Attitude sensing system for an automotive vehicle relative to the road

- Ford

A stability control system (18) for an automotive vehicle includes a plurality of sensors (28-39) sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a roll rate sensor (34), a yaw rate sensor (20) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the roll rate sensor (34), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) determines a global roll attitude and a global pitch attitude from the roll rate, lateral acceleration signal and the longitudinal acceleration signal. The controller determines a roll gradient based upon a past raw roll rate and current raw roll rate, the roll angular rate signal and the lateral acceleration signal, a pitch gradient based upon a past raw pitch rate and current raw pitch rate the calculated pitch angular rate signal and the longitudinal acceleration signal. The controller determines a relative roll and relative pitch as a function of the roll gradient and the pitch gradient.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates generally to a control apparatus for controlling a system of an automotive vehicle in response to sensed dynamic behavior, and more specifically, to a method and apparatus for controlling the system of the vehicle by determining attitude of the vehicle.

BACKGROUND

Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by controlling the braking effort at the various wheels of the vehicle. Yaw control systems typically compare the desired direction of the vehicle based upon the steering wheel angle and the direction of travel. By regulating the amount of braking at each corner of the vehicle, the desired direction of travel may be maintained. Typically, the dynamic control systems do not address roll of the vehicle. For high profile vehicles in particular, it would be desirable to control the rollover characteristic of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.

In vehicle rollover control, it is desired to alter the vehicle attitude such that its motion along the roll direction is prevented from achieving a predetermined limit (rollover limit) with the aid of the actuation from the available active systems such as controllable brake system, steering system and suspension system. Although the vehicle attitude is well defined, direct measurement is usually impossible.

There are two types of vehicle attitudes needed to be distinguished. One is the so-called global attitude, which is sensed by the angular rate sensors. The other is the relative attitude, which measures the relative angular positions of the vehicle with respect to the road surface on which the vehicle is driven. The global attitude of the vehicle is relative to an earth frame (or called the inertia frame), sea level, or a flat road. It can be directly related to the three angular rate gyro sensors. While the relative attitude of the vehicle measures the relative angular positions of the vehicle with respect to the road surface, which are always of various terrains. Unlike the global attitude, there are no gyro-type sensors which can be directly related to the relative attitude. A reasonable estimate is that a successful relative attitude sensing system must utilize both the gyro-type sensors (when the road becomes flat, the relative attitude sensing system recovers the global attitude) and some other sensor signals.

One reason to distinguish relative and global attitude is due to the fact that vehicles are usually driven on a 3-dimensional road surface of different terrains, not always on a flat road surface. Driving on a road surface with large road bank does increase the rollover tendency, i.e., a large output from the global attitude sensing system might well imply an uncontrollable rollover event regardless of the flat road driving and the 3-D road driving. However driving on a three-dimensional road with moderate road bank angle, the global attitude may not be able to provide enough fidelity for a rollover event to be distinguished. Vehicular rollover happens when one side of the vehicle is lifted from the road surface with a long duration of time without returning back. If a vehicle is driven on a banked road, the global attitude sensing system will pick up certain attitude information even when the vehicle does not experience any wheel lifting (four wheels are always contacting the road surface). Hence a measure of the relative angular positions of the vehicle with respect to the portion of the road surface on which the vehicle is driven provides more fidelity than global attitude to sense the rollover event.

The vehicle rollover sensing system used for deploying safety-related devices has been proposed in U.S. Pat. Nos. 6,002,975, 6,038,495, EP 1002709A2, where a stand-alone sensor module including 5 sensors are used including the roll/pitch angular rate sensors, later/longitudinal/vertical acceleration sensors. These systems sense the global attitude of a vehicle without considering the relative attitude of the vehicle with respect to the road surfaces. Due to the stand-alone nature of the sensing module, it does not share internal information with vehicle dynamics control systems.

The rollover control system using brake controls has been proposed in U.S. Pat. No. 6,065,558 (“Anti-Rollover Brake System”), where the claimed sensor setting could be any of the following: (1) a lateral accelerometer; (2) a sensor for measuring the body roll angle; (3) an accelerometer, a gyroscope, a roll rate senor, and sensors measuring the distances between the vehicle and the wheels to measure the roll angle of the vehicle. In the current invention, a different sensor set is used. The used sensors includes those used in the vehicle yaw stability control (lateral/longitudinal accelerometers, yaw angular rate sensor, wheel speeds and steering angle) and an extra roll rate angular sensor. Also, notice that U.S. Pat. No. 6,065,558 does not intend to distinguish between global and relative attitude of a vehicle reflected by the Euler angles.

Another vehicle attitude sensing method has been proposed in U.S. Pat. No. 5,408,411 (“System For Predicting Behavior Of Automotive Vehicle And For Controlling Vehicular Behavior Based Thereon”). Where a sensor module using six linear accelerations is mounted on the vehicle to get vehicular attitude information.

It would therefore be desirable to provide an attitude control system to predict attitude angle for vehicle dynamics control that includes the interdependency among the roll, pitch and yaw motions while compensating for long term maneuvers.

SUMMARY OF THE INVENTION

The present invention aims to estimate and predict the vehicular attitude used in a rollover control system which can prevent the vehicle from rolling over. The estimate and predicted variables are used for setting a rollover control action flag and as the feedback signals to construct the desired control forces for controlling roll stability or activate other safety devices. In detail, the rollover control action needs the information from the vehicle attitude sensing system, the available sensors, and the driving/road condition identifiers. The rollover control flag is set based on a rollover logic process. In case a positive determination of vehicle rollover is deemed from this rollover logic process, the control commands will be computed by feeding back the estimated vehicle attitude variables. The control command output is further sent to the ECU of the hardware to activate the system. In detail, the vehicle attitude sensing system uses all the sensors available for yaw stability control (including a later lateral accelerometer, a longitudinal accelerometer, a yaw angular rate, a steering angle sensor and the wheel speed sensor signals) together with a roll angular rate sensor. The vehicle attitude is characterized by the relative Euler angles of the car body with respect to the road surface and by the global Euler angles of the car body with respect to the sea level. The vehicle attitude estimation and prediction utilize both the kinematic and the dynamic relationships derived from vehicle dynamics and vehicle dynamic models to relate the desired motion variables with the measured sensor signals.

In one aspect of the invention, a stability control system for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor, a lateral acceleration sensor, a roll rate sensor, a yaw rate sensor and a longitudinal acceleration sensor. The controller is coupled to the speed sensor, the lateral acceleration sensor, the roll rate sensor, the yaw rate sensor and a longitudinal acceleration sensor. The controller determines a global roll attitude and a global pitch attitude from the roll rate, lateral acceleration signal and the longitudinal acceleration signal. The controller determines a roll gradient based upon a past raw roll rate and current raw roll rate, the roll angular rate signal and the lateral acceleration signal, and a pitch gradient based upon a past raw pitch rate and current raw pitch rate the calculated pitch angular rate signal and the longitudinal acceleration signal. The controller determines a relative roll and relative pitch as a function of the roll gradient and the pitch gradient.

In a further aspect of the invention, a method of controlling roll stability of the vehicle comprises the steps of:

    • measuring a roll rate of the vehicle body;
    • measuring a lateral acceleration of the vehicle body;
    • measuring the longitudinal acceleration of the vehicle body;
    • measuring the yaw rate of the vehicle body; and
    • determining relative roll angle, the relative pitch angle, the global roll and global pitch angle in response to the roll rate, the yaw rate, the lateral acceleration and the longitudinal acceleration.

Reducing system cost is typically a goal in automotive systems. Since one of the three angular rate signals (pitch rate signal) can be predicted from the other available signals, the cost reduction of the system is possible by eliminating a pitch rate sensor. Also, vertical acceleration sensor may be eliminated to further reduce cost.

Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic view of a vehicle with variable vectors and coordinator frames according to the present invention.

FIG. 2 is a block diagram of a stability system according to the present invention.

FIG. 3 is a diagrammatic view showing the displacement (relative to road surface) of the four corners of the vehicle body along the body-fixed vertical axis.

FIG. 4 is a diagrammatic view showing the two components of the relative corner displacement depicted in FIG. 3.

FIG. 5 is flow chart of determination according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following figures the same reference numerals will be used to identify the same components. The present invention is preferably used in conjunction with a rollover control system for a vehicle. However, the present invention may also be used with a deployment device such as airbag or roll bar. The present invention will be discussed below in terms of preferred embodiments relating to an automotive vehicle moving in a three-dimensional road terrain.

Referring to FIG. 1, an automotive vehicle 10 with a safety system of the present invention is illustrated with the various forces and moments thereon during a rollover condition. Vehicle 10 has front right and front left tires 12a and 12b and rear right tires 13a and left rear tires 13b respectively. The vehicle 10 may also have a number of different types of front steering systems 14a and rear steering systems 14b including having each of the front and rear wheels configured with a respective controllable actuator, the front and rear wheels having a conventional type system in which both of the front wheels are controlled together and both of the rear wheels are controlled together, a system having conventional front steering and independently controllable rear steering for each of the wheels or vice versa. Generally, the vehicle has a weight represented as Mg at the center of gravity of the vehicle, where g=9.8 m/s2 and M is the total mass of the vehicle.

As mentioned above, the system may also be used with active/semi-active suspension systems, anti-roll bar or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.

The sensing system 16 is coupled to a control system 18. The sensing system 16 preferably uses a standard yaw stability control sensor set (including lateral accelerometer, yaw rate sensor, steering angle sensor and wheel speed sensor) together with a roll rate sensor and a longitudinal accelerometer. The various sensors will be further described below. The wheel speed sensors 20 are mounted at each corner of the vehicle, and the rest of the sensors of sensing system 16 are preferably mounted directly on the center of gravity of the vehicle body, along the directions x,y and z shown in FIG. 1. As those skilled in the art will recognize, the frame from b1, b2 and b3 is called a body frame 22, whose origin is located at the center of Do gravity of the car body, with the b1 corresponding to the x axis pointing forward, b2 corresponding to the y axis pointing off the driving side (to the left), and the b3 corresponding to the z axis pointing upward. The angular rates of the car body are denoted about their respective axes as wx for the roll rate, wy for the pitch rate and wz for the yaw rate. The present invention calculations preferably take place in an inertial frame 24 that may be derived from the body frame 22 as described below.

The angular rate sensors and the accelerometers are mounted on the vehicle car body along the body frame directions b1, b2 and b3, which are the x-y-z axes of the vehicle's sprung mass.

The longitudinal acceleration sensor is mounted on the car body located at the center of gravity, with its sensing direction along b1-axis, whose output is denoted as ax. The lateral acceleration sensor is mounted on the car body located at the center of gravity, with its sensing direction along b2-axis, whose output is denoted as ay.

The other frame used in the following discussion includes the road frame, as depicted in FIG. 1. The road frame system r1r2r3 is fixed on the driven road surface, where the r3 axis is along the average road normal direction computed from the normal directions of the four tire/road contact patches.

In the following discussion, the Euler angles of the body frame b1b2b3 with respect to the road frame r1r2r3 are denoted as θxbrybr and θzbr, which are also called the relative Euler angles.

The present invention estimates the relative Euler angles θxbr and θybr based on the available sensor signals and the signals calculated form the measured values.

Referring now to FIG. 2, roll stability control system 18 is illustrated in further detail having a controller 26 used for receiving information from a number of sensors which may include a yaw rate sensor 28, a speed sensor 20, a lateral acceleration sensor 32, a roll rate sensor 34, a steering angle sensor 35, a longitudinal acceleration sensor 36, a pitch rate sensor 37 and steering angle position sensor 39.

In the preferred embodiment only two axial rate sensors are used. When two of these axial rates are known, the other may be derived using other commonly available sensors.

That is, pitch rate sensor 37 is illustrated, it can be eliminated in the preferred embodiment.

In the preferred embodiment the sensors are located at the center of gravity of the vehicle. Those skilled in the art will recognize that the sensor may also be located off the center of gravity and translated equivalently thereto.

Lateral acceleration, roll orientation and speed may be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors 28-37 28-39 may be used in a commercial embodiment. Safety device 38 may control an airbag 40 or a steering actuator or braking actuator at one or more of the wheels 41, 42, 44, 46 of the vehicle. Also, other vehicle components such as a suspension control 48 may be used to adjust the suspension to prevent rollover.

Roll rate sensor 34 and pitch rate sensor 37 may sense the roll condition of the vehicle based on sensing the height of one or more points on the vehicle relative to the road surface. Sensors that may be used to achieve this include a radar-based proximity sensor, a laser-based proximity sensor and a sonar-based proximity sensor.

Roll rate sensor 34 and pitch rate sensor 37 may also sense the roll condition based on sensing the linear or rotational relative displacement or displacement velocity of one or more of the suspension chassis components which may include a linear height or travel sensor, a rotary height or travel sensor, a wheel speed sensor used to look for a change in velocity, a steering wheel position sensor, a steering wheel velocity sensor and a driver heading command input from an electronic component that may include steer by wire using a hand wheel or joy stick.

The roll condition may also be sensed by sensing the force or torque associated with the loading condition of one or more suspension or chassis components including a pressure transducer in an act of air suspension, a shock absorber sensor such as a load cell, a strain gauge, the steering system absolute or relative motor load, the steering system pressure of the hydraulic lines, a tire laterally force sensor or sensors, a longitudinal tire force sensor, a vertical tire force sensor or a tire sidewall torsion sensor.

The roll condition of the vehicle may also be established by one or more of the following translational or rotational positions, velocities or accelerations of the vehicle including a roll gyro, the roll rate sensor 34, the yaw rate sensor 28, the lateral acceleration sensor 32, a vertical acceleration sensor, a vehicle longitudinal acceleration sensor, lateral or vertical speed sensor including a wheel-based speed sensor, a radar-based speed sensor, a sonar-based speed sensor, a laser-based speed sensor or an optical-based speed sensor.

Steering control 38 may control the position of the front right wheel actuator 40, the front left wheel actuator 42, the rear left wheel actuator 44, and the right rear wheel actuator 46. Although as described above, two or more of the actuators may be simultaneously controlled. For example, in a rack-and-pinion system, the two wheels coupled thereto are simultaneously controlled. Based on the inputs from sensors 28 through 39, controller 26 determines a roll condition and controls the steering position of the wheels.

Speed sensor 30 20 may be one of a variety of speed sensors known to those skilled in the art. For example, a suitable speed sensor may include a sensor at every wheel that is averaged by controller 26. Preferably, the controller translates the wheel speeds into the speed of the vehicle. Yaw rate, steering angle, wheel speed and possibly a slip angle estimate at each wheel may be translated back to the speed of the vehicle at the center of gravity. Various other algorithms are known to those skilled in the art. Speed may also be obtained from a transmission sensor. For example, if speed is determined while speeding up or braking around a corner, the lowest or highest wheel speed may not be used because of its error. Also, a transmission sensor may be used to determine vehicle speed.

Connecting the Relative Attitudes with the Relative Corner Displacements

In operation, the method according to the present invention first correlates the relative attitude with the displacement at each corner of the vehicle. Consider a vector with x-y-z coordinates as xb,yb,zb of its end point in the body frame of FIG. 1. The z coordinator of the end point of the same vector measured in the road frame can be computed from the Euler transformation
zr=−xb sin(θybr)+yb sin(θxbr)cos(θybr)+zb cos(θxbr)cos(θybr)  (1)

Let l be the half of the wheel track; tf and tr be the distances from the center of gravity of the car body to the front and rear axles; h be the distance between the bottom of the vehicle body and the center of gravity of the vehicle along the body z-axis; θxbr and θybr are the relative roll and pitch angles. Then in the body frame the four corners of the vehicle body where suspensions are connected with the wheel have the following coordination:
LF Corner: x=tf, y=l, z=−h
RF Corner: x=tf, y=−l, z=−h
LR Corner: x=−tr, y=l, z=−h
RR Corner: x=−tr, y=−l, z=−h  (2)

Let zlf,zrf,zlr and zrr be the relative displacements of the vehicle corners at the left-front, right-front, left-rear and right-rear locations, which are measured along the direction perpendicular to the average road surface. By using the transformation in Equation (1), those corner displacements relative to the road surface can be expressed as the function of the relative roll and pitch angles θxbr and θybr
zlf=−tf sin(θybr)+l sin(θxbr)cos(θybr)+(zcg−h)cos(θxbr)cos(θybr)
zrf=−tf sin(θxbr)−l sin(θxbr)cos(θybr)+(zcg−h)cos(θxbr)cos(θybr)
zlr=tr sin(θybr)+l sin(θxbr)cos(θybr)+(zcg−h)cos(θybr)cos(θybr)
zrr=tr sin(θybr)−l sin(θxbr)cos(θybr)+(zcg−h)cos(θxbr)cos(θybr)  (3)
where zcg is the relative displacement of the center of gravity of the vehicle with respect to the road surface, but measured along the body z-axis.

Referring now to FIG. 3, the four equations of Equation (3) pose four constraints on a set of seven variables: zlf,zrf,zlr,zrr,zcgxbr and θybr. Hence a combination of three variables can be used to compute the rest of the variables. Since θxbr and θybr are of interest in the present invention, the possible choices are choosing three variables from zlf,zrf,zlr,zrr and zcg to characterize θxbr and θybr. The direct measurement of any of zlf,zrf,zlr,zrr, and zcg is relatively expensive (for example, expensive laser distance sensors can be used). Hence, measuring any three of zlf,zrf,zlr,zrr and zcg may be cost prohibitive in a commercial environment with current technology. However, certain linear combinations of the four corner displacements zlf,zrf,zlr and zrr can be related to the available sensors through dynamics. When linear combinations are related to the relative roll and pitch Euler angles θxbr and θybr, θxbr and θybr may be characterized from the available sensor signals. In the following, the effort has been focused on finding those linear combinations of zlf,zrf,zlr,zrr which bridges between θxbr and θybr, and the available sensor signals including the lateral and longitudinal accelerations, the roll and yaw angular rates and the wheel speed sensor signals.

The relative Attitudes Based on the Linear Combinations of the Corner Displacements

The linear combinations of zlf,zrf,zlr,zrr, which serve as bridges to connect θxbr and θybr with the available sensor signals are the following variables, which are called the relative roll and pitch gradients Θ x = Z lf - Z rf + Z lr - Z rr 4 l Θ y = Z lf + Z rf - Z lr - Z rr 2 ( t f + t r ) ( 4 )
Θx and Θy is related to the relative roll and pitch attitudes by manipulating the equations in (3). The final formula for the relative pitch Euler angle is
θybr=sin−1y}  (5)
and the final formula for the relative roll Euler angle θxbr is θ xbr = sin - 1 { Θ x cos ( θ ybr ) } ( 6 )

On the other hand Θx and Θy can be further related to the available sensor signals through dynamic equations which describe the vehicle body dynamics. Θx and Θy will be first broken into two portions, and related to the sensor signals.

Roll and Pitch Gradients Due to Suspension and Wheel Motions

As shown in FIG. 4, a portion of the left front wheel 12b and suspension 52 are illustrated, zlf can be further expressed as the sum of the two parts: the suspension stroke slf as measured by sensor 50 and the wheel displacement wlf with respect to the road surface along the direction perpendicular to the road surface. The same is true for the rest of the corner locations. The sensor 50 may measures measure the change in the distance from the vehicle body to the wheel. If the four suspension strokes are slf,srf,slr and srr, and the four wheel vertical motions are wlf, wrf, wlr and wrr, then:
zlf=slf+wlf
zrf=srf+wrf
zlr=slr+wlr
zrr=srr+wrr  (7)

The relative roll and pitch gradients Θx and Θy may be broken into pieces according to the suspension motion and the wheel vertical motion. The roll and the pitch gradients Θx-susp and Θy-susp due to suspension motions slf,srf,slf and srr may be defined as: Θ y - susp = s lf + s rf - s lr - s rr 2 ( t f + t r ) Θ x - susp = s lf - s rf + s lr - s rr 4 l ( 8 )
and the roll and pitch gradients Θx-whl and Θy-whl due to the wheel vertical motion defined as: Θ y - whl = w lf + w rf - w lr - w rr 2 ( t f + t r ) Θ x - whl = w lf - w rf + w lr - w rr 4 l ( 9 )
Then
ΘyΘy-suspy-whl
ΘxΘx-suspx-whl
Θyy-suspy-whl
Θxx-suspx-whl  (10)

The relative Euler angles Θxbr, and Θybr can be also written as two parts: θ ybr = sin - 1 { Θ y - susp + Θ y - whl } θ xbr = sin - 1 { Θ x - susp + Θ x - whl cos ( θ ybr ) } ( 11 )

Since there are no restrictions in Equation (11), it is valid regardless of if the four wheels of the vehicle contact the road surface or lift from the road, as soon as the accurate characterization of the roll and pitch gradients Θx-susp and Θy-susp, and Θx-whl and Θy-whl are available. Hence in the following Θx-suspy-suspx-whl and Θy-whl may be computed based on the available sensor signals.

Estimate the Roll and Pitch Gradients

From the formula in Equation (8), the roll and pitch gradients Θx-susp and Θy-susp are related to the suspension stroke. The estimation schemes are sought for computing Θx-susp and Θy-susp from the available sensor signals.

Consider in Equation (3) that the distance differences between the left side corners and right side corners are equal, that is:
zlf−zrf=zlr−zrr  (12)
or:
slf−srf=slr−srr+[wlf−wrr−wlf+wrf]  (13)
Since the tire deflections are much smaller than the suspension stroke, from (13) it is reasonable to say
slf−srf>>slr−srr  (14)
or rewrite this as: s lf - s rf s lr - s rr 1 ( 15 )
Hence, for any given constant weight k, we have: Θ x - susp κ ( s lf - s rf ) + s lr - s rr 2 / ( κ + l ) ( 16 )
In the sequential discussion, the Equation (16) may be used to describe the roll gradient Θx-susp.

Θx-susp and Θy-susp must then be related to the available sensor signals. The following dynamic relationship which are obeyed by the car body through the Newton law described around the c.g. of the vehicle body I x ω . x = h y i - 1 4 F yi + l ( K f s lf + D f s . lf ) - l ( K f s rf + D f s . rf ) + l ( K r s lr + D r s . lr ) - l ( K r s rr + D r s . rr ) + K anti - roll - f ( s lf - s rf ) l + K anti - roll - r ( s lr - s rr ) l I y ω . y = h x i = 1 4 F xi + l f ( K f s lf + D f s . lf ) - l f ( K f s rf + D f s . rf ) - t r ( K r s lr + D f s . lr ) - t r ( K r s rr + D r s . rr ) M s a y = i = 1 4 F yi M s a x = i = 1 4 F xi ( 17 )
where Ix and Iy are the momentum of inertia of the car body with respect to the x and y axis respectively; Ms is the sprung mass (the mass of the car body); hx is the c.g. height of the car body with respect to the top of the suspension; Kf and Kr are the front and rear suspension spring rates with unit N/m. Kanti-roll-f and Kanti-roll-r are the stiffnesses for the front and the rear anti-roll bar, with unit Nm/rad. Df and Dr are the front and the rear suspension damper rates; Fxi is the ith suspension force applied to the car body along the body fixed direction b1, and Fyi is the ith suspension force applied to the car body along the body fixed direction b2.
Define a weight: k = l 2 K f + K anti - roll - f l 2 K r + K anti - roll - r ( 18 )
Since the damping rates are usually proportional to the spring rates for suspensions, it is reasonable to assume: l 2 D f + D anti - roll - f l 2 D r + D anti - roll - r k ( 19 )
For a well balanced vehicle, the normal dead loading applied to the vehicle should not generate significant body attitude variation when the vehicle is parked on a flat road. That is, the roll and pitch attitude angles induced by the normal dead loading during flat road parking should be close to zero. For this reason, it is reasonable to assume the following holds:
trKr=tfKf  (20)
Similar argument can be used for suspension damping rates.

Through algebraic manipulation the first two equations in Equation (17) can be rewritten as the following: I x ω . x = h y M s a y + ( lK r + K anti - roll - r l ) [ k ( s lf - s rf ) + ( s lr - s rr ) ] + ( lD r + D anti - roll - r l ) [ k ( s . lf - s . rf ) + ( s . lr - s . rr ) ] I y ω . x = h x M s a x + t r K r ( s lf + s rf - s lr - s rr ) + t r D r ( s . lf + s . rf - s . lr - s . rr ) ( 21 )
Using the definition of Θx-susp and Θy-susp, Equation (21) can be rewritten as:
{dot over (w)}x=c0ay+c1Θx-susp+c2{dot over (Θ)}x-susp
{dot over (w)}y=d0ax+d1Θy-susp+d2{dot over (Θ)}y-susp
{dot over (w)}x=c0ay+c1Θx-susp+c2{dot over (Θ)}x-susp
{dot over (w)}y=d0ax+d1Θy-susp+d2{dot over (Θ)}y-susp  (22)
that is, Θx-susp(t) and Θy-susp(t) obeys the 1st order differential equations, and the coefficients c0,c1,c2,d0,d1 and d2 can be obtained by comparing Equation (21) and Equation (22). Although the analytical solution for Equation (22) are not hard to find, the solutions may be directly implemented in digital environment. On the other hand, the pitch rate signal is not measured, but an estimation of the pitch rate signal can be obtained as a function of the measured signals and the signals computed from the measured signals:
{dot over (w)}y={circumflex over (θ)}ysec({circumflex over (θ)}x)+wz tan({circumflex over (θ)}x)  (23)
where {circumflex over (θ)}x and {circumflex over (θ)}y are the estimated global roll and pitch Euler angles of the vehicle body (with respect to the sea level). The details if this are described in U.S. application Ser. No. 09/967,938 09/967,038 which is incorporated by reference herein. Using the estimated pitch rate signal, (22) can be used to solve for Θx-susp(t) and Θy-susp(t) at time instant t. In the following a digital scheme will be summarized. Two variables as defined at each sampling instant: RRA RAW ( k ) = 1 c 1 ω . x ( k ) - c 0 c 1 a y ( k ) RPA RAW ( k ) = 1 d 1 ω . y ( k ) - d 0 d 1 a x ( k ) ( 24 )
Then at the (k+1)th sampling instant (current values), the estimates of the roll and pitch gradients {circumflex over (Θ)}x-susp(k+1) and {circumflex over (Θ)}y-susp(k+1) may be computed from their values in the kth sampling instant (past values) and the current and past values of RRA_RAW and RPA_RAW. The iterative formula may be expressed as the following with properly chosen coefficients e0,e1,f0 and f1:
{circumflex over (Θ)}x-susp(k+1)=e0{circumflex over (Θ)}x-susp(k)+e1[RRA_RAW(k+1)+RRA_RAW(k)]
{circumflex over (Θ)}y-susp(k+1)=f0{circumflex over (Θ)}y-susp(k)+f1[RPA_RAW(k+1)+RPA_RAW(k)]  (25)

The wheel motion-induced roll and pitch gradients are usually much smaller than the suspension motion induced gradients due to the small tire deflections at each wheel/tire assembly. Therefore:
Θx-whl<<Θx-susp
Θy-whl<<Θy-susp  (26)
or say:
Θx≈Θx-susp
Θy≈Θy-susp  (27)

As described above, the present invention uses Equation (27) to approximately calculate the roll and pitch gradients. The relative roll and pitch attitude angles can be computed as in Equations (5) and (6).

Referring now to FIG. 5, a flow chart summarizing the method of the present invention is illustrated. In step 70 the sensor signals of the sensor set are read. In the present example, a roll rate sensor determines the roll rate of the vehicle, a lateral acceleration sensor generates a lateral acceleration signal of the vehicle body, and a longitudinal acceleration sensor generates a longitudinal acceleration signal of the vehicle body. The yaw rate of the vehicle body is also measured. In step 72, a calculated pitch rate signal is determined from the yaw rate, the roll rate, the lateral acceleration, and the longitudinal acceleration. In step 74 the global roll attitude and global pitch attitude are determined from the calculated pitch rate, the roll rate, the lateral acceleration, and the longitudinal acceleration. In step 78 a roll gradient is determined based upon a past roll rate and the roll rate and the lateral acceleration signal. A relative roll angle is determined in step 80 based upon the roll gradient. In step 82 a pitch gradient based upon the passive past raw pitch rate, the calculated pitch rate, and the longitudinal acceleration is determined. In step 84 the relative pitch angle based upon the pitch gradient is determined. In step 86 a safety device is activated in response to the relative roll angle, the relative pitch angle, the global roll angle and the global pitch angle.

While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

Claims

1. A control system for an automotive vehicle having a vehicle body comprising:

a first angular rate sensor generating a first angular rate signal corresponding to a first angular motion of the vehicle body;
a second angular rate sensor generating a second angular rate signal corresponding to a second angular motion of the vehicle body;
a lateral accelerometer generating a lateral acceleration signal corresponding to a lateral acceleration of a center of gravity of the vehicle body;
a longitudinal accelerometer generating a longitudinal acceleration signal corresponding to the longitudinal acceleration of the center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said first angular rate sensor, said second angular rate sensor, said lateral accelerometer, said longitudinal accelerometer, and said wheel speed sensor, said controller determining a roll gradient based upon a past raw roll rate and current raw roll rate, the first angular rate signal or the second angular rate signal and the lateral acceleration signal, a pitch gradient based upon a past raw pitch rate and current raw pitch rate, the first or second angular rate signal and the longitudinal acceleration signal, determining a relative roll and relative pitch as a function of the roll gradient and the pitch gradient.

2. A system as recited in claim 1 wherein said first angular rate sensor is one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor and said second angular rate sensor comprises is one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor, said second sensor being different than the first sensor.

3. A control system for an automotive vehicle having a vehicle body comprising:

a roll angular rate sensor generating a roll angular rate signal corresponding to a roll angular motion of the vehicle body;
a yaw angular rate sensor generating a yaw motion signal corresponding to a yaw motion of the vehicle body;
a lateral accelerometer generating a lateral acceleration signal corresponding to a lateral acceleration of a center of gravity of the vehicle body;
a longitudinal accelerometer generating a longitudinal acceleration signal corresponding to the longitudinal acceleration of the center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said roll angular rate sensor, said yaw angular rate sensor, said lateral accelerometer, said longitudinal accelerometer, and said wheel speed sensor, said controller determining a pitch rate in response to said roll angular rate signal, said yaw motion signal, said lateral acceleration signal, said longitudinal acceleraton signal, and said wheel speed signal, said controller determining a roll gradient based upon a past raw roll rate and current raw roll rate, the roll angular rate signal and the lateral acceleration signal: a pitch gradient based upon a past raw pitch rate and current raw pitch rate, the calculated pitch angular rate signal and the longitudinal acceleration signal, determining a relative roll and relative pitch as a function of the roll gradient and the pitch gradient.

4. A control system as recited in claim 3 further comprising a safety system coupled to said controller, said controller generating a control signal to said safety system in response to said relative roll angle, the relative pitch angle, a global roll attitude and a global pitch attitude.

5. A control system as recited in claim 4 wherein said safety system comprises an active brake control system.

6. A control system as recited in claim 4 wherein said safety system comprises an active rear steering system.

7. A control system as recited in claim 4 wherein said safety system comprises an active front steering system.

8. A control system as recited in claim 4 wherein said safety system comprises an active anti-roll bar system.

9. A control system as recited in claim 4 wherein said safety system comprises an active suspension system.

10. A method of controlling a rollover system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a lateral acceleration of the vehicle body;
measuring a longitudinal acceleration of the vehicle body;
measuring a yaw rate of the vehicle body;
determining a calculated pitch rate signal from the yaw rate, the roll rate, the lateral acceleration and the longitudinal acceleration;
determining a global roll attitude and a global pitch attitude from the calculated pitch angular rate, the roll rate, lateral acceleration and the longitudinal acceleration;
determining a roll gradient based upon a past raw roll rate, the roll rate signal and the lateral acceleration signal;
determining a relative roll angle based upon said roll gradient;
determining a pitch gradient based upon a past raw pitch rate and calculated pitch rate and the longitudinal acceleration signal;
determining a relative pitch angle based upon said pitch gradient; and
activating a safety device in response to the relative roll angle, the relative pitch angle, the global roll and global pitch angle.

11. A method as recited in claim 10 wherein determining a relative pitch angle comprises determining a relative pitch angle using an Euler approximation.

12. A method as recited in claim 10 wherein determining a relative roll angle comprises determining a relative roll angle using an Euler approximation.

13. A method as recited in claim 10 wherein said step of activating a safety device comprises one selected from the group consisting of an active brake control system, an active rear steering system, an active front steering system, an active anti-roll bar system, and an active suspension system.

14. A method of controlling a safety system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a lateral acceleration of the vehicle body;
measuring a longitudinal acceleration of the vehicle body;
measuring a yaw rate of the vehicle body; and
determining a relative roll angle, a relative pitch angle, a global roll and a global pitch angle in response to the roll rate, the yaw rate, the lateral acceleration and the longitudinal acceleration.

15. A control system for an automotive vehicle having a vehicle body comprising:

a first angular rate sensor generating a first angular rate signal corresponding to a first angular motion of the vehicle body;
a second angular rate sensor generating a second angular rate signal corresponding to a second angular motion of the vehicle body;
a lateral accelerometer generating a lateral acceleration signal corresponding to a lateral acceleration of a center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said first angular rate sensor, said second angular rate sensor, said lateral accelerometer and said wheel speed sensor, said controller determining a roll gradient based upon a past raw roll rate and current raw roll rate, the first angular rate signal or the second angular rate signal and the lateral acceleration signal, determining a relative roll as a function of the roll gradient.

16. A system as recited in claim 15 wherein said first angular rate sensor is one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor and said second angular rate sensor comprises one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor, said second sensor being different than the first sensor.

17. A control system for an automotive vehicle having a vehicle body comprising:

a roll angular rate sensor generating a roll angular rate signal corresponding to a roll angular motion of the vehicle body;
a yaw angular rate sensor generating a yaw motion signal corresponding to a yaw motion of the vehicle body;
a lateral accelerometer generating a lateral acceleration signal corresponding to a lateral acceleration of a center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said roll angular rate sensor, said yaw angular rate sensor, said lateral accelerometer and said wheel speed sensor, said controller determining a roll gradient based upon a past raw roll rate and current raw roll rate, the roll angular rate signal and the lateral acceleration signal, determining a relative roll angle as a function of the roll gradient.

18. A control system as recited in claim 17 further comprising a safety system coupled to said controller, said controller generating a control signal to said safety system in response to said relative roll angle.

19. A control system as recited in claim 18 wherein said safety system comprises an active brake control system.

20. A control system as recited in claim 18 wherein said safety system comprises an active rear steering system.

21. A control system as recited in claim 18 wherein said safety system comprises an active front steering system.

22. A control system as recited in claim 18 wherein said safety system comprises an active anti-roll bar system.

23. A control system as recited in claim 18 wherein said safety system comprises an active suspension system.

24. A method of controlling a rollover system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a lateral acceleration of the vehicle body;
measuring a longitudinal acceleration of the vehicle body;
measuring a yaw rate of the vehicle body;
determining a global roll attitude from the roll rate, lateral acceleration and the longitudinal acceleration;
determining a roll gradient based upon a past raw roll rate, the roll rate signal and the lateral acceleration signal;
determining a relative roll angle based upon said roll gradient;
activating a safety device in response to the relative roll angle and the global roll.

25. A method as recited in claim 24 wherein determining a relative roll angle comprises determining a relative roll angle using an Euler approximation.

26. A method as recited in claim 24 wherein said step of activating a safety device comprises one selected from the group consisting of an active brake control system, an active rear steering system, an active front steering system, an active anti-roll bar system, and an active suspension system.

27. A method of controlling a safety system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a lateral acceleration of the vehicle body;
measuring a yaw rate of the vehicle body; and
determining a relative roll angle, a global roll angle in response to the roll rate, the yaw rate and the lateral acceleration.

28. A control system for an automotive vehicle having a vehicle body comprising:

a first angular rate sensor generating a first angular rate signal corresponding to a first angular motion of the vehicle body;
a second angular rate sensor generating a second angular rate signal corresponding to a second angular motion of the vehicle body;
a longitudinal accelerometer generating a longitudinal acceleration signal corresponding to the longitudinal acceleration of the center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said first angular rate sensor, said second angular rate sensor, said longitudinal accelerometer, and said wheel speed sensor, said controller determining a pitch gradient based upon a past raw pitch rate and current raw pitch rate, the first or second angular rate signal and the longitudinal acceleration signal, determining a relative roll and relative pitch as a function of the pitch gradient.

29. A system as recited in claim 28 wherein said first angular rate sensor is one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor and said second angular rate sensor comprises one selected from the group of a yaw rate sensor, a pitch rate sensor and a roll rate sensor, said second sensor being different than the first sensor.

30. A control system for an automotive vehicle having a vehicle body comprising:

a roll angular rate sensor generating a roll angular rate signal corresponding to a roll angular motion of the vehicle body;
a yaw angular rate sensor generating a yaw motion signal corresponding to a yaw motion of the vehicle body;
a longitudinal accelerometer generating a longitudinal acceleration signal corresponding to the longitudinal acceleration of the center of gravity of the vehicle body;
a wheel speed sensor generating a wheel speed signal corresponding to a wheel speed of the vehicle; and
a controller coupled to said roll angular rate sensor, said yaw angular rate sensor, said longitudinal accelerometer, and said wheel speed sensor, said controller determining a pitch rate in response to said roll angular rate signal, said yaw motion signal, said longitudinal acceleration signal, and said wheel speed signal, said controller determining a pitch gradient based upon a past raw pitch rate and current raw pitch rate, the calculated pitch angular rate signal and the longitudinal acceleration signal, determining a relative pitch angle as a function of the pitch gradient.

31. A control system as recited in claim 30 further comprising a safety system coupled to said controller, said controller generating a control signal to said safety system in response to the relative pitch angle, and a global pitch attitude.

32. A control system as recited in claim 31 wherein said safety system comprises an active brake control system.

33. A control system as recited in claim 31 wherein said safety system comprises an active rear steering system.

34. A control system as recited in claim 31 wherein said safety system comprises an active front steering system.

35. A control system as recited in claim 31 wherein said safety system comprises an active anti-roll bar system.

36. A control system as recited in claim 31 wherein said safety system comprises an active suspension system.

37. A method of controlling a rollover system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a lateral acceleration of the vehicle body;
measuring a longitudinal acceleration of the vehicle body;
measuring a yaw rate of the vehicle body;
determining a calculated pitch rate signal from the yaw rate, the roll rate, the lateral acceleration and the longitudinal acceleration;
determining a global pitch angle from the calculated pitch angular rate, lateral acceleration and the longitudinal acceleration;
determining a pitch gradient based upon a past raw pitch rate and calculated pitch rate and the longitudinal acceleration signal;
determining a relative pitch angle based upon said pitch gradient; and
activating a safety device in response to the relative roll angle, the relative pitch angle, the global roll and global pitch angle.

38. A method as recited in claim 37 wherein determining a relative pitch angle comprises determining a relative pitch angle using an Euler approximation.

39. A method as recited in claim 37 wherein said step of activating a safety device comprises one selected from the group consisting of an active brake control system, an active rear steering system, an active front steering system, an active anti-roll bar system, and an active suspension system.

40. A method of controlling a safety system for a vehicle body of an automotive vehicle comprising:

measuring a roll rate of the vehicle body;
measuring a longitudinal acceleration of the vehicle body;
measuring a yaw rate of the vehicle body; and
determining a relative pitch angle, a global pitch angle in response to the roll rate, the yaw rate, and the longitudinal acceleration.
Referenced Cited
U.S. Patent Documents
2917126 December 1959 Phillips
3604273 September 1971 Kwok et al.
3608925 September 1971 Murphy
3899028 August 1975 Morris et al.
3948567 April 6, 1976 Kasselmann et al.
3972543 August 3, 1976 Presley et al.
4023864 May 17, 1977 Lang et al.
RE30550 March 24, 1981 Reise
4480714 November 6, 1984 Yabuta et al.
4592565 June 3, 1986 Eagle
4597462 July 1, 1986 Sano et al.
4650212 March 17, 1987 Yoshimura
4679808 July 14, 1987 Ito et al.
4690553 September 1, 1987 Fukamizu et al.
4761022 August 2, 1988 Ohashi et al.
4765649 August 23, 1988 Ikemoto et al.
4767588 August 30, 1988 Ito
4778773 October 18, 1988 Sukegawa
4809183 February 28, 1989 Eckert
4827416 May 2, 1989 Kawagoe et al.
4872116 October 3, 1989 Ito et al.
4888696 December 19, 1989 Akatsu et al.
4898431 February 6, 1990 Karnopp et al.
4930082 May 29, 1990 Harara et al.
4951198 August 21, 1990 Watanabe et al.
4960292 October 2, 1990 Sadler
4964679 October 23, 1990 Rath
4967865 November 6, 1990 Schindler
4976330 December 11, 1990 Matsumoto
4998593 March 12, 1991 Karnopp et al.
5033770 July 23, 1991 Kamimura et al.
5058017 October 15, 1991 Adachi et al.
5066041 November 19, 1991 Kindermann et al.
5088040 February 11, 1992 Matsuda et al.
5089967 February 18, 1992 Haseda et al.
5163319 November 17, 1992 Spies et al.
5200896 April 6, 1993 Sato et al.
5208749 May 4, 1993 Adachi et al.
5224765 July 6, 1993 Matsuda
5228757 July 20, 1993 Ito et al.
5239868 August 31, 1993 Takenaka et al.
5247466 September 21, 1993 Shimada et al.
5261503 November 16, 1993 Yasui
5265020 November 23, 1993 Nakayama
5278761 January 11, 1994 Ander et al.
5282134 January 25, 1994 Gioutsos et al.
5311431 May 10, 1994 Cao et al.
5324102 June 28, 1994 Roll et al.
5335176 August 2, 1994 Nakamura
5365439 November 15, 1994 Momose et al.
5370199 December 6, 1994 Akuta et al.
5408411 April 18, 1995 Nakamura et al.
5446658 August 29, 1995 Pastor et al.
5510989 April 23, 1996 Zabler et al.
5548536 August 20, 1996 Ammon
5549328 August 27, 1996 Cubalchini
5579245 November 26, 1996 Kato
5598335 January 28, 1997 You
5602734 February 11, 1997 Kithil
5610575 March 11, 1997 Gioutsos
5627756 May 6, 1997 Fukada et al.
5634698 June 3, 1997 Cao et al.
5640324 June 17, 1997 Inagaki
5648903 July 15, 1997 Liubakka
5671982 September 30, 1997 Wanke
5676433 October 14, 1997 Inagaki et al.
5694319 December 2, 1997 Suissa et al.
5703776 December 30, 1997 Soung
5707117 January 13, 1998 Hu et al.
5707120 January 13, 1998 Monzaki et al.
5720533 February 24, 1998 Pastor et al.
5723782 March 3, 1998 Bolles, Jr.
5732377 March 24, 1998 Eckert
5732378 March 24, 1998 Eckert et al.
5732379 March 24, 1998 Eckert et al.
5736939 April 7, 1998 Corcoran
5737224 April 7, 1998 Jeenicke et al.
5740041 April 14, 1998 Iyoda
5742918 April 21, 1998 Ashrafi et al.
5742919 April 21, 1998 Ashrafi et al.
5762406 June 9, 1998 Yasui et al.
5782543 July 21, 1998 Monzaki et al.
5787375 July 28, 1998 Madau et al.
5801647 September 1, 1998 Survo et al.
5809434 September 15, 1998 Ashrafi et al.
5816670 October 6, 1998 Yamada et al.
5825284 October 20, 1998 Dunwoody et al.
5857535 January 12, 1999 Brooks
5869943 February 9, 1999 Nakashima et al.
5878357 March 2, 1999 Sivashankar et al.
5893896 April 13, 1999 Imamura et al.
5925083 July 20, 1999 Ackermann
5931546 August 3, 1999 Nakashima et al.
5944137 August 31, 1999 Moser et al.
5944392 August 31, 1999 Tachihata et al.
5946644 August 31, 1999 Cowan et al.
5964819 October 12, 1999 Naito
5971503 October 26, 1999 Joyce et al.
6002974 December 14, 1999 Schiffmann
6002975 December 14, 1999 Schiffmann et al.
6026926 February 22, 2000 Noro et al.
6038495 March 14, 2000 Schiffmann
6040916 March 21, 2000 Griesinger
6050360 April 18, 2000 Pattok et al.
6055472 April 25, 2000 Breunig et al.
6062336 May 16, 2000 Amberkar et al.
6065558 May 23, 2000 Wielenga
6073065 June 6, 2000 Brown et al.
6079513 June 27, 2000 Nishizaki et al.
6081761 June 27, 2000 Harada et al.
6085860 July 11, 2000 Hackl et al.
6086168 July 11, 2000 Rump
6089344 July 18, 2000 Baughn et al.
6104284 August 15, 2000 Otsuka
6122568 September 19, 2000 Madau et al.
6122584 September 19, 2000 Lin et al.
6129172 October 10, 2000 Yoshida et al.
6141604 October 31, 2000 Mattes et al.
6141605 October 31, 2000 Joyce
6144904 November 7, 2000 Tseng
6149251 November 21, 2000 Wuerth et al.
6161905 December 19, 2000 Hac et al.
6169939 January 2, 2001 Raad et al.
6176555 January 23, 2001 Semsey
6178375 January 23, 2001 Breunig
6179310 January 30, 2001 Clare et al.
6179394 January 30, 2001 Browalski et al.
6184637 February 6, 2001 Yamawaki et al.
6185485 February 6, 2001 Ashrafi et al.
6186267 February 13, 2001 Hackl et al.
6192305 February 20, 2001 Schiffmann
6195606 February 27, 2001 Barta et al.
6198988 March 6, 2001 Tseng
6202009 March 13, 2001 Tseng
6202020 March 13, 2001 Kyrtsos
6206383 March 27, 2001 Burdock
6219604 April 17, 2001 Dilger et al.
6223114 April 24, 2001 Boros et al.
6226579 May 1, 2001 Hackl et al.
6233510 May 15, 2001 Platner et al.
6263261 July 17, 2001 Brown et al.
6266596 July 24, 2001 Hartman et al.
6272420 August 7, 2001 Schramm et al.
6278930 August 21, 2001 Yamada et al.
6282471 August 28, 2001 Burdock et al.
6282472 August 28, 2001 Jones et al.
6282474 August 28, 2001 Chou et al.
6292734 September 18, 2001 Murakami et al.
6292759 September 18, 2001 Schiffmann
6311111 October 30, 2001 Leimbach et al.
6314329 November 6, 2001 Madau et al.
6315373 November 13, 2001 Yamada et al.
6321141 November 20, 2001 Leimbach
6324446 November 27, 2001 Brown et al.
6324458 November 27, 2001 Takagi et al.
6330522 December 11, 2001 Takeuchi
6332104 December 18, 2001 Brown et al.
6338012 January 8, 2002 Brown et al.
6349247 February 19, 2002 Schramm et al.
6351694 February 26, 2002 Tseng et al.
6352318 March 5, 2002 Hosomi et al.
6356188 March 12, 2002 Meyers et al.
6370938 April 16, 2002 Leimbach et al.
6394240 May 28, 2002 Barwick
6397127 May 28, 2002 Meyers et al.
6419240 July 16, 2002 Burdock et al.
6428118 August 6, 2002 Blosch
6438464 August 20, 2002 Woywod et al.
6477480 November 5, 2002 Tseng et al.
6496758 December 17, 2002 Rhode et al.
6496763 December 17, 2002 Griessbach
6498976 December 24, 2002 Ehlbeck et al.
6529803 March 4, 2003 Meyers et al.
6547022 April 15, 2003 Hosomi et al.
6554293 April 29, 2003 Fennel et al.
6556908 April 29, 2003 Lu et al.
6559634 May 6, 2003 Yamada
6618656 September 9, 2003 Kueblbeck et al.
20020014799 February 7, 2002 Nagae
20020040268 April 4, 2002 Yamada et al.
20020056582 May 16, 2002 Chubb
20020075139 June 20, 2002 Yamamoto et al.
20020096003 July 25, 2002 Yamada et al.
20020139599 October 3, 2002 Lu
Foreign Patent Documents
36 16 907 November 1987 DE
38 15 938 November 1989 DE
43 21 571 January 1994 DE
42 27 886 February 1994 DE
43 35 979 April 1995 DE
43 42 732 June 1995 DE
199 07 633 October 1999 DE
0 430 813 December 1993 EP
0 662 601 July 1995 EP
0 758 601 February 1997 EP
1002709 May 2000 EP
1002709 May 2000 EP
1 002 709 May 2000 EP
1 002 709 May 2000 EP
24 25 342 December 1979 FR
2257403 January 1993 GB
2 342 078 April 2000 GB
62055211 September 1985 JP
63116918 May 1988 JP
63151539 June 1988 JP
63203456 August 1988 JP
1101238 April 1989 JP
2171373 July 1990 JP
3042360 February 1991 JP
3045452 February 1991 JP
4008837 January 1992 JP
5016699 January 1993 JP
5254406 October 1993 JP
6278586 October 1994 JP
6297985 October 1994 JP
6312612 November 1994 JP
8080825 March 1996 JP
9005352 January 1997 JP
10024819 January 1998 JP
10329682 December 1998 JP
11011272 January 1999 JP
11170992 June 1999 JP
11254992 September 1999 JP
11255093 September 1999 JP
11304663 October 1999 JP
11304662 November 1999 JP
816849 March 1981 SU
WO 99/64262 December 1999 WO
Other references
  • A method for reducing on-road rollovers—anti-rollover braking, Thomas J. Wielenga, Dynamotive, LLC, International Congress and Exposition, Detroit, Michigan, Mar. 1-4, 1999.
  • Eger, R. Majjad, R. Naser, N., “Rollover simulation based on a nonlinear model”, SAE 98020, Feb. 1998.
  • Nalecz, A.G., Bindemann, A.C., Brewer H.K., “Dynamic analysis of vehicle rollover”, 12th International Conference on Experimental Safety Vehicles, Goteborg, Sweden, May 29-Jun. 1, 1989.
  • Niii, N., Nishijima, Y., Nakagaw, K., “rollover analysis method of a large-size bus”, JSAE 9540020, 1995.
  • Eger, R., Kiencke, U., “Modeling of rollover sequences”, Control Engineering Practice 11 (2003) 209-216.
Patent History
Patent number: RE40496
Type: Grant
Filed: May 20, 2004
Date of Patent: Sep 9, 2008
Assignee: Ford Global Technologies, LLC (Dearborn, MI)
Inventors: Jianbo Lu (Livonia, MI), Todd Allen Brown (Dearborn, MI)
Primary Examiner: Michael J. Zanelli
Attorney: Dickinson Wright PLLC
Application Number: 10/850,583