Dynamic in-band service control mechanism in mobile network
A method, computer readable medium and apparatus for transmitting signaling information within payload traffic. For example, the method parses a certificate received from a service provider to obtain service imprint information associated with a mobile service, inserts a service control parameter derived from the service imprint information into a packet header, and forwards the packet header within payload traffic to a policy charging and enforcing function.
Latest AT&T Patents:
- FORWARD COMPATIBLE NEW RADIO SIDELINK SLOT FORMAT SIGNALLING
- HOMOGLYPH ATTACK DETECTION
- METHODS, SYSTEMS, AND DEVICES FOR MASKING CONTENT TO OBFUSCATE AN IDENTITY OF A USER OF A MOBILE DEVICE
- CUSTOMIZABLE AND LOW-LATENCY ARCHITECTURE FOR CELLULAR CORE NETWORKS
- LOCATION AWARE ASSIGNMENT OF RESOURCES FOR PUSH TO TRANSFER (PTT) COMMUNICATION SYSTEMS IN A FIFTH GENERATION (5G) NETWORK OR OTHER NEXT GENERATION WIRELESS COMMUNICATION SYSTEM
The present disclosure relates generally to communication networks and, more particularly, to a method, computer readable medium and apparatus for providing a dynamic in-band service control mechanism in a mobile network, e.g., in a 3G network, a LTE (long term evolution) wireless network and the like.
BACKGROUNDWith the introduction of LTE and wide availability of mobile broadband, there is significant growth in mobile services and applications. These new mobile services and applications pose huge challenges and opportunities to mobile operators in terms of providing network management (such as Quality of Service (QoS)) and control. Traditionally, mobile core network control is achieved by a policy control and charging (PCC) mechanism which is based on Internet Protocol (IP) flow at the network layer. However, most of the mobile services such as Web Real-Time Communication (WebRTC) need to be managed at the application level and these mobile services are mostly transactional and session based. In addition, the time sensitive nature of these transactional services requires a very low latency management solution. The traditional flow based service control does not manage the session based service well.
In addition, multiple ecosystems currently exist to support a diverse array of mobile applications. However, these ecosystems have poor or no interactions with each other. Given the dynamic nature of the mobile environment, it is difficult for these ecosystems to adapt to current conditions experienced by the mobile applications. This can lead to mobile applications not performing well when resources are not correctly allocated to meet the needs of the mobile application, particularly in real time, delay sensitive applications.
SUMMARY OF THE DISCLOSUREIn one embodiment, the present disclosure teaches a method, computer readable medium and apparatus for transmitting signaling information within payload traffic. In addition, the signaling information is transmitted within the user plane traffic flow instead of using out of band signaling as traditionally done. For example, the method parses a certificate received from a service provider to obtain service imprint information associated with a mobile service, inserts a service control parameter derived from the service imprint information into a packet header, and forwards the packet header within payload traffic to a policy charging and enforcing function.
The teaching of the present disclosure can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
DETAILED DESCRIPTIONThe present disclosure broadly teaches a method, computer readable medium and apparatus for providing a dynamic in-band service control mechanism in a mobile network, e.g., in a 3G network, a LTE (long term evolution) wireless network and the like. Broadly, the teachings of the present disclosure can be applied to any wireless networks, e.g., 2G networks, 3G networks, 4G networks, and the like.
The present disclosure provides an in-band dynamic service control method that will enhance a mobile operator's ability to support a flexible charging model and provide a more dynamic and efficient service control including Quality of Service (QoS) over application level services such as web applications. The present method will be widely applicable to the control of mobile applications and services in general.
Web based services are dynamic and are often time sensitive. For example, web based services often involve the transmission of a short burst of information such as a small banner advertisement (ad) associated with a transaction or an in time and on location transaction. These transactional services require an effective mechanism with extremely low latency in the mobile core network. The traditional out of band signaling method will not be able to keep up with the latency requirement of these transactional services. Another associated issue is the scalability in that out of band signaling method can be limited by the resource constraints in the signaling network elements.
To illustrate, for a service sponsor use case (e.g., a provider of web-based content will sponsor or pay for the network resources that deliver the content to the end user), a service provider will send the service related information through a common Application Programming Interface (API) gateway as part of an application function (AF). The AF then converts the information into Diameter Attribute Value Pairs (AVPs) and then sends the information via standard PCC mechanism to the network to provide network resources to support the services such as bandwidth, charging, sponsor identification (id), QoS, etc. that are required to deliver the service. However, under the traditional mechanism, the signaling traffics are separated from the user plane, e.g., payload traffic. Thus, this traditional mechanism is often referred to as an out of band signaling. This process works well with IP flow based services that are not time and delay sensitive.
The present disclosure provides an in band signaling method (e.g., via hypertext transfer protocol (HTTP) header insertion) to control application level services in a dynamic fashion with very low latency. In one embodiment, the present disclosure provides a mechanism called the dynamic service control engine (DSCE) that inserts service control information in the user traffic plane (e.g., in this case the HTTP headers) and exchanges control information within the payload traffic itself. Thus, the present method is referred to as “in band signaling.”
As shown in
In one alternate embodiment, the UE 130 will not have to install any special applications to process the in band signaling or to insert headers. Instead, these functions will be performed in the PCEF 140 so that there is no impact to the UEs. The PCEF 140 will “proxy” the necessary functions for the UE 130.
In one embodiment, the DSCE 150 can be part of a HTTP proxy gateway, or in another embodiment, the DSCE 150 can be part of the TDF or the different combinations of the two. In one embodiment, the DSCE 150 is acting both as a signaling function (e.g., service information process/insertion) and enforcement function (e.g., process traffic based on the service information).
Furthermore, although method 300 is discussed in the context of the various modules as depicted in
Method 300 starts in step 305 and proceeds to step 310. In step 310, the DSCE 150 checks for a response for a signed manifest from a SP 160 in a certificate, e.g., an X.509 certificate. X.509 is an ITU-T standard for a public key infrastructure (PKI) that employs a system of certificate authorities (CAs) for issuing certificates. A manifest can be signed with the signature becoming part of the manifest. Step 310 is performed to ensure that the manifest received from the service provider (SP) is valid before the manifest is parsed and cached by the DSCE. Thus, step 310 is broadly an authentication step for authenticating the SP and any number of methods for performing authentication of the certificate can be performed and are within the scope of the present disclosure.
In step 315, the DSCE parses service imprint information from the certificate. In one embodiment, the service imprint information comprises various service control parameters pertaining to service control information associated with a mobile service or application. For example, the various service control parameters may comprise: a sponsor type, a sponsor identification (ID), an application ID, a duration, a type of content, a time, a location, an address, an advertisement ID, authorization parameters, QoS and so on. It should be noted that the above list of service control parameters is not exhaustive. There could be numerous other service control parameters that are not listed. Again, the service control parameters are intended to be used as signaling for use in controlling or providing the mobile service or application.
Using the service sponsor use case as an example, the service parameters may define: 1) the sponsor ID, e.g., an ID representing a particular beverage company, 2) the type of content that is sponsored, e.g., a sports program, 3) an advertisement ID, e.g., the ID for the advertisement that will be played during the sports program in exchange for sponsoring the sports program to be transmitted to the subscriber, 4) a duration, e.g., the length of time for the sports program that is sponsored, the various timestamps as to when the advertisement will be displayed, 5) the location, e.g., the location of subscriber receiving the sports program (e.g., different regions may get different advertisements based on the location of the recipient of the transmitted content), 6) the application ID, e.g., the ID of the software application that will receive the sports program, 7) the QoS, e.g., whether the sports program will be transmitted in high definition mode, and so on. Again, it should be noted that the above example is only illustrative and not exhaustive. In sum, the DSCE parses the service imprint information (broadly a service signature) from a service provider that was imbedded in the X.509 certificate.
In step 320, the DSCE uses the service imprint information and inserts relevant service control parameters into one or more packet headers, e.g., the HTTP headers. It should be noted that the reference to HTTP header is only an illustrative example and the present disclosure is applicable to any other packet protocol. Thus, the signaling information is embedded into the user traffic plane.
In step 325, the DSCE may optionally translate or convert the relevant service parameters into enforcement policies that will be enforced in the TDF or the HTTP proxy gateway, e.g., PCEF 140. In other words, the DSCE may have to perform a translation operation to generate enforcement policies consistent with the relevant service control parameters, if necessary. If the HTTP proxy gateway, e.g., PCEF 140 is capable of performing this translation operation on its own, then step 330 can be deemed to be optional. It should be noted that the enforcement policies can be implemented at the TDF of the DSCE 150 and/or at the PCEF 140.
In step 330, the DSCE may optionally cache the service imprint information. Namely, the DSCE may cache the service imprint information extracted from the certificates for future transactions across the applicable user base. For example, the DSCE may apply the service imprint information to other transactions for this subscriber or a group of subscribers based on a timer (which can be set based on service level agreement (SLA) or other agreements between the various parties). In another embodiment, this feature can also be set on the DSCE. Thus, the caching of the service imprint information allows the DSCE to retain the service imprint information for a period of time so that the DSCE can continually provide mobile service to the subscriber and/or a class of users that includes the subscriber. For example, the subscriber may attempt to access certain functions on the uplink direction and the cached service imprint information will allow the DSCE to determine how to address the subscriber's service requests in accordance with the cached service imprint information.
In step 335, the DSCE forwards the modified packet headers with the embedded relevant service control parameters and any enforceable policies, if any, to the PCEF 140.
In step 340, the PCEF applies the enforceable policies and/or remove the service control parameters from the one or more packet headers. For example, the PCEF may use layer 7 deep packet inspection (DPI) and may use the information contained in the packet headers to classify the packet traffic (such as using a sponsor ID, service ID, etc.) for policy control and charging treatment. In one embodiment, the PCEF will enforce and strip the extra inserted header information from the packet headers. This will avoid any impacts to the UE 130 that may not be configured to process the extra inserted header information. Thus, in one embodiment the downlink signaling will be executed internal to the PCEF and the PCEF will process the uplink header information and enforce the uplink traffic as well as downlink traffic consistent with the relevant service parameters.
In an alternative embodiment as shown in
In step 345, the PCEF forwards the packet headers to the UE. The packet headers may or may not contain the extra inserted header information depending on the implementation, i.e., based on the capability of the UEs that are receiving the packet headers.
In step 350, the UE may optionally apply the relevant service control parameters. For example, if the UE has the proper application to process the extra inserted header information, then it may operate in accordance with the relevant service parameters. For example, the application on the UE may operate to provide certain statistical information back to the service provider that provided the sponsored sports program as a condition of receiving the sports program without having to pay a fee. Alternatively, the application on the UE can switch to non-sponsored header based on an error response such as missing sponsored data information and the like.
However, in one embodiment step 350 is deemed to be optional since the UE may not be loaded with any special application. If that is the case, the PCEF would have stripped the extra inserted header information from the packet headers before the packet headers are sent to the UE. This alternative embodiment would therefore allow existing UEs to continue to operate in the current state without the need for loading any special application, while enjoying the benefit of the present dynamic in band service control mechanism.
Method 300 then ends in step 355. Alternatively, the method 300 may return to step 310.
It should be noted that although not specifically specified, one or more steps or operations of method 300 may include a storing, displaying and/or outputting step as required for a particular application. In other words, any data, records, fields, and/or intermediate results discussed in each of the respective methods can be stored, displayed and/or outputted to another device as required for a particular application. Furthermore, steps, blocks, or operations in
It should be noted that the teachings of the present disclosure can be implemented in software and hardware, e.g., using application specific integrated circuits (ASIC), a general purpose computer or any other hardware equivalents, e.g., computer readable instructions pertaining to the method(s) discussed above can be used to configure a hardware processor to perform operations of the above disclosed methods. For example, a computer-readable medium may be in communication with the processor, where the computer-readable medium having stored thereon a plurality of instructions which, when executed by the hardware processor, cause the hardware processor to perform the operations (e.g., method 300) as disclosed above. It should be noted that the processor can be configured or programmed to cause other devices to perform one or more operations as discussed above. In other words, the processor may serve the function of a central controller directing other devices to perform the one or more operations as discussed above. Furthermore, the operations as disclosed in the above method 300 can be implemented in a plurality of different hardware elements, e.g., the UE, PCEF, and DSCE can all be deployed in separate hardware systems that are distinct from each other.
In one embodiment, the present module or process 405 for providing dynamic in band service control mechanism in a wireless network can be implemented as computer-executable instructions (e.g., a software program comprising computer-executable instructions) and loaded into memory 404 and executed by the hardware processor 402 to implement the steps, functions or operations as discussed above. As such, the present method 405 for providing dynamic in band service control mechanism in a wireless network (including associated data structures) of the present disclosure can be stored on a non-transitory (e.g., tangible or physical) computer readable storage medium, e.g., RAM memory, magnetic or optical drive or diskette and the like.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Claims
1. A method for forwarding a packet header within a user-plane bearer, the method comprising:
- parsing, via a processor, a certificate received from a service provider to obtain service imprint information associated with a mobile service;
- translating, via the processor, the service imprint information into a policy consistent with a service control parameter derived from the service imprint information;
- inserting, via the processor, the service control parameter and the policy into the packet header, wherein the service control parameter is intended to be used as an in-band signaling in controlling the mobile service; and
- forwarding, via the processor, the packet header within the user-plane bearer to a policy charging and enforcing function.
2. The method of claim 1, wherein the policy charging and enforcing function is deployed by a gateway of a wireless communication network.
3. The method of claim 1, wherein the packet header comprises a hypertext transfer protocol header.
4. The method of claim 2, wherein the certificate is authenticated as being from the service provider.
5. The method of claim 1, wherein the certificate comprises a X.509 certificate.
6. The method of claim 1, further comprising:
- enforcing the policy.
7. The method of claim 1, further comprising:
- caching the service imprint information.
8. The method of claim 1, wherein the service control parameter in the packet header is removed by the policy charging and enforcing function.
9. A tangible computer-readable medium storing a plurality of instructions which, when executed by a processor, cause the processor to perform operations for forwarding a packet header within a user-plane bearer, the operations comprising:
- parsing a certificate received from a service provider to obtain service imprint information associated with a mobile service;
- translating the service imprint information into a policy consistent with a service control parameter derived from the service imprint information;
- inserting the service control parameter and the policy into the packet header, wherein the service control parameter is intended to be used as an in-band signaling in controlling the mobile service; and
- forwarding the packet header within the user-plane bearer to a policy charging and enforcing function.
10. The tangible computer-readable medium of claim 9, wherein the policy charging and enforcing function is deployed by a gateway of a wireless communication network.
11. The tangible computer-readable medium of claim 9, wherein the packet header comprises a hypertext transfer protocol header.
12. The tangible computer-readable medium of claim 10, wherein the certificate is authenticated as being from the service provider.
13. The tangible computer-readable medium of claim 9, wherein the certificate comprises a X.509 certificate.
14. The tangible computer-readable medium of claim 9, further comprising:
- enforcing the policy.
15. The tangible computer-readable medium of claim 9, further comprising:
- caching the service imprint information.
16. An apparatus for forwardinq a packet header within a user-plane bearer, the apparatus comprising:
- a processor; and
- a computer-readable medium storing a plurality of instructions which, when executed by the processor, cause the processor to perform operations, the operations comprising: parsing a certificate received from a service provider to obtain service imprint information associated with a mobile service; translating the service imprint information into a policy consistent with a service control parameter derived from the service imprint information; inserting the service control parameter and the policy into the packet header, wherein the service control parameter is intended to be used as an in-band signaling in controlling the mobile service; and forwarding the packet header within the user-plane bearer to a policy charging and enforcing function.
5548646 | August 20, 1996 | Aziz et al. |
6202157 | March 13, 2001 | Brownlie et al. |
6510464 | January 21, 2003 | Grantges et al. |
7509489 | March 24, 2009 | Kostal et al. |
8213408 | July 3, 2012 | Thomas |
8448228 | May 21, 2013 | Zhong et al. |
8448235 | May 21, 2013 | Langham et al. |
9137739 | September 15, 2015 | Raleigh |
20030188039 | October 2, 2003 | Liu et al. |
20060048228 | March 2, 2006 | Takemori et al. |
20060090206 | April 27, 2006 | Ladner et al. |
20060235973 | October 19, 2006 | McBride et al. |
20070033194 | February 8, 2007 | Srinivas et al. |
20090037999 | February 5, 2009 | Anderson et al. |
20110270985 | November 3, 2011 | Um et al. |
20120158995 | June 21, 2012 | McNamee et al. |
Type: Grant
Filed: Dec 18, 2012
Date of Patent: Feb 23, 2016
Patent Publication Number: 20140169172
Assignee: AT&T Intellectual Property I, L.P. (Atlanta, GA)
Inventors: Qingmin Hu (Sammamish, WA), Gus Bourg (Renton, WA), Terry Figurelle (Redmond, WA), Jie McKnight (Bellevue, WA), Jeffrey Dean Hjort (Fall City, WA)
Primary Examiner: Ricky Ngo
Assistant Examiner: Dewanda Samuel
Application Number: 13/718,815
International Classification: H04L 12/28 (20060101); H04W 28/18 (20090101); H04W 4/00 (20090101); H04W 4/18 (20090101); H04L 12/24 (20060101);