-plus-2 207.
As discussed above, the upper range output 208 of middle adder 202 could be provided separately—e.g., for combining with the output of high adder 203. There are at least two ways to provide upper range output 208.
One way to provide upper range output 208 is to compute sum 205 as described above, but to partition it into upper and lower portions by disconnecting output 305 of prefix network 314 from prefix network 334 and zeroing bit 15 of half-add-carry 323. Upper range output 208 may then be read directly from the upper 17 bits 31:15 of sum 205.
A second way to provide upper range output 208 is to XOR (390) upper bits 31:17 only of upper portions 353, 363 (31:15) of vectors 313, 323 to produce 15-bit vector 391, then to XOR (392) vector 391 with generate vector 393 (which is the least significant bits of the 17 bits of generate vector 335) from prefix network 324 to provide 15-bit vector 394. Vector 394 may be concatenated with the XOR (395) of respective bits 16 of upper portions 353, 363, and that result may be concatenated with the lowest bit (bit 15) of upper portion 353 of half-add-sum 313 to provide 17-bit output 208.
As discussed above, low, middle and high adders 201, 202, 203 may be combined to perform a single fixed-point operation on their combined of inputs. Alternatively, each of low, middle and high adders 201, 202, 203 may perform a separate respective fixed-point operation on its respective inputs. Finally, portions of different ones of low, middle and high adders 201, 202, 203 may be used together to perform separate operations that are selectably fixed-point operations or floating-point operations. Therefore, as described, the decomposed adder structure of
A PLD 90 incorporating specialized processing blocks according to the present invention may be used in many kinds of electronic devices. One possible use is in an exemplary data processing system 900 shown in
System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 90 can be used to perform a variety of different logic functions. For example, PLD 90 can be configured as a processor or controller that works in cooperation with processor 901. PLD 90 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 90 can be configured as an interface between processor 901 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.
Various technologies can be used to implement PLDs 90 as described above and incorporating this invention.
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.
Claims
1. Circuitry for performing arithmetic operations on a plurality of inputs, said circuit comprising:
- at least first and second respective operator circuits, each of said at least first and second respective operator circuits operating on a respective subplurality of said plurality of inputs; and
- circuitry for selectively interconnecting said at least first and second respective operator circuits so that they can operate together or separately, according to user selection, on selected ones of (a) said full plurality of inputs, (b) individual ones of said respective subpluralities of said plurality of inputs, or (c) combinations of portions of said respective subpluralities of said plurality of inputs; wherein:
- at least one of said respective operator circuits includes circuits for simultaneously computing multiple different results and for selecting among said multiple different results based on an output of another one of said respective operator circuits;
- said multiple different results comprise sum, sum-plus-1 and sum-plus-2 results; and
- one or more of said multiple different results are selectably usable for both fixed-point operations and floating-point operations.
2. The circuitry for performing of claim 1 wherein:
- each of said respective operator circuits comprises a fixed-point adder circuit; and
- said circuitry for selectively interconnecting comprises control circuitry that receives inputs from two of said respective operator circuits, so that said two of said respective operator circuits provide a floating-point addition of portions of their respective subpluralities of said plurality of inputs.
3. The circuitry for performing of claim 2 further comprising at least one partial product generator; wherein:
- outputs of said at least one partial product generator are input to said two of said respective operator circuits provide a floating-point multiplication of inputs of said at least one partial product generator.
4. The circuitry for performing of claim 1 wherein said circuits for simultaneously computing comprise a half-adder and a prefix network tree.
5. The circuitry for performing of claim 4 wherein:
- said prefix network tree comprises first, second and third prefix networks;
- said first prefix network receives, as inputs, a first subset of outputs of said half-adder;
- said second prefix network receives, as inputs, a second subset of outputs of said half-adder; and
- said third prefix network receives, as inputs, outputs of said second prefix network and an output of a most significant node of said first prefix network.
6. The circuitry for performing of claim 5 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is enabled; and
- output of said third prefix network is used to provide a combined sum of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder, as well as a combined sum-plus-1 and a combined sum-plus-2.
7. The circuitry for performing of claim 5 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is disabled; and
- output of said third prefix network is used to provide separate sums of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder.
8. A specialized processing block on a programmable integrated circuit device, said specialized processing block comprising:
- at least one partial product generator providing a plurality of outputs;
- at least first and second respective adder circuits, each of said at least first and second respective adder circuits operating on a respective subplurality of said plurality of outputs; and
- circuitry for selectively interconnecting said at least first and second respective adder circuits so that they can operate together or separately, according to user selection, on selected ones of (a) said full plurality of outputs, (b) individual ones of said respective subpluralities of said plurality of outputs, or (c) combinations of portions of said respective subpluralities of said plurality of outputs; wherein:
- at least one of said respective adder circuits includes circuits for simultaneously computing multiple different results and for selecting among said multiple different results based on an output of another one of said respective adder circuits; and
- said multiple different results comprise sum, sum-plus-1 and sum-plus-2 results.
9. The specialized processing block of claim 8 wherein:
- each of said respective adder circuits comprises a fixed-point adder circuit; and
- said circuitry for selectively interconnecting comprises control circuitry that receives inputs from two of said respective adder circuits, so that said two of said respective operator circuits provide a floating-point addition of portions of their respective subpluralities of said plurality of outputs.
10. The specialized processing block of claim 8 wherein said circuits for simultaneously computing comprise a half-adder and a prefix network tree.
11. The specialized processing block of claim 10 wherein:
- said prefix network tree comprises first, second and third prefix networks;
- said first prefix network receives, as inputs, a first subset of outputs of said half-adder;
- said second prefix network receives, as inputs, a second subset of outputs of said half-adder; and
- said third prefix network receives, as inputs, outputs of said second prefix network and an output of a most significant node of said first prefix network.
12. The specialized processing block of claim 11 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is enabled; and
- output of said third prefix network is used to provide a combined sum of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder, as well as a combined sum-plus-1 and a combined sum-plus-2.
13. The specialized processing block of claim 11 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is disabled; and
- output of said third prefix network is used to provide separate sums of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder.
14. A programmable integrated circuit device comprising:
- a plurality of specialized processing blocks, each of said specialized processing blocks comprising:
- at least one partial product generator providing a plurality of outputs;
- at least first and second respective adder circuits, each of said at least first and second respective adder circuits operating on a respective subplurality of said plurality of outputs; and
- circuitry for selectively interconnecting said at least first and second respective adder circuits so that they can operate together or separately, according to user selection, on selected ones of (a) said full plurality of outputs, (b) individual ones of said respective subpluralities of said plurality of outputs, or (c) combinations of portions of said respective subpluralities of said plurality of outputs; wherein:
- at least one of said respective adder circuits includes circuits for simultaneously computing multiple different results and for selecting among said multiple different results based on an output of another one of said respective adder circuits; and
- said multiple different results comprise sum, sum-plus-1 and sum-plus-2 results.
15. The programmable integrated circuit device of claim 14 wherein:
- each of said respective adder circuits comprises a fixed-point adder circuit; and
- said circuitry for selectively interconnecting comprises control circuitry that receives inputs from two of said respective adder circuits, so that said two of said respective operator circuits provide a floating-point addition of portions of their respective subpluralities of said plurality of outputs.
16. The programmable integrated circuit device of claim 14 wherein said circuits for simultaneously computing comprise a half-adder and a prefix network tree.
17. The programmable integrated circuit device of claim 16 wherein:
- said prefix network tree comprises first, second and third prefix networks;
- said first prefix network receives, as inputs, a first subset of outputs of said half-adder;
- said second prefix network receives, as inputs, a second subset of outputs of said half-adder; and
- said third prefix network receives, as inputs, outputs of said second prefix network and an output of a most significant node of said first prefix network.
18. The programmable integrated circuit device of claim 17 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is enabled; and
- output of said third prefix network is used to provide a combined sum of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder, as well as a combined sum-plus-1 and a combined sum-plus-2.
19. The programmable integrated circuit device of claim 17 wherein:
- input of said output of said most significant node of said first prefix network to said third prefix network is disabled; and
- output of said third prefix network is used to provide separate sums of said first subset of outputs of said half-adder and said second subset of outputs of said half-adder.
3473160 | October 1969 | Wahlstrom |
3697734 | October 1972 | Booth et al. |
3800130 | March 1974 | Martinson et al. |
4156927 | May 29, 1979 | McElroy et al. |
4179746 | December 18, 1979 | Tubbs |
4212076 | July 8, 1980 | Conners |
4215406 | July 29, 1980 | Gomola et al. |
4215407 | July 29, 1980 | Gomola et al. |
4422155 | December 20, 1983 | Amir et al. |
4484259 | November 20, 1984 | Palmer et al. |
4521907 | June 4, 1985 | Amir et al. |
4575812 | March 11, 1986 | Kloker et al. |
4597053 | June 24, 1986 | Chamberlin |
4616330 | October 7, 1986 | Betz |
4623961 | November 18, 1986 | Mackiewicz |
4682302 | July 21, 1987 | Williams |
4718057 | January 5, 1988 | Venkitakrishnan et al. |
4727508 | February 23, 1988 | Williams |
4736335 | April 5, 1988 | Barban |
4754421 | June 28, 1988 | Bosshart |
4791590 | December 13, 1988 | Ku et al. |
4799004 | January 17, 1989 | Mori |
4823260 | April 18, 1989 | Imel et al. |
4823295 | April 18, 1989 | Mader |
4839847 | June 13, 1989 | Laprade |
4871930 | October 3, 1989 | Wong et al. |
4893268 | January 9, 1990 | Denman et al. |
4908788 | March 13, 1990 | Fujiyama |
4912345 | March 27, 1990 | Steele et al. |
4918637 | April 17, 1990 | Morton |
4967160 | October 30, 1990 | Quievy et al. |
4982354 | January 1, 1991 | Takeuchi et al. |
4991010 | February 5, 1991 | Hailey et al. |
4994997 | February 19, 1991 | Martin et al. |
4999803 | March 12, 1991 | Turrini et al. |
5073863 | December 17, 1991 | Zhang |
5081604 | January 14, 1992 | Tanaka |
5122685 | June 16, 1992 | Chan et al. |
5128559 | July 7, 1992 | Steele |
5175702 | December 29, 1992 | Beraud et al. |
5208491 | May 4, 1993 | Ebeling et al. |
RE34363 | August 31, 1993 | Freeman |
5267187 | November 30, 1993 | Hsieh et al. |
5296759 | March 22, 1994 | Sutherland et al. |
5338983 | August 16, 1994 | Agarwala |
5339263 | August 16, 1994 | White |
5349250 | September 20, 1994 | New |
5357152 | October 18, 1994 | Jennings, III et al. |
5371422 | December 6, 1994 | Patel et al. |
5373461 | December 13, 1994 | Bearden et al. |
5375079 | December 20, 1994 | Uramoto et al. |
5381357 | January 10, 1995 | Wedgwood et al. |
5404324 | April 4, 1995 | Colon-Benet |
5424589 | June 13, 1995 | Dobbelaere et al. |
5446651 | August 29, 1995 | Moyse et al. |
5451948 | September 19, 1995 | Jekel |
5452231 | September 19, 1995 | Butts et al. |
5452375 | September 19, 1995 | Rousseau et al. |
5457644 | October 10, 1995 | McCollum |
5465226 | November 7, 1995 | Goto |
5465375 | November 7, 1995 | Thepaut et al. |
5483178 | January 9, 1996 | Costello et al. |
5497498 | March 5, 1996 | Taylor |
5500812 | March 19, 1996 | Saishi et al. |
5500828 | March 19, 1996 | Doddington et al. |
5523963 | June 4, 1996 | Hsieh et al. |
5528550 | June 18, 1996 | Pawate et al. |
5537601 | July 16, 1996 | Kimura et al. |
5541864 | July 30, 1996 | Van Bavel et al. |
5546018 | August 13, 1996 | New et al. |
5550993 | August 27, 1996 | Ehlig et al. |
5559450 | September 24, 1996 | Ngai et al. |
5563526 | October 8, 1996 | Hastings et al. |
5563819 | October 8, 1996 | Nelson |
5570039 | October 29, 1996 | Oswald et al. |
5570040 | October 29, 1996 | Lytle et al. |
5572148 | November 5, 1996 | Lytle et al. |
5581501 | December 3, 1996 | Sansbury et al. |
5590350 | December 31, 1996 | Guttag et al. |
5594366 | January 14, 1997 | Khong et al. |
5594912 | January 14, 1997 | Brueckmann et al. |
5596763 | January 21, 1997 | Guttag et al. |
5606266 | February 25, 1997 | Pedersen |
5617058 | April 1, 1997 | Adrian et al. |
5631848 | May 20, 1997 | Laczko et al. |
5631859 | May 20, 1997 | Markstein et al. |
5633601 | May 27, 1997 | Nagaraj |
5636150 | June 3, 1997 | Okamoto |
5636368 | June 3, 1997 | Harrison et al. |
5640578 | June 17, 1997 | Balmer et al. |
5644519 | July 1, 1997 | Yatim et al. |
5644522 | July 1, 1997 | Moyse et al. |
5646545 | July 8, 1997 | Trimberger et al. |
5646875 | July 8, 1997 | Taborn et al. |
5648732 | July 15, 1997 | Duncan |
5652903 | July 29, 1997 | Weng et al. |
5655069 | August 5, 1997 | Ogawara et al. |
5664192 | September 2, 1997 | Lloyd et al. |
5689195 | November 18, 1997 | Cliff et al. |
5696708 | December 9, 1997 | Leung |
5729495 | March 17, 1998 | Madurawe |
5740404 | April 14, 1998 | Baji |
5744980 | April 28, 1998 | McGowan et al. |
5744991 | April 28, 1998 | Jefferson et al. |
5754459 | May 19, 1998 | Telikepalli |
5761483 | June 2, 1998 | Trimberger |
5764555 | June 9, 1998 | McPherson et al. |
5768613 | June 16, 1998 | Asghar |
5771186 | June 23, 1998 | Kodali et al. |
5777912 | July 7, 1998 | Leung et al. |
5784636 | July 21, 1998 | Rupp |
5790446 | August 4, 1998 | Yu et al. |
5794067 | August 11, 1998 | Kadowaki |
5801546 | September 1, 1998 | Pierce et al. |
5805477 | September 8, 1998 | Perner |
5805913 | September 8, 1998 | Guttag et al. |
5808926 | September 15, 1998 | Gorshtein et al. |
5812479 | September 22, 1998 | Cliff et al. |
5812562 | September 22, 1998 | Baeg |
5815422 | September 29, 1998 | Dockser |
5821776 | October 13, 1998 | McGowan |
5825202 | October 20, 1998 | Tavana et al. |
5838165 | November 17, 1998 | Chatter |
5841684 | November 24, 1998 | Dockser |
5847579 | December 8, 1998 | Trimberger |
5847978 | December 8, 1998 | Ogura et al. |
5847981 | December 8, 1998 | Kelley et al. |
5859878 | January 12, 1999 | Phillips et al. |
5869979 | February 9, 1999 | Bocchino |
5872380 | February 16, 1999 | Rostoker et al. |
5874834 | February 23, 1999 | New |
5878250 | March 2, 1999 | LeBlanc |
5880981 | March 9, 1999 | Kojima et al. |
5892962 | April 6, 1999 | Cloutier |
5894228 | April 13, 1999 | Reddy et al. |
5898602 | April 27, 1999 | Rothman et al. |
5931898 | August 3, 1999 | Khoury |
5942914 | August 24, 1999 | Reddy et al. |
5944774 | August 31, 1999 | Dent |
5949710 | September 7, 1999 | Pass et al. |
5951673 | September 14, 1999 | Miyata |
5956265 | September 21, 1999 | Lewis |
5959871 | September 28, 1999 | Pierzchala et al. |
5960193 | September 28, 1999 | Guttag et al. |
5961635 | October 5, 1999 | Guttag et al. |
5963048 | October 5, 1999 | Harrison et al. |
5963050 | October 5, 1999 | Young et al. |
5968196 | October 19, 1999 | Ramamurthy et al. |
5970254 | October 19, 1999 | Cooke et al. |
5978260 | November 2, 1999 | Trimberger et al. |
5982195 | November 9, 1999 | Cliff et al. |
5986465 | November 16, 1999 | Mendel |
5991788 | November 23, 1999 | Mintzer |
5991898 | November 23, 1999 | Rajski et al. |
5995748 | November 30, 1999 | Guttag et al. |
5999015 | December 7, 1999 | Cliff et al. |
5999990 | December 7, 1999 | Sharrit et al. |
6005806 | December 21, 1999 | Madurawe et al. |
6006321 | December 21, 1999 | Abbott |
6009451 | December 28, 1999 | Burns |
6018755 | January 25, 2000 | Gonikberg et al. |
6020759 | February 1, 2000 | Heile |
6021423 | February 1, 2000 | Nag et al. |
6029187 | February 22, 2000 | Verbauwhede |
6031763 | February 29, 2000 | Sansbury |
6041339 | March 21, 2000 | Yu et al. |
6041340 | March 21, 2000 | Mintzer |
6052327 | April 18, 2000 | Reddy et al. |
6052755 | April 18, 2000 | Terrill et al. |
6052773 | April 18, 2000 | DeHon et al. |
6055555 | April 25, 2000 | Boswell et al. |
6064614 | May 16, 2000 | Khoury |
6065131 | May 16, 2000 | Andrews et al. |
6066960 | May 23, 2000 | Pedersen |
6069487 | May 30, 2000 | Lane et al. |
6072994 | June 6, 2000 | Phillips et al. |
6073154 | June 6, 2000 | Dick |
6075381 | June 13, 2000 | LaBerge |
6084429 | July 4, 2000 | Trimberger |
6085317 | July 4, 2000 | Smith |
6091261 | July 18, 2000 | De Lange |
6091765 | July 18, 2000 | Pietzold, III et al. |
6094726 | July 25, 2000 | Gonion et al. |
6097988 | August 1, 2000 | Tobias |
6098163 | August 1, 2000 | Guttag et al. |
6107820 | August 22, 2000 | Jefferson et al. |
6107821 | August 22, 2000 | Kelem et al. |
6107824 | August 22, 2000 | Reddy et al. |
6108772 | August 22, 2000 | Sharangpani |
6130554 | October 10, 2000 | Kolze et al. |
6140839 | October 31, 2000 | Kaviani et al. |
6144980 | November 7, 2000 | Oberman |
6154049 | November 28, 2000 | New |
6157210 | December 5, 2000 | Zaveri et al. |
6163788 | December 19, 2000 | Chen et al. |
6167415 | December 26, 2000 | Fischer et al. |
6175849 | January 16, 2001 | Smith |
6215326 | April 10, 2001 | Jefferson et al. |
6226735 | May 1, 2001 | Mirsky |
6242947 | June 5, 2001 | Trimberger |
6243729 | June 5, 2001 | Staszewski |
6246258 | June 12, 2001 | Lesea |
6260053 | July 10, 2001 | Maulik et al. |
6279021 | August 21, 2001 | Takano et al. |
6286024 | September 4, 2001 | Yano et al. |
6314442 | November 6, 2001 | Suzuki |
6314551 | November 6, 2001 | Borland |
6321246 | November 20, 2001 | Page et al. |
6323680 | November 27, 2001 | Pedersen et al. |
6327605 | December 4, 2001 | Arakawa et al. |
6346824 | February 12, 2002 | New |
6351142 | February 26, 2002 | Abbott |
6353843 | March 5, 2002 | Chehrazi et al. |
6359468 | March 19, 2002 | Park et al. |
6360240 | March 19, 2002 | Takano et al. |
6362650 | March 26, 2002 | New et al. |
6366944 | April 2, 2002 | Hossain et al. |
6367003 | April 2, 2002 | Davis |
6369610 | April 9, 2002 | Cheung et al. |
6377970 | April 23, 2002 | Abdallah et al. |
6407576 | June 18, 2002 | Ngai et al. |
6407694 | June 18, 2002 | Cox et al. |
6427157 | July 30, 2002 | Webb |
6434587 | August 13, 2002 | Liao et al. |
6438569 | August 20, 2002 | Abbott |
6438570 | August 20, 2002 | Miller |
6446107 | September 3, 2002 | Knowles |
6453382 | September 17, 2002 | Heile |
6467017 | October 15, 2002 | Ngai et al. |
6480980 | November 12, 2002 | Koe |
6483343 | November 19, 2002 | Faith et al. |
6487575 | November 26, 2002 | Oberman |
6523055 | February 18, 2003 | Yu et al. |
6523057 | February 18, 2003 | Savo et al. |
6531888 | March 11, 2003 | Abbott |
6538470 | March 25, 2003 | Langhammer et al. |
6542000 | April 1, 2003 | Black et al. |
6556044 | April 29, 2003 | Langhammer et al. |
6557092 | April 29, 2003 | Callen |
6564238 | May 13, 2003 | Kim et al. |
6571268 | May 27, 2003 | Giacalone et al. |
6573749 | June 3, 2003 | New et al. |
6574762 | June 3, 2003 | Karimi et al. |
6578060 | June 10, 2003 | Chen et al. |
6591283 | July 8, 2003 | Conway et al. |
6591357 | July 8, 2003 | Mirsky |
6600495 | July 29, 2003 | Boland et al. |
6600788 | July 29, 2003 | Dick et al. |
6628140 | September 30, 2003 | Langhammer et al. |
6687722 | February 3, 2004 | Larsson et al. |
6692534 | February 17, 2004 | Wang et al. |
6700581 | March 2, 2004 | Baldwin et al. |
6725441 | April 20, 2004 | Keller et al. |
6728901 | April 27, 2004 | Rajski et al. |
6731133 | May 4, 2004 | Feng et al. |
6732134 | May 4, 2004 | Rosenberg et al. |
6744278 | June 1, 2004 | Liu et al. |
6745254 | June 1, 2004 | Boggs et al. |
6763367 | July 13, 2004 | Kwon et al. |
6771094 | August 3, 2004 | Langhammer et al. |
6774669 | August 10, 2004 | Liu et al. |
6781408 | August 24, 2004 | Langhammer |
6781410 | August 24, 2004 | Pani et al. |
6788104 | September 7, 2004 | Singh et al. |
6801924 | October 5, 2004 | Green et al. |
6836839 | December 28, 2004 | Master et al. |
6874079 | March 29, 2005 | Hogenauer |
6889238 | May 3, 2005 | Johnson |
6904471 | June 7, 2005 | Boggs et al. |
6915322 | July 5, 2005 | Hong |
6924663 | August 2, 2005 | Masui et al. |
6963890 | November 8, 2005 | Dutta et al. |
6971083 | November 29, 2005 | Farrugia et al. |
6978287 | December 20, 2005 | Langhammer |
6983300 | January 3, 2006 | Ferroussat |
7020673 | March 28, 2006 | Ozawa |
7024446 | April 4, 2006 | Langhammer et al. |
7047272 | May 16, 2006 | Giacalone et al. |
7062526 | June 13, 2006 | Hoyle |
7093204 | August 15, 2006 | Oktem et al. |
7107305 | September 12, 2006 | Deng et al. |
7113969 | September 26, 2006 | Green et al. |
7181484 | February 20, 2007 | Stribaek et al. |
7230451 | June 12, 2007 | Langhammer |
7313585 | December 25, 2007 | Winterrowd |
7343388 | March 11, 2008 | Burney et al. |
7395298 | July 1, 2008 | Debes et al. |
7401109 | July 15, 2008 | Koc et al. |
7409417 | August 5, 2008 | Lou |
7415542 | August 19, 2008 | Hennedy et al. |
7421465 | September 2, 2008 | Rarick et al. |
7428565 | September 23, 2008 | Fujimori |
7428566 | September 23, 2008 | Siu et al. |
7430578 | September 30, 2008 | Debes et al. |
7430656 | September 30, 2008 | Sperber et al. |
7447310 | November 4, 2008 | Koc et al. |
7472155 | December 30, 2008 | Simkins et al. |
7508936 | March 24, 2009 | Eberle et al. |
7536430 | May 19, 2009 | Guevokian et al. |
7567997 | July 28, 2009 | Simkins et al. |
7590676 | September 15, 2009 | Langhammer |
7646430 | January 12, 2010 | Brown Elliott et al. |
7650374 | January 19, 2010 | Gura et al. |
7668896 | February 23, 2010 | Lutz et al. |
7719446 | May 18, 2010 | Rosenthal et al. |
7720898 | May 18, 2010 | Driker et al. |
7769797 | August 3, 2010 | Cho et al. |
7814136 | October 12, 2010 | Verma et al. |
7814137 | October 12, 2010 | Mauer |
7822799 | October 26, 2010 | Langhammer et al. |
7836117 | November 16, 2010 | Langhammer et al. |
7865541 | January 4, 2011 | Langhammer |
7917567 | March 29, 2011 | Mason et al. |
7930335 | April 19, 2011 | Gura |
7930336 | April 19, 2011 | Langhammer |
7949699 | May 24, 2011 | Neoh et al. |
8024394 | September 20, 2011 | Prokopenko et al. |
8041759 | October 18, 2011 | Langhammer et al. |
8090758 | January 3, 2012 | Shimanek et al. |
8112466 | February 7, 2012 | Minz et al. |
8447800 | May 21, 2013 | Dockser et al. |
8468191 | June 18, 2013 | Mantor et al. |
8595279 | November 26, 2013 | Dockser |
8751551 | June 10, 2014 | Streicher et al. |
20010023425 | September 20, 2001 | Oberman et al. |
20010029515 | October 11, 2001 | Mirsky |
20010037352 | November 1, 2001 | Hong |
20020002573 | January 3, 2002 | Landers et al. |
20020032713 | March 14, 2002 | Jou et al. |
20020038324 | March 28, 2002 | Page et al. |
20020049798 | April 25, 2002 | Wang et al. |
20020078114 | June 20, 2002 | Wang et al. |
20020089348 | July 11, 2002 | Langhammer |
20020116434 | August 22, 2002 | Nancekievill |
20020143841 | October 3, 2002 | Farooqui et al. |
20030065699 | April 3, 2003 | Burns |
20030088757 | May 8, 2003 | Lindner et al. |
20040064770 | April 1, 2004 | Xin |
20040083412 | April 29, 2004 | Corbin et al. |
20040103133 | May 27, 2004 | Gurney |
20040122882 | June 24, 2004 | Zakharov et al. |
20040148321 | July 29, 2004 | Guevorkian et al. |
20040172439 | September 2, 2004 | Lin |
20040178818 | September 16, 2004 | Crotty et al. |
20040193981 | September 30, 2004 | Clark et al. |
20040267857 | December 30, 2004 | Abel et al. |
20040267863 | December 30, 2004 | Bhushan et al. |
20050038842 | February 17, 2005 | Stoye |
20050120122 | June 2, 2005 | Farnham |
20050144212 | June 30, 2005 | Simkins et al. |
20050144215 | June 30, 2005 | Simkins et al. |
20050144216 | June 30, 2005 | Simkins et al. |
20050166038 | July 28, 2005 | Wang et al. |
20050187997 | August 25, 2005 | Zheng et al. |
20050187999 | August 25, 2005 | Zheng et al. |
20050262175 | November 24, 2005 | Iino et al. |
20060020655 | January 26, 2006 | Lin |
20060112160 | May 25, 2006 | Ishii et al. |
20070083585 | April 12, 2007 | St. Denis et al. |
20070185951 | August 9, 2007 | Lee et al. |
20070185952 | August 9, 2007 | Langhammer et al. |
20070241773 | October 18, 2007 | Hutchings et al. |
20080133627 | June 5, 2008 | Langhammer et al. |
20080159441 | July 3, 2008 | Liao et al. |
20080183783 | July 31, 2008 | Tubbs |
20090083358 | March 26, 2009 | Allen |
20090113186 | April 30, 2009 | Kato et al. |
20090172052 | July 2, 2009 | DeLaquil et al. |
20090182795 | July 16, 2009 | Dobbek et al. |
20090187615 | July 23, 2009 | Abe et al. |
20090228689 | September 10, 2009 | Muff et al. |
20090292750 | November 26, 2009 | Reyzin et al. |
20090300088 | December 3, 2009 | Michaels et al. |
20090300323 | December 3, 2009 | Hessel et al. |
20100098189 | April 22, 2010 | Oketani |
20100146022 | June 10, 2010 | Swartzlander et al. |
20100191939 | July 29, 2010 | Muff et al. |
20110106868 | May 5, 2011 | Lutz |
20110137970 | June 9, 2011 | Dockser et al. |
20110161389 | June 30, 2011 | Langhammer et al. |
20110219052 | September 8, 2011 | Langhammer |
20110238720 | September 29, 2011 | Langhammer |
20110320513 | December 29, 2011 | Langhammer |
20120054254 | March 1, 2012 | Langhammer |
20120054256 | March 1, 2012 | Langhammer |
20120166512 | June 28, 2012 | Wong et al. |
20130138711 | May 30, 2013 | Sugisawa |
20140067895 | March 6, 2014 | Wang |
20140089371 | March 27, 2014 | De Dinechin et al. |
0 158 430 | October 1985 | EP |
0 380 456 | August 1990 | EP |
0 411 491 | February 1991 | EP |
0 419 105 | March 1991 | EP |
0 461 798 | December 1991 | EP |
0 498 066 | August 1992 | EP |
0 555 092 | August 1993 | EP |
0 606 653 | July 1994 | EP |
0 657 803 | June 1995 | EP |
0 660 227 | June 1995 | EP |
0 668 659 | August 1995 | EP |
0 721 159 | July 1996 | EP |
0 905 906 | March 1999 | EP |
0 909 028 | April 1999 | EP |
0 927 393 | July 1999 | EP |
0 992 885 | April 2000 | EP |
1 031 934 | August 2000 | EP |
1 058 185 | December 2000 | EP |
1 220 108 | July 2002 | EP |
2 283 602 | May 1995 | GB |
2 286 737 | August 1995 | GB |
2 318 198 | April 1998 | GB |
61-237133 | October 1986 | JP |
63-216131 | August 1988 | JP |
4-332036 | November 1992 | JP |
5-134851 | June 1993 | JP |
06-187129 | July 1994 | JP |
7-135447 | May 1995 | JP |
11-296345 | October 1999 | JP |
2000-259394 | September 2000 | JP |
2002-108606 | April 2002 | JP |
2002-251281 | September 2002 | JP |
WO95-27243 | October 1995 | WO |
WO96-28774 | September 1996 | WO |
WO97-08606 | March 1997 | WO |
WO98-12629 | March 1998 | WO |
WO98-32071 | July 1998 | WO |
WO98-38741 | September 1998 | WO |
WO99-22292 | May 1999 | WO |
WO99-31574 | June 1999 | WO |
WO99-56394 | November 1999 | WO |
WO00-51239 | August 2000 | WO |
WO00-52824 | September 2000 | WO |
WO01-13562 | February 2001 | WO |
WO 2005/066832 | July 2005 | WO |
WO2005-101190 | October 2005 | WO |
- Xilinx, Inc., “Implementing Barrel Shifters Using Multipliers,” p. 1-4, Aug. 17, 2004.
- Altera, “DSP Blocks in Stratix III Devices”, Chapter 5, pp. 1-42, Mar. 2010.
- Karlström, P., et al., “High Performance, Low Latency FPGA based Floating Point Adder and Multiplier Units in a Virtex 4,” Norchip Conf., pp. 31-34, 2006.
- Thapliyal, H., et al., “Combined Integer and Floating Point Multiplication Architecture (CIFM) for FPGSs and Its Reversible Logic Implementation”, Proceedings MWSCAS 2006, Puerto Rico, 5 pages, Aug. 2006.
- Thapliyal, H., et al., “Combined Integer and Variable Precision (CIVP) Floating Point Multiplication Architecture for FPGAs”, Proceedings of the 2007 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'07), Las Vegas, US, vol. 1, pp. 449-450, Jun. 2007.
- Xilinx, Inc., “Virtex-5 ExtremeDSP Design Considerations,” User Guide UG193, v2.6, 114 pages, Oct. 2007.
- Altera Corporation, “Statix II Device Handbook, Chapter 6—DSP Blocks in Stratix II Devices,” v1.1, Jul. 2004.
- Altera Corporation, “Digital Signal Processing (DSP),” Stratix Device Handbook, vol. 2, Chapter 6 and Chapter 7, v1.1 (Sep. 2004).
- Altera Corporation, “DSP Blocks in Stratix II and Stratix II GX Devices,” Stratix II Device Handbook, vol. 2, Chapter 6, v4.0 (Oct. 2005).
- Altera Corporation, “FIR Compiler: MegaCore® Function User Guide,” version 3.3.0, rev. 1, pp. 3 11 through 3 15 (Oct. 2005).
- Altera Corporation, “Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III and Stratix IV Devices,” Document Version 3.0, 112 pgs., May 2008.
- Amos, D., “Pld architectures match DSP algorithms,” Electronic Product Design, vol. 17, No. 7, Jul. 1996, pp. 30, 32.
- Analog Devices, Inc., The Applications Engineering Staff of Analog Devices, DSP Division, Digital Signal Processing Applications Using the ADSP-2100 Family (edited by Amy Mar), 1990, pp. 141-192).
- Andrejas, J., et al., “Reusable DSP functions in FPGAs,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 456-461.
- Aoki, T., “Signed-weight arithmetic and its application to a field-programmable digital filter architecture,” IEICE Transactions on Electronics , 1999 , vol. E82C, No. 9, Sep. 1999, pp. 1687-1698.
- Ashour, M.A., et al., “An FPGA implementation guide for some different types of serial-parallel multiplier-structures,” Microelectronics Journal , vol. 31, No. 3, 2000, pp. 161-168.
- Berg, B.L., et al.“Designing Power and Area Efficient Multistage FIR Decimators with Economical Low Order Filters,” ChipCenter Technical Note, Dec. 2001.
- Bursky, D., “Programmable Logic Challenges Traditional ASIC SoC Designs”, Electronic Design, Apr. 15, 2002.
- Chhabra, A. et al., Texas Instruments Inc., “A Block Floating Point Implementation on the TMS320C54x DSP”, Application Report SPRA610, Dec. 1999, pp. 1-10.
- Colet, P., “When DSPs and FPGAs meet: Optimizing image processing architectures,” Advanced Imaging, vol. 12, No. 9, Sep. 1997, pp. 14, 16, 18.
- Crookes, D., et al., “Design and implementation of a high level programming environment for FPGA-based image processing,” IEE Proceedings-Vision, Image and Signal Processing, vol. 147, No. 4, Aug. 2000, pp. 377-384.
- Debowski, L., et al., “A new flexible architecture of digital control systems based on DSP and complex CPLD technology for power conversion applications,” PCIM 2000: Europe Official Proceedings of the Thirty-Seventh International Intelligent Motion Conference, Jun. 6-8, 2000, pp. 281-286.
- de Dinechin, F. et al., “Large multipliers with less DSP blocks,” retrieved from http://hal-ens-lyon.archives-ouvertes.fr/ensl-00356421/en/, 9 pgs., available online Jan. 2009.
- Dick, C., et al., “Configurable logic for digital communications: some signal processing perspectives,” IEEE Communications Magazine, vol. 37, No. 8, Aug. 1999, pp. 107-111.
- Do, T.-T., et al., “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,” Field-Programmable Logic and Applications: From FPGAs to Computing Paradigm. 8th International Workshop, FPL'98. Proceedings, Hartenstein, R.W., et al., eds., Aug. 31-Sep. 3, 1998, pp. 441-445.
- Gaffer, A.A., et al., “Floating-Point Bitwidth Analysis via Automatic Differentiation,” IEEE Conference on Field Programmable Technology, Hong Kong, Dec. 2002.
- Govindu, G. et al., “A Library of Parameterizable Floating-Point Cores for FPGAs and Their Application to Scientific Computing,” Proc Int'l Conf. Eng. Reconfigurable Systems and Algorithms (ERSA'05), Jun. 2005.
- Govindu, G. et al., “Analysis of High-performance Floating-point Arithmetic on FPGAs,” Proceedings of the 18th International Parallel and Distributed Processing Symposium (PDPS'04) pp. 149-156, Apr. 2004.
- Guccione, S.A.,“Run-time Reconfiguration at Xilinx,” Parallel and distributed processing: 15 IPDPS 2000 workshops, Rolim, J., ed., May 1-5, 2000, p. 873.
- Hauck, S., “The Future of Reconfigurable Systems,” Keynote Address, 5th Canadian Conference on Field Programmable Devices, Jun. 1998, http:--www.ee.washington.edu-people-faculty-hauck-publications-ReconfigFuture.PDF.
- Haynes, S.D., et al., “Configurable multiplier blocks for embedding in FPGAs,” Electronicas Letters, vol. 34, No. 7, pp. 638-639 (Apr. 2, 1998).
- Heysters, P.M., et al., “Mapping of DSP algorithms on field programmable function arrays,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000 Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 400-411.
- Huang, J., et al., “Simulated Performance of 1000BASE-T Receiver with Different Analog Front End Designs,” Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, Nov. 4-7, 2001.
- Lattice Semiconductor Corp, ORCA® FPGA Express™ Interface Manual: ispLEVER® Version 3.0, 2002.
- Lucent Technologies, Microelectronics Group,“Implementing and Optimizing Multipliers in ORCA™ FPGAs,”, Application Note.AP97-008FGPA, Feb. 1997.
- “Implementing Multipliers in FLEX 10K EABs”, Altera, Mar. 1996.
- “Implementing Logic with the Embedded Array in FLEX 10K Devices”, Altera, May 2001, ver. 2.1.
- Jinghua Li, “Design a pocket multi-bit multiplier in FPGA,” 1996 2nd International Conference on ASIC Proceedings (IEEE Cat. No. 96TH8140), Oct. 21-24, 1996, pp. 275-279.
- Jones, G., “Field-programmable digital signal conditioning,” Electronic Product Design, vol. 21, No. 6, Jun. 2000, pp. C36-C38.
- Kiefer, R., et al., “Performance comparison of software-FPGA hardware partitions for a DSP application,” 14th Australian Microelectronics Conference. Microelectronics: Technology Today for the Future. MICRO '97 Proceedings, Sep. 28-Oct. 1, 1997, pp. 88-93.
- Kim, Y., et al., “Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems,” Journal of Korean Institute of Information Scientists and Engineers, vol. 32, No. 12, pp. 692-704, Dec. 2005.
- Kramberger, I., “DSP acceleration using a reconfigurable FPGA,” ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465), vol. 3 , Jul. 12-16, 1999, pp. 1522-1525.
- Langhammer, M., “How to implement DSP in programmable logic ” Elettronica Oggi, No. 266 , Dec. 1998, pp. 113-115.
- Langhammer, M., “Implementing a DSP in Programmable Logic ” Online EE Times, May 1998, http:--www.eetimes.com-editorial-1998-coverstory9805.html.
- Lazaravich, B.V., “Function block oriented field programmable logic arrays,” Motorola, Inc. Technical Developments, vol. 18, Mar. 1993, pp. 10-11.
- Lund, D., et al., “A new development system for reconfigurable digital signal processing,” First International Conference on 3G Mobile Communication Technologies (Conf. Publ. No. 471), Mar. 27-29, 2000, pp. 306-310.
- Miller, N.L., et al., “Reconfigurable integrated circuit for high performance computer arithmetic,” Proceedings of the 1998 IEE Colloquium on Evolvable Hardware Systems (Digest) No. 233, 1998, pp. 2-1-2-4.
- Mintzer, L., “Xilinx FPGA as an FFT processor,” Electronic Engineering, vol. 69, No. 845, May 1997, pp. 81, 82, 84.
- Faura et al., “A Novel Mixed Signal Programmable Device With On-Chip Microprocessor,” Custom Integrated Circuits Conference, 1997. Proceedings of the IEEE 1997 Santa Clara, CA, USA, May 5, 1997, pp. 103-106.
- Nakasato, N., et al., “Acceleration of Hydrosynamical Simulations using a FPGA board” The Institute of Electronics Information and Communication Technical Report CPSY2005-47, vol. 105, No. 515, Jan. 17, 2006.
- Nozal, L., et al., “A new vision system: programmable logic devices and digital signal processor architecture (PLD+DSP),” Proceedings IECON '91. 1991 International Conference on Industrial Electronics, Control and Instrumentation (Cat. No. 91CH2976-9) vol. 3, Oct. 28-Nov. 1, 1991, pp. 2014-2018.
- Osana, Y., et al., “Hardware-resource Utilization Analysis on an FPGA-Based Biochemical Simulator ReCSiP”, The Institute of Electronics Information and Communication Technical Report CPSY2005-63, vol. 105, No. 516, Jan. 18, 2006.
- Papenfuss, J.R, et al., “Implementation of a real-time, frequency selective, RF channel simulator using a hybrid DSP-FPGA architecture,” RAWCON 2000: 2000 IEEE Radio and Wireless Conference (Cat. No. 00EX404), Sep. 10-13, 2000, pp. 135-138.
- Parhami, B., “Configurable arithmetic arrays with data-driven control,” 34th Asilomar Conference on Signals, Systems and Computers, vol. 1, 2000, pp. 89-93.
- “The QuickDSP Design Guide”, Quicklogic, Aug. 2001, revision B.
- “QuickDSP™ Family Data Sheet”, Quicklogic, Aug. 7, 2001, revision B.
- Rangasayee, K., “Complex PLDs let you produce efficient arithmetic designs,” EDN (European Edition), vol. 41, No. 13, Jun. 20, 1996, pp. 109, 110, 112, 114, 116.
- Rosado, A., et al., “A high-speed multiplier coprocessor unit based on FPGA,” Journal of Electrical Engineering, vol. 48, No. 11-12, 1997, pp. 298-302.
- Santillan-Q., G.F., et al., “Real-time integer convolution implemented using systolic arrays and a digit-serial architecture in complex programmable logic devices,” Proceedings of the Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications (Cat. No. 99EX303), Jul. 26-28, 1999, pp. 147-150.
- Texas Instruments Inc., “TMS320C54x DSP Reference Set, vol. 1: CPU and Peripherals”, Literature No. SPRU131F, Apr. 1999, pp. 2-1 through 2-16 and 4-1 through 4-29.
- Tisserand, A., et al., “An on-line arithmetic based FPGA for low power custom computing,” Field Programmable Logic and Applications, 9th International Workshop, FPL'99, Proceedings (Lecture Notes in Computer Science vol. 1673) Lysaght, P., et al., eds., Aug. 30-Sep. 1, 1999, pp. 264-273.
- Tralka, C., “ Symbiosis of DSP and PLD,” Elektronik, vol. 49, No. 14 , Jul. 11, 2000, pp. 84-96.
- Underwood, K. “FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,” Proceedings of the 2004 ACM-SIGDA 12th International Symposium on Field Programmable Gate Arrays, pp. 171-180, Feb. 22-24, 2004.
- Valls, J., et al., “A Study About FPGA-Based Digital Filters,” Signal Processing Systems, 1998 SIPS 98, 1998 IEEE Workshop, Oct. 10, 1998, pp. 192-201.
- “Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Jan. 25, 2001, module 2 of 4.
- “Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 1 of 4.
- “Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 2 of 4.
- Vladimirova, T. et al., “Floating-Point Mathematical Co-Processor for a Single-Chip On-Board Computer,” MAPLD'03 Conference, D5, Sep. 2003.
- Wajih, E.-H.Y. et al., “Efficient Hardware Architecture of Recursive Karatsuba-Ofman Multiplier,” 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, 6 pgs, Mar. 2008.
- Walters, A.L., “A Scaleable FIR Filter Implementation Using 32-bit Floating-Point Complex Arithmetic on ,a FPGA Based Custom Computing Platform,” Allison L. Walters, Thesis Submitted to the Faculty of Virginia Polytechnic Institute and State University, Jan. 30, 1998.
- Weisstein, E.W., “Karatsuba Multiplication,” MathWorld—A Wolfram Web Resource (Dec. 9, 2007), accessed Dec. 11, 2007 at http:--mathworld.wolfram.com-KaratsubaMultiplication.html.
- Wenzel, L., “Field programmable gate arrays (FPGAs) to replace digital signal processor integrated circuits,” Elektronik , vol. 49, No. 5, Mar. 7, 2000, pp. 78-86.
- “Xilinx Unveils New FPGA Architecture to Enable High-Performance, 10 Million System Gate Designs”, Xilinx, Jun. 22, 2000.
- “Xilinx Announces DSP Algorithms, Tools and Features for Virtex-II Architecture”, Xilinx, Nov. 21, 2000.
- Xilinx Inc., “Virtex-II 1.5V Field-Programmable Gate Arrays”, Advance Product Specification, DS031-2 (v1.9), Nov. 29, 2001, Module 2 of 4, pp. 1-39.
- Xilinx Inc., “Using Embedded Multipliers”, Virtex-II Platform FPGA Handbook, UG002 (v1.3), Dec. 3, 2001, pp. 251-257.
- Xilinx, Inc., “A 1D Systolic FIR,” copyright 1994-2002, downloaded from http:--www.iro.umontreal.ca-˜aboulham-F6221-Xilinx%20A%201D%20systolic%20FIR.htm.
- Xilinx, Inc., “The Future of FPGA's,” White Paper, available Nov. 14, 2005 for download from http:--www.xilinx.com-prs—rls,5yrwhite.htm.
- Xilinx Inc., “XtremeDSP Design Considerations User Guide,” v 1.2, Feb. 4, 2005.
- Xilinx Inc., “Complex Multiplier v2.0”, DS291 Product Specification/Datasheet, Nov. 2004.
- Zhou, G. et al., “Efficient and High-Throughput Implementations of AES-GCM on FPGAs,” International Conference on Field-Programmable Technology, 8 pgs., Dec. 2007.
- Martinson, L. et al., “Digital Matched Filtering with Pipelined Floating Point Fast Fourier Transforms (FFT's),” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-23, No. 2, pp. 222-234, Apr. 1975.
- Fujioka, Y., et al., “240MOPS Reconfigurable Parallel VLSI Processor for Robot Control,” Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation: Signal Processing and Systems Control; Intelligent Sensors and Instrumentation, vol. 3, pp. 1385-1390, Nov. 9-13, 1992 All references have been considered.
Type: Grant
Filed: Jun 1, 2012
Date of Patent: Aug 4, 2015
Assignee: Altera Corporation (San Jose, CA)
Inventor: Martin Langhammer (Salisbury)
Primary Examiner: Chuong D Ngo
Application Number: 13/486,255
International Classification: G06F 7/48 (20060101); G06F 7/49 (20060101); G06F 9/30 (20060101); G06F 7/499 (20060101); G06F 7/485 (20060101);