Filters for combined radiotelephone/GPS terminals
A satellite radiotelephone system includes a space-based component, a plurality of ancillary terrestrial components, and a plurality of radiotelephones. The space-based component is configured to provide wireless radiotelephone communications using satellite radiotelephone frequencies. The plurality of ancillary terrestrial components include a plurality of ancillary terrestrial component antennas configured to provide wireless radiotelephone communications using at least one of the satellite radiotelephone frequencies in a radiation pattern that increases radiation below the horizon compared to above the horizon. The plurality of radiotelephones are configured to communicate with the space-based component and with the plurality of ancillary terrestrial components. Each radiotelephone also includes a GPS signal processor and a GPS mode filter that is configured to suppress energy at (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz. Related radiotelephones and methods are also discussed.
Latest ATC Technologies, LLC Patents:
- Single-frequency broadcasting networks using multiple spotbeams
- CDMA-IA network concept of operations and media access control (MAC) layer
- Systems and methods of adaptive beamforming for mobile satellite systems based on user locations and co-channel waveforms
- Single frequency network (SFN) for broadcast/multicast application on a spotbeam satellite
- Devices, systems, and methods for autonomously landing unmanned aerial vehicles with collaborative information sharing
This application claims the benefit of priority from provisional Application No. 60/393,191, filed Jul. 2, 2002, entitled Filters For Combined Satellite Radiotelephone/GPS Terminals. In addition, this application claims the benefit of priority as a continuation-in-part application from regular U.S. application Ser. No. 10/074,097, filed Feb. 12, 2002, which is now U.S. Pat. No. 6,684,057 entitled Systems and Methods for Terretrial Reuse of Cellular Satellite Frequency Spectrum, which claims the benefit of priority from provisional Application No. 60/322,240, filed Sep. 14, 2001, entitled Systems and Methods for Terrestrial Re-Use of Mobile Satellite Spectrum. Each of these applications is assigned to the assignee of the present application, and the disclosures of each of these applications are hereby incorporated herein by reference in their entirety as if set forth fully herein. This application claims priority under 35 U.S.C. Section 120 as a continuation reissue application of U.S. application Ser. No. 11/325,696 filed Jan. 4, 2006, which is a reissue of U.S. application Ser. No. 10/353,548 filed Jan. 29, 2003, now U.S. Pat. No. 6,785,543, which claims the benefit of priority from provisional Application No. 60/393,191, filed Jul. 2, 2002. Each of these applications is assigned to the assignee of the present application, and the disclosures of each of the above referenced applications are hereby incorporated herein by reference in their entirety as if set forth fully herein. The disclosures of U.S. application Ser. No. 10/074,097 filed Feb. 12, 2002, and U.S. Application No. 60/322,240 filed Sep. 14, 2001, are also incorporated herein by reference in their entirety as if set forth fully herein.
MULTIPLE REISSUE APPLICATIONSThe present application is one of multiple applications seeking to reissue U.S. Pat. No. 6,785,543. The other related reissue application is U.S. application Ser. No. 11/325,696, filed Jan. 4, 2006.
FIELD OF THE INVENTIONThis invention relates to radiotelephone communications systems and methods, and more particularly to terrestrial cellular and satellite cellular radiotelephone communications systems and methods.
BACKGROUND OF THE INVENTIONSatellite radiotelephone communications systems and methods are widely used for radiotelephone communications. Satellite radiotelephone communications systems and methods generally employ at least one space-based component, such as one or more satellites that are configured to wirelessly communicate with a plurality of satellite radiotelephones.
A satellite radiotelephone communications system or method may utilize a single antenna beam covering an entire area served by the system. Alternatively, in cellular satellite radiotelephone communications systems and methods, multiple beams are provided, each of which can serve distinct geographical areas in the overall service region, to collectively serve an overall satellite footprint. Thus, a cellular architecture similar to that used in conventional terrestrial cellular radiotelephone systems and methods can be implemented in cellular satellite-based systems and methods. The satellite typically communicates with radiotelephones over a bidirectional communications pathway, with radiotelephone communication signals being communicated from the satellite to the radiotelephone over a downlink or forward link, and from the radiotelephone to the satellite over an uplink or return link.
The overall design and operation of cellular satellite radiotelephone systems and methods are well known to those having skill in the art, and need not be described further herein. Moreover, as used herein, the term “radiotelephone” includes cellular and/or satellite radiotelephones with or without a multi-line display; Personal Communications System (PCS) terminals that may combine a radiotelephone with data processing, facsimile and/or data communications capabilities; Personal Digital Assistants (PDA) that can include a radio frequency transceiver and a pager, Internet/intranet access, Web browser, organizer, calendar and/or a global positioning system (GPS) receiver; and/or conventional laptop and/or palmtop computers or other appliances, which include a radio frequency transceiver.
As is well known to those having skill in the art, terrestrial networks can enhance cellular satellite radiotelephone system availability, efficiency and/or economic viability by terrestrially reusing at least some of the frequency bands that are allocated to cellular satellite radiotelephone systems. In particular, it is known that it may be difficult for cellular satellite radiotelephone systems to reliably serve densely populated areas, because the satellite signal may be blocked by high-rise structures and/or may not penetrate into buildings. As a result, the satellite spectrum may be underutilized or unutilized in such areas. The use of terrestrial retransmission can reduce or eliminate this problem.
Moreover, the capacity of the overall system can be increased significantly by the introduction of terrestrial retransmission, since terrestrial frequency reuse can be much denser than that of a satellite-only system. In fact, capacity can be enhanced where it may be mostly needed, i.e., densely populated urban/industrial/commercial areas. As a result, the overall system can become much more economically viable, as it may be able to serve a much larger subscriber base. Finally, satellite radiotelephones for a satellite radiotelephone system having a terrestrial component within the same satellite frequency band and using substantially the same air interface for both terrestrial and satellite communications can be more cost effective and/or aesthetically appealing. Conventional dual band/dual mode alternatives, such as the well known Thuraya, Iridium and/or Globalstar dual mode satellite/terrestrial radiotelephone systems, may duplicate some components, which may lead to increased cost, size and/or weight of the radiotelephone.
One example of terrestrial reuse of satellite frequencies is described in U.S. Pat. No. 5,937,332 to the present inventor Karabinis entitled Satellite Telecommunications Repeaters and Retransmission Methods, the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein. As described therein, satellite telecommunications repeaters are provided which receive, amplify, and locally retransmit the downlink signal received from a satellite thereby increasing the effective downlink margin in the vicinity of the satellite telecommunications repeaters and allowing an increase in the penetration of uplink and downlink signals into buildings, foliage, transportation vehicles, and other objects which can reduce link margin. Both portable and non-portable repeaters are provided. See the abstract of U.S. Pat. No. 5,937,332.
In view of the above discussion, there continues to be a need for systems and methods for terrestrial reuse of cellular satellite frequencies that can allow improved reliability, capacity, cost effectiveness and/or aesthetic appeal for cellular satellite radiotelephone systems, methods and/or satellite radiotelephones.
SUMMARY OF THE INVENTIONAccording to embodiments of the present invention, a satellite radiotelephone system can include a space-based component, a plurality of ancillary terrestrial components, and a plurality of radiotelephones. The space-based component can be configured to provide wireless radiotelephone communications using satellite radiotelephone frequencies. The plurality of ancillary terrestrial components can include a plurality of ancillary terrestrial component antennas configured to provide wireless radiotelephone communications using at least one of the satellite radiotelephone frequencies in a radiation pattern that increases radiation below the horizon compared to above the horizon. The plurality of radiotelephones can be configured to communicate with the space-based component and with the plurality of ancillary terrestrial components, and the radiotelephones can also include a GPS signal receiver/processor and a GPS mode filter configured to selectively suppress energy at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz.
The GPS mode filter can be configured to suppress at least 10 dB of energy for at least one value of Δ. More particularly, the GPS mode filter can be configured to selectively suppress at least 10 dB of energy at and/or below (1575.42−Δ) MHz. The GPS mode filter can be further configured to suppress energy at frequencies less than (1575.42−Δ) MHz, and Δ can be greater than at least 1 MHz. Accordingly, the GPS mode filter can be a high pass filter.
In addition, the radiotelephones can be further configured to suppress processing of GPS signals during intervals of time when actively communicating with the space-based component and/or one of the ancillary terrestrial components. The wireless radiotelephone communications can be processed without being subjected to the GPS mode filter.
The satellite radiotelephone frequencies can include a satellite downlink frequency band and a satellite uplink frequency band and GPS signals can be transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands. More particularly, the satellite downlink frequency band can include frequencies between 1525 MHz and 1559 MHz, and the satellite uplink frequency band can include frequencies between 1626.5 MHz and 1660.5 MHz. The GPS frequency band can include frequencies between 1559 MHz and 1605 MHz.
According to additional embodiments of the present invention, a radiotelephone can include a radio front end, a signal processor, and a GPS mode filter. The radio front end can be configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies, to provide wireless radiotelephone communications with a plurality of ancillary terrestrial components using at least one of the satellite radiotelephone frequencies, and to receive global positioning satellite (GPS) signals from a plurality of global positioning satellites. The signal processor can be configured to determine a measure of location of the radiotelephone using GPS signals received at the radio front end when providing GPS mode operations and to process communications that are received at and/or transmitted from the radio front end when providing wireless radiotelephone communications. The GPS mode filter can be coupled between the radio front end and the signal processor and configured to filter GPS signals from the radio front end before being provided to the signal processor. More particularly, the GPS mode filter can be configured to suppress energy at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz, and Δ can be greater than at least 1 MHz.
According to particular embodiments, wireless radiotelephone communications are not subjected to the GPS mode filter. The GPS mode filter can be configured to suppress at least 10 dB of energy at and/or below (1575.42−Δ) MHz, and the GPS mode filter can be more particularly configured to suppress at least 10 dB of energy at (1575.42−Δ) MHz and at frequencies less than (1575.42−Δ) MHz. Accordingly, the GPS mode filter can be a high pass filter. Processing of GPS signals at the signal processor can be suppressed when actively providing radiotelephone communications with the space-based component and/or one of the ancillary terrestrial components.
The satellite radiotelephone frequencies can include a satellite downlink frequency band and a satellite uplink frequency band and GPS signals can be transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands. More particularly, the satellite downlink frequency band can include frequencies between 1525 MHz and 1559 MHz, and the satellite uplink frequency band can include frequencies between 1626.5 MHz and 1660.5 MHz. The GPS frequency band can include frequencies between 1559 MHz and 1605 MHz.
According to still additional embodiments of the present invention, satellite radiotelephone communications can be provided at a radiotelephone comprising a radio front end that is configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies, that is configured to provide wireless radiotelephone communications with a plurality of ancillary terrestrial components using at least one of the satellite radiotelephone frequencies, and that is configured to receive global positioning satellite (GPS) signals from a plurality of Global positioning satellites. Energy can be suppressed at and/or below (1575.42−Δ) MHz for GPS signals received from the radio front end (where 0<Δ≦16.42 MHz) during GPS mode operations, and a measure of location of the radiotelephone can be determined using the GPS signals having suppressed energy at (1575.42−Δ) MHz during GPS mode operations. During wireless radiotelephone communications, communications that are received at and/or transmitted from the radio front end can be processed. More particularly, Δ can be greater than at least 1 MHz.
Processing communications that are received at and/or transmitted from the radio front end during wireless radiotelephone communications can include processing the communications without suppressing energy of the communications at and/or below (1575.42−Δ) MHz. In addition, suppressing energy at and/or below (1575.42−Δ) MHz can include suppressing at least 10 dB of energy at and/or below (1575.42−Δ) MHz. More particularly, suppressing energy at (1575.42−Δ) MHz can include suppressing at least 10 dB of energy at frequencies or (1575.42−Δ) MHz and lower. Moreover, processing of GPS signals can be suppressed when actively providing radiotelephone communications with the space-based component and/or one of the ancillary terrestrial components.
The satellite radiotelephone frequencies can include a satellite downlink frequency band and a satellite uplink frequency band and GPS signals can be transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands. More particularly, the satellite downlink frequency band can include frequencies between 1525 MHz and 1559 MHz, and the satellite uplink frequency band can include frequencies between 1626.5 MHz and 1660.5 MHz. The GPS frequency band can include frequencies between 1559 MHz and 1605 MHz.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which typical embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Still referring to
Still referring to
In embodiments of the invention, as shown in
Thus, adaptive interference reduction techniques may be used to at least partially cancel the interfering signal, so that the same, or other nearby, satellite radiotelephone uplink frequency can be used in a given cell for communications by radiotelephones 120 with the satellite 110 and with the ancillary terrestrial component 140. Accordingly, all frequencies that are assigned to a given cell 130 may be used for both radiotelephone 120 communications with the space-based component 110 and with the ancillary terrestrial component 140. Conventional systems may avoid terrestrial reuse of frequencies within a given satellite cell that are being used within the satellite cell for satellite communications. Stated differently, conventionally, only frequencies used by other satellite cells may be candidates for terrestrial reuse within a given satellite cell. Beam-to-beam spatial isolation that is provided by the satellite system was relied upon to reduce or minimize the level of interference from the terrestrial operations into the satellite operations. In sharp contrast, embodiments of the invention can use an interference reducer to allow all frequencies assigned to a satellite cell to be used terrestrially and for satellite radiotelephone communications.
Embodiments of the invention according to
Additional embodiments of the invention now will be described with reference to
In the detailed description to follow, GPS/GLONASS will be referred to simply as GPS for the sake of brevity. Moreover, the acronyms ATC and SBC will be used for the ancillary terrestrial component and the space-based component, respectively, for the sake of brevity.
As is known to those skilled in the art, GPS receivers may be extremely sensitive since they are designed to operate on very weak spread-spectrum radionavigation signals that arrive on the earth from a GPS satellite constellation. As a result, GPS receivers may to be highly susceptible to in-band interference. ATCs that are configured to radiate L-band frequencies in the forward satellite band (1525 to 1559 MHz) can be designed with very sharp out-of-band emissions filters to satisfy the stringent out-of-band spurious emissions desires of GPS.
Referring again to
Many modified ranges of satellite band forward link frequencies may be provided according to embodiments of the present invention. In some embodiments, the modified range of satellite band forward link frequencies can be limited to a subset of the original range of satellite band forward link frequencies, so as to provide a guard band of unused satellite band forward link frequencies. In other embodiments, all of the satellite band forward link frequencies are used, but the wireless communications to the radiotelephones are modified in a manner to reduce interference with wireless receivers that operate outside the range of satellite band forward link frequencies. Combinations and subcombinations of these and/or other techniques also may be used, as will be described below.
It also will be understood that embodiments of the invention that will now be described in connection with
Embodiments of the invention now will be described, wherein an ATC operates with an SBC that is configured to receive wireless communications from radiotelephones over a first range of satellite band return link frequencies and to transmit wireless communications to the radiotelephones over a second range of satellite band forward link frequencies that is spaced apart from the first range. According to these embodiments, the ATC is configured to use at least one time division duplex frequency to transmit wireless communications to the radiotelephones and to receive wireless communications from the radiotelephones at different times. In particular, in some embodiments, the at least one time division duplex frequency that is used to transmit wireless communications to the radiotelephones and to receive wireless communications from the radiotelephones at different times, comprises a frame including a plurality of slots. At least a first one of the slots is used to transmit wireless communications to the radiotelephones and at least a second one of the slots is used to receive wireless communications from the radiotelephones. Thus, in some embodiments, the ATC transmits and receives, in Time Division Duplex (TDD) mode, using frequencies from 1626.5 MHz to 1660.5 MHz. In some embodiments, all ATCs across the entire network may have the stated configuration/reconfiguration flexibility. In other embodiments, only some ATCs may be reconfigurable.
A Broadcast Control CHannel (BCCH) is preferably transmitted from the ATC 140 in standard mode, using a carrier frequency from below any guard band exclusion region. In other embodiments, a BCCH also can be defined using a TDD carrier. In any of these embodiments, radiotelephones in idle mode can, per established GSM methodology, monitor the BCCH and receive system-level and paging information. When a radiotelephone is paged, the system decides what type of resource to allocate to the radiotelephone in order to establish the communications link. Whatever type of resource is allocated for the radiotelephone communications channel (TDD mode or standard mode), the information is communicated to the radiotelephone, for example as part of the call initialization routine, and the radiotelephone configures itself appropriately.
It may be difficult for the TDD mode to co-exist with the standard mode over the same ATC, due, for example, to the ATC receiver LNA stage. In particular, assuming a mixture of standard and TDD mode GSM carriers over the same ATC, during the part of the frame when the TDD carriers are used to serve the forward link (when the ATC is transmitting TDD) enough energy may leak into the receiver front end of the same ATC to desensitize its LNA stage.
Techniques can be used to suppress the transmitted ATC energy over the 1600 MHz portion of the band from desensitizing the ATC's receiver LNA, and thereby allow mixed standard mode and TDD frames. For example, isolation between outbound and inbound ATC front ends and/or antenna system return loss may be increased or maximized. A switchable band-reject filter may be placed in front of the LNA stage. This filter would be switched in the receiver chain (prior to the LNA) during the part of the frame when the ATC is transmitting TDD, and switched out during the rest of the time. An adaptive interference canceller can be configured at RF (prior to the LNA stage). If such techniques are used, suppression of the order of 70 dB can be attained, which may allow mixed standard mode and TDD frames. However, the ATC complexity and/or cost may increase.
Thus, even though ATC LNA desensitization may be reduced or eliminated, it may use significant special engineering and attention and may not be economically worth the effort. Other embodiments, therefore, may keep TDD ATCs pure TDD, with the exception, perhaps, of the BCCH carrier which may not be used for traffic but only for broadcasting over the first part of the frame, consistent with TDD protocol. Moreover, Random Access CHannel (RACH) bursts may be timed so that they arrive at the ATC during the second half of the TDD frame. In some embodiments, all TDD ATCs may be equipped to enable reconfiguration in response to a command.
It is well recognized that during data communications or other applications, the forward link may use transmissions at higher rates than the return link. For example, in web browsing with a radiotelephone, mouse clicks and/or other user selections typically are transmitted from the radiotelephone to the system. The system, however, in response to a user selection, may have to send large data files to the radiotelephone. Hence, other embodiments of the invention may be configured to enable use of an increased or maximum number of time slots per forward GSM carrier frame, to provide a higher downlink data rate to the radiotelephones.
Thus, when a carrier frequency is configured to provide service in TDD mode, a decision may be made as to how many slots will be allocated to serving the forward link, and how many will be dedicated to the return link. Whatever the decision is, it may be desirable that it be adhered to by all TDD carriers used by the ATC, in order to reduce or avoid the LNA desensitization problem described earlier. In voice communications, the partition between forward and return link slots may be made in the middle of the frame as voice activity typically is statistically bidirectionally symmetrical. Hence, driven by voice, the center of the frame may be where the TDD partition is drawn.
To increase or maximize forward link throughput in data mode, data mode TDD carriers according to embodiments of the invention may use a more spectrally efficient modulation and/or protocol, such as the EDGE modulation and/or protocol, on the forward link slots. The return link slots may be based on a less spectrally efficient modulation and/or protocol such as the GPRS (GMSK) modulation and/or protocol. The EDGE modulation/protocol and the GPRS modulation/protocol are well known to those having skill in the art, and need not be described further herein. Given an EDGE forward/GPRS return TDD carrier strategy, up to (384/2)=192 kbps may be supported on the forward link while on the return link the radiotelephone may transmit at up to (115/2)≈64 kbps.
In other embodiments, it also is possible to allocate six time slots of an eight-slot frame for the forward link and only two for the return link. In these embodiments, for voice services, given the statistically symmetric nature of voice, the return link vocoder may need to be comparable with quarter-rate GSM, while the forward link vocoder can operate at full-rate GSM, to yield six full-duplex voice circuits per GSM TDD-mode carrier (a voice capacity penalty of 25%). Subject to this non-symmetrical partitioning strategy, data rates of up to (384)(6/8)=288 kbps may be achieved on the forward link, with up to (115)(2/8)≈32 kbps on the return link.
Still referring to
When in TDD mode, the number of full duplex voice circuits may be reduced by a factor of two, assuming the same vocoder. However, in TDD mode, voice service can be offered via the half-rate GSM vocoder with almost imperceptible quality degradation, in order to maintain invariant voice capacity.
It will be understood that the ability to reconfigure ATCs and radiotelephones according to embodiments of the invention may be obtained at a relatively small increase in cost. The cost may be mostly in Non-Recurring Engineering (NRE) cost to develop software. Some recurring cost may also be incurred, however, in that at least an additional RF filter and a few electronically controlled switches may be used per ATC and radiotelephone. All other hardware/software can be common to standard-mode and TDD-mode GSM.
Referring now to
Without being bound by any theory of operation, a theoretical discussion of the mapping of ATC maximum power levels to carrier frequencies according to embodiments of the present invention now will be described. Referring to
The frequency (ν) is the satellite carrier frequency that the ATC uses to communicate with the radiotelephone. According to embodiments of the invention, the mapping is a monotonically decreasing function of the independent variable ρ. Consequently, in some embodiments, as the maximum ATC power increases, the carrier frequency that the ATC uses to establish and/or maintain the communications link decreases.
Thus, according to embodiments of
Embodiments of
Referring now to
Stated differently, in accordance with some embodiments of the invention, only a portion of the TDMA frame is utilized. For example, only the first four (or last four, or any contiguous four) time slots of a full-rate GSM frame are used to support traffic. The remaining slots are left unoccupied (empty). In these embodiments, capacity may be lost. However, as has been described previously, for voice services, half-rate and even quarter-rate GSM may be invoked to gain capacity back, with some potential degradation in voice quality. The slots that are not utilized preferably are contiguous, such as slots 0 through 3 or 4 through 7 (or 2 through 5, etc.). The use of non-contiguous slots such as 0, 2, 4, and 6, for example, may be less desirable.
It has been found experimentally, according to these embodiments of the invention, that GPS receivers can perform significantly better when the interval between interference bursts is increased or maximized. Without being bound by any theory of operation, this effect may be due to the relationship between the code repetition period of the GPS C/A code (1 msec.) and the GSM burst duration (about 0.577 msec.). With a GSM frame occupancy comprising alternate slots, each GPS signal code period can experience at least one “hit”, whereas a GSM frame occupancy comprising four to five contiguous slots allows the GPS receiver to derive sufficient clean information so as to “flywheel” through the error events.
According to other embodiments of the invention, embodiments of
Thus, for example, assume that only the first four slots in each frame of fI are being used for inner region traffic. In embodiments of
The experimental finding that interference from GSM carriers can be relatively benign to GPS receivers provided that no more than, for example, 5 slots per 8 slot GSM frame are used in a contiguous fashion can be very useful. It can be particularly useful since this experimental finding may hold even when the GSM carrier frequency is brought very close to the GPS band (as close as 1558.5 MHz) and the power level is set relatively high. For example, with five contiguous time slots per frame populated, the worst-case measured GPS receiver may attain at least 30 dB of desensitization margin, over the entire ATC service area, even when the ATC is radiating at 1558.5 MHz. With four contiguous time slots per frame populated, an additional 10 dB desensitization margin may be gained for a total of 40 dB for the worst-case measured GPS receiver, even when the ATC is radiating at 1558.5 MHz.
There still may be concern about the potential loss in network capacity (especially in data mode) that may be incurred over the frequency interval where embodiments of
Therefore, in other embodiments, carriers which are subject to contiguous empty/low power slots are not used for the forward link. Instead, they are used for the return link. Consequently, in some embodiments, at least part of the ATC is configured in reverse frequency mode compared to the SBC in order to allow maximum data rates over the forward link throughout the entire network. On the reverse frequency return link, a radiotelephone may be limited to a maximum of 5 slots per frame, which can be adequate for the return link. Whether the five available time slots per frame, on a reverse frequency return link carrier, are assigned to one radiotelephone or to five different radiotelephones, they can be assigned contiguously in these embodiments. As was described in connection with
Other embodiments may be based on operating the ATC entirely in reverse frequency mode compared to the SBC. In these embodiments, an ATC transmits over the satellite return link frequencies while radiotelephones respond over the satellite forward link frequencies. If sufficient contiguous spectrum exists to support CDMA technologies, and in particular the emerging Wideband-CDMA 3G standard, the ATC forward link can be based on Wideband-CDMA to increase or maximize data throughput capabilities. Interference with GPS may not be an issue since the ATCs transmit over the satellite return link in these embodiments. Instead, interference may become a concern for the radiotelephones. Based, however, on embodiments of
Finally, other embodiments may use a partial or total reverse frequency mode and may use CDMA on both forward and return links. In these embodiments, the ATC forward link to the radiotelephones utilizes the frequencies of the satellite return link (1626.5 MHz to 1660.5 MHz) whereas the ATC return link from the radiotelephones uses the frequencies of the satellite forward link (1525 MHz to 1559 MHz). The ATC forward link can be based on an existing or developing CDMA technology (e.g., IS-95, Wideband-CDMA, etc.). The ATC network return link can also be based on an existing or developing CDMA technology provided that the radiotelephone's output is gated to cease transmissions for approximately 3 msec once every T msec. In some embodiments, T will be greater than or equal to 6 msec.
This gating may not be needed for ATC return link carriers at approximately 1550 MHz or below. This gating can reduce or minimize out-of-band interference (desensitization) effects for GPS receivers in the vicinity of an ATC. To increase the benefit to GPS, the gating between all radiotelephones over an entire ATC service area can be substantially synchronized. Additional benefit to GPS may be derived from system-wide synchronization of gating. The ATCs can instruct all active radiotelephones regarding the gating epoch. All ATCs can be mutually synchronized via GPS.
Filters for Combined Radiotelephone/GPS Terminals
As was described above, some embodiments of the present invention may employ a Space-Based Network (SBN) and an Ancillary Terrestrial Network (ATN) that both communicate with a plurality of radiotelephones using satellite radiotelephone frequencies. The SBN may include one or more Space-Based Components (SBC) and one or more satellite gateways. The ATN may include a plurality of Ancillary Terrestrial Components (ATC). In some embodiments, the SBN and the ATN may operate at L-band (1525-1559 MHz forward service link, and 1626.5-1660.5 MHz return service link). Moreover, in some embodiments, the radiotelephones may be similar to conventional handheld cellular/PCS-type terminals that are capable of voice and/or packet data services. In some embodiments, terrestrial reuse of at least some of the mobile satellite frequency spectrum can allow the SBN to serve low density areas that may be impractical and/or uneconomical to serve via conventional terrestrial networks, while allowing the ATN to serve pockets of densely populated areas that may only be effectively served terrestrially. The radiotelephones can be attractive, feature-rich and/or low cost, similar to conventional cellular/PCS-type terminals that are offered by terrestrial-only operators. Moreover, by operating the SBN and ATN modes over the same frequency band, component count in the radiotelephones, for example in the front end radio frequency (RF) section, may be reduced. In particular, in some embodiments, the same frequency synthesizer, RF filters, low noise amplifiers, power amplifiers and antenna elements may be used for terrestrial and satellite communications.
In some embodiments, the radiotelephones also can include a GPS signal receiver and/or GPS signal processor. Moreover, as was shown in
Embodiments of the present invention that will now be described can reduce or eliminate performance degradation that may take place in a radiotelephone that is combined with a GPS signal receiver. In particular, referring to
Thus, referring to
As shown in
It has been found, according to some embodiments of the present invention, that the enhanced downward directed radiation that is provided by the antenna 140a may impact the GPS signal receiver and/or GPS signal processing that may be included in radiotelephone 1320. Accordingly, in some embodiments of the invention, a GPS mode filter may be provided in the front end of the radiotelephone 1320 preferably before a Low Noise Amplifier (LNA) that provides amplification to the GPS signal.
Still referring to
In particular, referring to
Filters according to some embodiments of the present invention thereby can allow a combined radiotelephone/GPS terminal to effectively receive and/or process GPS signals while eliminating, minimizing or reducing the impact to the front end and/or other stages of the combined radiotelephone/GPS terminal due to the enhanced terrestrial radiation that may be provided by the ancillary terrestrial network.
Additional radiotelephones according to other embodiments of the present invention are illustrated in
The radio front end 1805 can be configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies and to provide wireless radiotelephone communications with an ancillary terrestrial component using at least one of the satellite radiotelephone frequencies. The radio front end can be further configured to receive global positioning satellite (GPS) signals from a plurality of global positioning satellites. The signal processor 1809 can be configured to determine a measure of location of the radiotelephone using GPS signals received at the radio front end when providing GPS mode operations and to process communications that are received at and/or transmitted by the radio front end when providing wireless radiotelephone communications.
Multiple antenna segments may be provided, and/or the antenna 1803 may include elements that are used only for satellite, terrestrial, or GPS. In addition, by operating the SBN and ATN modes over the same frequency bands, component count in the radiotelephones, for example in the front end 1805, may be reduced. In particular, in some embodiments, the same frequency synthesizer, RF filters, low noise amplifiers, power amplifiers and antenna elements may be used for terrestrial and satellite communications, and/or some components may be provided exclusively for terrestrial, satellite, or GPS use. In addition, the signal processor may include different portions of hardware and/or software directed to the different functionalities and/or different signal processing tasks.
When the radiotelephone is operating to provide GPS mode operations, GPS signals are received through the antenna 1803, the single satellite/terrestrial/GPS front end 1805, and the GPS mode filter 1807, and/or provided to the satellite/terrestrial/GPS signal processor 1809. The single satellite/terrestrial/GPS signal processor 1809 processes the GPS signals and may provide a global positioning output measure at the user interface 1811. The user interface 1811, for example, can include a liquid crystal display that can provide a visual indication of position such as a map and/or an alphanumeric indication of location such as a longitude and latitude. The user interface 1811 can also include a speaker and microphone for radiotelephone communications, and/or a user input such as a keypad or a touch sensitive screen.
As discussed above with respect to the GPS mode filter 1440 of
Accordingly, the GPS mode filter 1807 can be configured to selectively suppress energy at and/or below (1575.42−Δ) MHz, where 0<Δ<16.42 MHz. Moreover, the GPS mode filter can be configured to selectively suppress at least 10 dB of energy at and/or below (1575.42−Δ) MHz. The GPS mode filter can be further configured to selectively suppress at least 10 dB of energy at frequencies of (1575.42−Δ) MHz and lower.
According to some embodiments of the present invention, the GPS mode filter 1807 can be operative to selectively pass energy having a frequency of 1575.42+/−1 MHz and to selectively attenuate energy having a frequency of less than or equal to (1575.42−Δ) MHz, where 0<Δ<16.42 MHz. More particularly, the energy can be suppressed by at least 10 dB for frequencies less than or equal to (1575.42−Δ) MHz, and Δ can be greater than at least 1 MHz. Accordingly, GPS signals can be received while eliminating, minimizing, and/or reducing the impact to the front end and other sections of the combined satellite/terrestrial/GPS radiotelephone due to enhanced radiation in the cellular satellite forward link frequency band that may be provided by the ancillary terrestrial network.
Processing of GPS signals can be suppressed at the front end 1805 and/or at the signal processor 1809 when actively providing satellite/terrestrial communications. The bidirectional coupling between the common satellite/terrestrial/GPS front end 1805 and the satellite/terrestrial/GPS signal processor 1809 facilitates two way communications such as a radiotelephone conversation and/or sending and receiving e-mails or other data, so that wireless radiotelephone communications are not subjected to the GPS mode filter.
The common satellite/terrestrial/GPS front end 1805 can be coupled to a communications input or satellite/terrestrial/GPS signal processor 1809 to provide communications system signal monitoring during GPS operations, such as control signals. Accordingly, an incoming call page can be received at the front end 1805 and processed at signal processor 1809 during GPS operations. In the alternative, a switch may be provided to select either GPS signals or communications system signals for coupling to and processing at the satellite/terrestrial/GPS signal processor. Moreover, the GPS mode filter can be implemented as an analog and/or digital filter.
As shown in the example of
The GPS front end portion 1929 can be configured to receive global positioning satellite (GPS) signals from a plurality of global positioning satellites. The common terrestrial/satellite front end portion 1927 can be configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies and to provide wireless radiotelephone communications with an ancillary terrestrial component using at least one of the satellite radiotelephone frequencies. The GPS signal processor portion 1937 can be configured to determine a measure of location of the radiotelephone using GPS signals received at the GPS front end portion 1929 when providing GPS mode operations. The common terrestrial/satellite signal processor portion 1935 can be configured to process communications that are received at and/or transmitted from the common terrestrial/satellite front end portion 1927 when providing wireless radiotelephone communications.
The GPS signal processor 1937 may communicate bidirectionally with the terrestrial/satellite signal processor 1935 to receive and/or relay information from/to the terrestrial/satellite signal processor 1935, and/or the ATN, and/or the SBN. Such information may indicate points in time where measure(s) of position of radiotelephone 1320″ may be determined by GPS signal processor 1937, or value(s) of position measures of radiotelephone 1320″ that have been determined by GPS signal processor 1937 and/or being relayed to the SBN and/or the ATN.
The radiotelephone 1320″ of
The GPS front end portion 1929 and the common terrestrial/satellite front end portion 1927 may share one or more common components, and the two front end portions may have separate couplings to a single antenna instead of two separate antennas as shown. As shown, there may be some components that are provided exclusively for terrestrial, satellite, or GPS use. The GPS signal processor portion 1937 and the satellite/terrestrial signal processor portion 1935 may have separate hardware and/or software portions and/or operate in whole or in part in different physical portions of one or more processors.
When the radiotelephone 1320″ is operating to provide GPS mode operations, GPS signals can be received through the antenna 1923 and the GPS front end portion 1929 and provided to the GPS signal processor portion 1937 through a coupling with the GPS mode filter 1931. The GPS signal processor portion 1937 can process the GPS signals and may provide a global positioning output at the user interface 1939 in response to a user command and/or information received from the SBN and/or ATN. The user interface 1939, for example, can include a liquid crystal display that can provide a visual indication of position such as a map and/or an alphanumeric indication of location such as a longitude and latitude. The user interface can also include a speaker and microphone for radiotelephone communications, and/or a user input such as a keypad or a touch sensitive screen.
As discussed above with respect to the GPS mode filter 1440 of
Accordingly, the GPS mode filter 1931 can be configured to selectively suppress energy at frequencies at and/or below (1575.42−Δ) MHz, where 0<Δ<16.42 MHz. Moreover, the GPS mode filter can be configured to selectively suppress at least 10 dB of energy at frequencies at and/or below (1575.42−Δ) MHz. The GPS mode filter can be further configured to selectively suppress at least 10 dB of energy at frequencies of (1575.42−Δ) MHz and lower.
According to some embodiments of the present invention, the GPS mode filter 1931 can be operative to substantially pass energy having a frequency of 1575.42+/−1 MHz and to selectively attenuate energy having a frequency of less than (1575.42−Δ) MHz, where 0<Δ<16.42 MHz. More particularly, the energy can be selectively suppressed by at least 10 dB for frequencies of (1575.42−Δ) MHz and lower, and Δ can be greater than at least 1 MHz. Accordingly, GPS signals can be received while eliminating, minimizing, or reducing the impact to the front end of the combined satellite/terrestrial/GPS radiotelephone due to enhanced radiation in the cellular satellite forward link frequency band that may be provided by the ancillary terrestrial network.
Processing of GPS mode signals can be suppressed at the GPS front end portion 1929 and/or the GPS signal processor portion 1937 when actively providing satellite/terrestrial communications and more particularly when transmitting satellite/terrestrial communications from the radiotelephone 1320″. The bi-directional coupling between the satellite/terrestrial front end portion 1927 and the terrestrial/satellite signal processor 1935 may facilitate two way communications such as a radiotelephone conversation and/or sending and receiving e-mails or other data, so that wireless radiotelephone communications are not subjected to the GPS mode filter.
Moreover, the satellite/terrestrial front end portion 1927 and the satellite/terrestrial signal processor portion 1935 may provide reception of communications system signals, such as control signals received over control channels, during GPS operations. Accordingly, an incoming call page can be received at the terrestrial/satellite front end 1927 and processed at the terrestrial/satellite signal processor 1935 during GPS operations, for example, to provide an indication of an incoming call.
According to additional embodiments of the present invention, a radiotelephone can include a radio front end configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies and to provide wireless radiotelephone communications with a plurality of ancillary terrestrial components using at least one of the satellite radiotelephone frequencies. The radio front end can also be configured to receive global positioning satellite (GPS) signals from a plurality of global positioning satellites. During GPS mode operations, received energy can be selectivley suppressed at frequencies at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz, and a measure of location of the radiotelephone can be determined using the GPS signals having suppressed energy at and/or below (1575.42−Δ) MHz. During wireless radiotelephone communications, communications received at and transmitted from the radio front end can be processed. During wireless radiotelephone communications, the wireless radiotelephone communications can be processed without significantly suppressing energy of the communications at and/or below (1575.42−Δ) MHz.
During GPS mode operations, selectively suppressing energy at and/or below (1575.42−Δ) MHz can include selectively suppressing at least 10 dB of energy at (1575.42−Δ) MHz and at frequencies less than (1575.42−Δ) MHz. During wireless radiotelephone communications, processing of GPS signals can be suppressed when actively providing radiotelephone communications with the space-based component and/or one of the ancillary terrestrial components.
The satellite radiotelephone frequencies can include a satellite downlink frequency band and a satellite uplink frequency band and GPS signals can be transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands. More particularly, the satellite downlink frequency band can include frequencies between 1525 MHz and 1559 MHz, and the satellite uplink frequency band can include frequencies between 1626.5 MHz and 1660.5 MHz. The GPS frequency band can include frequencies between 1559 MHz and 1605 MHz. Moreover, when suppressing energy at and/or below (1575.42−Δ) MHz, Δ can be greater than at least 1 MHz. In addition, an incoming call page can be received during GPS mode operations, and the incoming call page can be processed during GPS operations.
According to embodiments illustrated in
During GPS mode operations, the GPS filter 2022 of GPS front end portion 2021 can selectively suppress energy received at frequencies at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz, and a measure of location of the radiotelephone can be determined using the GPS signals having suppressed energy at and/or below (1575.42−Δ) MHz. During GPS mode operations, selectively suppressing energy at and/or below (1575.42−Δ) MHz can include selectively suppressing at least 10 dB of energy at (1575.42−Δ) MHz and at frequencies less than (1575.42−Δ) MHz. During wireless radiotelephone communications, processing of GPS signals can be suppressed when actively providing radiotelephone communications (including transmissions) with the space-based component and/or one of the ancillary terrestrial components. The use of separate low noise amplifiers, however, may allow the radiotelephone to receive signals from an SBN and/or ATN (such as control signals including call pages provided over control channels) during GPS mode operations.
During wireless radiotelephone communications, communications received at and/or transmitted from the terrestrial/satellite front end portion 2023 can be processed. During wireless radiotelephone communications, the wireless radiotelephone communications can be processed without significantly suppressing energy of the communications at and/or below (1575.42−Δ) MHz because the GPS filter 2022 is not in the receive path for terrestrial/satellite communications. As shown in
Accordingly, received radiotelephone communications can be received through the antenna 2007, the duplexer 2045, the communications filter 2041, and the low noise amplifier 2033, and provided to the terrestrial/satellite signal processor portion 2027. Similarly, transmitted radiotelephone communications from the terrestrial/satellite signal processor portion 2027 can be provided to the terrestrial/satellite front end portion 2023, and transmitted through the transmitter 2043, the duplexer 2045, and the antenna 2007. As discussed above, the GPS front end portion 2021 and the GPS signal processor portion 2025 may provide GPS mode operations while signals are received through the terrestrial/satellite front end portion 2023 and the terrestrial/satellite signal processor portion 2027. It may be desirable, however, to suspend GPS mode operations while transmitting from the terrestrial/satellite front end portion 2015.
While two antennas are illustrated in
During GPS operations, the switch 3051 couples the GPS filter 3021 to the low noise amplifier 3032, and decouples the communications filter 3041 from the low noise amplifier 3032. Accordingly, GPS signals can be received through GPS antenna 3005, the GPS filter 3021, the switch 3051, and the low noise amplifier 3032, and provided to the signal processor 3017. The signal processor 3017 can thus generate a measure of location of the radiotelephone 3011, and a measure of location can be provided to a user of the radiotelephone via user interface 3019. In addition, a measure of location of the radiotelephone can be transmitted through transmitter 3043 to the SBN and/or ATN and/or commands or other information from the SBN and/or ATN can be provided to the signal processor 3017.
During GPS mode operations, the GPS filter 3021 of the front end 3015 can selectively suppress energy received at frequencies at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz, and a measure of location of the radiotelephone can be determined using the GPS signals having suppressed energy at and/or below (1575.42−Δ) MHz. During GPS mode operations, selectively suppressing energy at and/or below (1575.42−Δ) MHz can include selectively suppressing at least 10 dB of energy at (1575.42−Δ) MHz and at frequencies less than (1575.42−Δ) MHz. During wireless radiotelephone communications, processing of GPS signals can be suppressed because the switch 3051 will decouple the GPS filter 3021 from the low noise amplifier 3032.
During wireless radiotelephone communications, communications received at and/or transmitted from the radiotelephone 3011 can be processed. During wireless radiotelephone communications, the wireless radiotelephone communications can be processed without significantly suppressing energy of the communications at and/or below (1575.42−Δ) MHz because the GPS filter 3021 is not in the receive path for terrestrial/satellite communications. As shown in
Accordingly, received radiotelephone communications can be received through the antenna 3007, the duplexer 3045, the communications filter 3041, and the low noise amplifier 3032, and provided to the signal processor 3017. Similarly, transmitted radiotelephone communications from the signal processor 3017 can be transmitted through the transmitter 3043, the duplexer 3045, and the antenna 3007. It will be understood that the communications filter 3041 may not be required in some embodiments wherein the duplexer itself provides adequate isolation between the communications transmitter and receiver. It will also be understood that in some embodiments where TDMA is the multiple access technique used for communications signal transmission and reception, the duplexer 3045 may be replaced by a transmit/receive switch.
While two antennas are illustrated in
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation. While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
1. A satellite radiotelephone system comprising:
- a space-based component that is configured to provide wireless radiotelephone communications using satellite radiotelephone frequencies;
- a plurality of ancillary terrestrial components including a plurality of ancillary terrestrial component antennas that are configured to provide wireless radiotelephone communications using at least one of the satellite radiotelephone frequencies in a radiation pattern that increases radiation below the horizon compared to above the horizon; and
- a plurality of radiotelephones that are configured to communicate with the space-based component and with the plurality of ancillary terrestrial components, the radiotelephones also including a GPS signal receiver and a GPS mode filter that is configured to suppress energy at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz.
2. The satellite radiotelephone system according to claim 1, wherein the GPS mode filter is configured to suppress at least 10 dB of energy at and/or below (1575.42−Δ) MHz.
3. The satellite radiotelephone system according to claim 2, wherein the GPS mode filter is configured to suppress at least 10 dB of energy at frequencies less than (1575.42−Δ) MHz.
4. The satellite radiotelephone system according to claim 1, wherein the GPS mode filter is configured to suppress at least 10 dB of energy at and below (1575.42−Δ) MHz.
5. The satellite radiotelephone system according to claim 1, wherein the radiotelephones are further configured to suppress processing of GPS signals when actively communicating with the space-based component and/or one of the ancillary terrestrial components.
6. The satellite radiotelephone system according to claim 5, wherein the GPS mode filter is coupled between an antenna and a low noise amplifier used in reception of GPS signals.
7. The satellite radiotelephone system according to claim 1, wherein the satellite radiotelephone frequencies comprise a satellite downlink frequency band and a satellite uplink frequency band and wherein GPS signals are transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands.
8. The satellite radiotelephone system according to claim 7, wherein the satellite downlink frequency band comprises frequencies between 1525 MHz and 1559 MHz, and wherein the satellite uplink frequency band comprises frequencies between 1626.5 MHz and 1660.5 MHz.
9. The satellite radiotelephone system according to claim 7, wherein the GPS frequency band comprises frequencies between 1559 MHz and 1605 MHz.
10. The satellite radiotelephone system according to claim 1, wherein Δ is greater than at least 1 MHz.
11. The satellite radiotelephone system according to claim 1, wherein the wireless radiotelephone communications are not subjected to the GPS mode filter.
12. The satellite radiotelephone system according to claim 1, wherein the GPS mode filter comprises a high pass filter.
13. The satellite radiotelephone system according to claim 1, wherein the radiotelephones are further configured to receive incoming call pages during GPS mode operations.
14. A radiotelephone comprising:
- a radio front end that is configured to provide wireless radiotelephone communications using radiotelephone frequencies, and that is configured to receive global positioning satellite (GPS) signals from a plurality of global positioning satellites;
- a signal processor that is configured to determine a measure of location of the radiotelephone using GPS signals received at the radio front end when providing GPS mode operations and that is configured to process communications that are received at and/or transmitted from the radio front end when providing wireless radiotelephone communications; and
- a GPS mode filter that is configured to filter GPS signals received at the radio front end before being provided to the signal processor, wherein the GPS mode filter is configured to suppress energy at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz.
15. The radiotelephone according to claim 14, wherein the radio front end is configured to provide radiotelephone communications with a space-based component using satellite radiotelephone frequencies and to provide wireless radiotelephone communications with a plurality of ancillary terrestrial components using at least one of the satellite radiotelephone frequencies.
16. The radiotelephone according to claim 14, wherein the wireless radiotelephone communications are not subjected to the GPS mode filter.
17. The radiotelephone according to claim 14, wherein the GPS mode filter is coupled between an antenna and a low noise amplifier used in reception of GPS signals.
18. The radiotelephone according to claim 14, wherein the GPS mode filter is configured to suppress at least 10 dB at (1575.42−Δ) MHz.
19. The radiotelephone according to claim 18, wherein the GPS mode filter is configured to suppress at least 10 dB of energy at frequencies less than (1575.42−Δ) MHz.
20. The radiotelephone according to claim 14, wherein processing of GPS signals at the signal processor is suppressed when actively providing radiotelephone communications with the space-based component and/or one of the ancillary terrestrial components.
21. The radiotelephone according to claim 14, wherein the satellite radiotelephone frequencies comprise a satellite downlink frequency band and a satellite uplink frequency band and wherein GPS signals are transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands.
22. The radiotelephone according to claim 21, wherein the satellite downlink frequency band comprises frequencies between 1525 MHz and 1559 MHz, and wherein the satellite uplink frequency band comprises frequencies between 1626.5 MHz and 1660.5 MHz.
23. The radiotelephone according to claim 21, wherein the GPS frequency band comprises frequencies between 1559 MHz and 1605 MHz.
24. The radiotelephone according to claim 14, wherein Δ is greater than at least 1 MHz.
25. The radiotelephone according to claim 14, wherein the GPS mode filter comprises a high pass filter.
26. The radiotelephone according to claim 14, wherein the radio front end is further configured to receive incoming call pages during GPS mode operations and wherein the signal processor is further configured to process incoming call pages during GPS operations.
27. A method of providing radiotelephone communications at a radiotelephone comprising a radio front end that is configured to provide wireless radiotelephone communications using radiotelephone frequencies, and that is configured to receive global positioning satellite (GPS) signals from a plurality of Global positioning satellites, the method comprising:
- during GPS mode operations, suppressing energy at and/or below (1575.42−Δ) MHz for GPS signals received from the radio front end, where 0<Δ≦16.42 MHz;
- during GPS mode operations, determining a measure of location of the radiotelephone using the GPS signals having suppressed energy at and/or below (1575.42−Δ) MHz; and
- during wireless radiotelephone communications, processing communications that are received at and/or transmitted from the radio front end.
28. The method according to claim 27, wherein the radio front end is configured to provide wireless radiotelephone communications with a space-based component using satellite radiotelephone frequencies and to provide wireless radiotelephone communications with a plurality of ancillary terrestrial components using at least one of the satellite radiotelephone frequencies.
29. The method according to claim 27, wherein processing communications that are received at and transmitted from the radio front end during wireless radiotelephone communications comprises processing the communications without suppressing energy of the communications at and/or below (1575.42−Δ) MHz.
30. The method according to claim 27, wherein suppressing energy at and/or below (1575.42−Δ) MHz comprises suppressing at least 10 dB of energy at and/or below (1575.42−Δ) MHz.
31. The method according to claim 30, wherein suppressing energy at and/or (1575.42−Δ) MHz comprises suppressing at least 10 dB of energy at frequencies less than (1575.42−Δ) MHz.
32. The method according to claim 31, wherein suppressing energy at and/or below (1575.42−Δ) MHz comprises suppressing at least 10 dB of energy at (1575.42−Δ) MHz and at frequencies less than (1575.42−Δ) MHz.
33. The method according to claim 27, wherein processing of GPS signals is suppressed when actively providing radiotelephone communications with the space-based component and/or one of the ancillary terrestrial components.
34. The method according to claim 28, wherein the satellite radiotelephone frequencies comprise a satellite downlink frequency band and a satellite uplink frequency band and wherein GPS signals are transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands.
35. The method according to claim 34, wherein the satellite downlink frequency band comprises frequencies between 1525 MHz and 1559 MHz, and wherein the satellite uplink frequency band comprises frequencies between 1626.5 MHz and 1660.5 MHz.
36. The method according to claim 34, wherein the GPS frequency band comprises frequencies between 1559 MHz and 1605 MHz.
37. The method according to claim 27, wherein Δ is greater than at least 1 MHz.
38. The method according to claim 27, further comprising:
- receiving an incoming call page during GPS mode operations; and
- processing the incoming call page during GPS operations.
39. The method according to claim 27, further comprising:
- during GPS mode operations prior to determining the measure of location, providing low noise amplification of the GPS signals having suppressed energy at and/or below (1575.42−Δ) MHz.
40. A radiotelephone system providing wireless radiotelephone communications using satellite radiotelephone frequencies, the radiotelephone system comprising:
- at least one ancillary terrestrial component including at least one antenna that is configured to provide wireless radiotelephone communications using the satellite radiotelephone frequencies in a radiation pattern that increases a radiation level below the horizon compared to a radiation level above the horizon; and
- at least one radiotelephone that is configured to communicate with the at least one ancillary terrestrial component, the at least one radiotelephone including a GPS signal processor and a GPS filter that is configured to selectively attenuate signal energy that is associated with Radio Frequencies (RF) at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz.
41. The satellite radiotelephone system according to claim 40, wherein the GPS filter is configured to suppress at least 10 dB of signal energy that is associated with Radio Frequencies at and/or below (1575.42−Δ) MHz.
42. The satellite radiotelephone system according to claim 40, wherein the GPS filter is a band-pass filter.
43. The satellite radiotelephone system according to claim 40, wherein the at least one radiotelephone is further configured to suppress processing of GPS signals when communicating with the at least one ancillary terrestrial component.
44. The satellite radiotelephone system according to claim 40, wherein the GPS filter is coupled between an antenna and a low noise amplifier used in reception of GPS signals.
45. The satellite radiotelephone system according to claim 40, wherein the satellite radiotelephone frequencies comprise a satellite downlink frequency band and a satellite uplink frequency band and wherein GPS signals are transmitted from GPS satellites over a GPS frequency band between the satellite downlink and uplink frequency bands.
46. The satellite radiotelephone system according to claim 45, wherein the satellite downlink frequency band comprises frequencies between 1525 MHz and 1559 MHz, and wherein the satellite uplink frequency band comprises frequencies between 1626.5 MHz and 1660.5 MHz.
47. The satellite radiotelephone system according to claim 45, wherein the GPS frequency band comprises frequencies between 1559 MHz and 1605 MHz.
48. The satellite radiotelephone system according to claim 40, wherein Δ is greater than 1 MHz.
49. The satellite radiotelephone system according to claim 40, wherein the wireless radiotelephone communications are not subjected to the GPS filter.
50. The satellite radiotelephone system according to claim 40, wherein the GPS filter comprises a high pass filter.
51. The satellite radiotelephone system according to claim 40, wherein the at least one radiotelephone is further configured to receive wireless radiotelephone communications and/or a page during GPS mode operations.
52. A method of providing wireless communications using satellite radiotelephone frequencies, the method comprising:
- configuring at least one ancillary terrestrial component including at least one antenna to provide wireless radiotelephone communications using the satellite radiotelephone frequencies in a radiation pattern that increases a radiation level below the horizon compared to a radiation level above the horizon; and
- configuring at least one radiotelephone to communicate with the at least one ancillary terrestrial component, the at least one radiotelephone including a GPS signal processor and a GPS filter that is configured to selectively attenuate signal energy that is associated with Radio Frequencies (RF) at and/or below (1575.42−Δ) MHz, where 0<Δ≦16.42 MHz.
53. The method according to claim 52, wherein the GPS filter is configured to suppress at least 10 dB of signal energy that is associated with Radio Frequencies at and/or below (1575.42−Δ) MHz.
54. The method according to claim 52, wherein the GPS filter is a band-pass filter.
55. The method according to claim 52, wherein the at least one radiotelephone is further configured to suppress processing of GPS signals when communicating with the at least one ancillary terrestrial component.
56. The method according to claim 52, wherein the GPS filter is coupled between an antenna and a low noise amplifier used in reception of GPS signals.
57. The method according to claim 52, wherein the satellite radiotelephone frequencies comprise a satellite downlink frequency band and a satellite uplink frequency band and wherein GPS signals are transmitted from GPS satellites over a GPS frequency band that is between the satellite downlink and uplink frequency bands.
58. The method according to claim 57, wherein the satellite downlink frequency band comprises frequencies between 1525 MHz and 1559 MHz, and wherein the satellite uplink frequency band comprises frequencies between 1626.5 MHz and 1660.5 MHz.
59. The method according to claim 57, wherein the GPS frequency band comprises frequencies between 1559 MHz and 1605 MHz.
60. The method according to claim 52, wherein Δ is greater than 1 MHz.
61. The method according to claim 52, wherein the wireless radiotelephone communications are not subjected to the GPS filter.
62. The method according to claim 52, wherein the GPS filter comprises a high pass filter.
63. The method according to claim 52, wherein the at least one radiotelephone is further configured to receive wireless radiotelephone communications and/or a page during GPS mode operations.
4051477 | September 27, 1977 | Murphy et al. |
4118706 | October 3, 1978 | Kerr |
4131892 | December 26, 1978 | Munson et al. |
4131893 | December 26, 1978 | Munson et al. |
4737796 | April 12, 1988 | Bonebright et al. |
4881082 | November 14, 1989 | Graziano |
4901307 | February 13, 1990 | Gilhousen et al. |
5073900 | December 17, 1991 | Mallinckrodt |
5099249 | March 24, 1992 | Seavey |
5220334 | June 15, 1993 | Raguenet et al. |
5300936 | April 5, 1994 | Izadian |
5303286 | April 12, 1994 | Wiedeman |
5337060 | August 9, 1994 | Harada |
5339330 | August 16, 1994 | Mallinckrodt |
5394561 | February 28, 1995 | Freeburg |
5432780 | July 11, 1995 | Smith et al. |
5444762 | August 22, 1995 | Frey et al. |
5446756 | August 29, 1995 | Mallinckrodt |
5448623 | September 5, 1995 | Wiedeman et al. |
5511233 | April 23, 1996 | Otten |
5534882 | July 9, 1996 | Lopez |
5555257 | September 10, 1996 | Dent |
5566354 | October 15, 1996 | Sehloemer |
5584046 | December 10, 1996 | Martinez et al. |
5612703 | March 18, 1997 | Mallinckrodt |
5619525 | April 8, 1997 | Wiedeman et al. |
5631898 | May 20, 1997 | Dent |
5675742 | October 7, 1997 | Jain et al. |
5734716 | March 31, 1998 | Kulberg |
5761605 | June 2, 1998 | Tawil et al. |
5765098 | June 9, 1998 | Bella |
5781156 | July 14, 1998 | Krasner |
5812087 | September 22, 1998 | Krasner |
5812947 | September 22, 1998 | Dent |
5825327 | October 20, 1998 | Krasner |
5831574 | November 3, 1998 | Krasner |
5832379 | November 3, 1998 | Mallinckrodt |
5835857 | November 10, 1998 | Otten |
5844985 | December 1, 1998 | Kulberg et al. |
5848060 | December 8, 1998 | Dent |
5850602 | December 15, 1998 | Tisdale et al. |
5850612 | December 15, 1998 | Kulberg et al. |
5852721 | December 22, 1998 | Dillon et al. |
5874914 | February 23, 1999 | Krasner |
5878329 | March 2, 1999 | Mallinckrodt |
5884142 | March 16, 1999 | Wiedeman et al. |
5884214 | March 16, 1999 | Krasner |
5907541 | May 25, 1999 | Fairholm et al. |
5926758 | July 20, 1999 | Grybos et al. |
5937332 | August 10, 1999 | Karabinis |
5940753 | August 17, 1999 | Mallinckrodt |
5945944 | August 31, 1999 | Krasner |
5949766 | September 7, 1999 | Ibanez-Meier et al. |
5966100 | October 12, 1999 | Podger |
5991345 | November 23, 1999 | Ramasastry |
5995832 | November 30, 1999 | Mallinckrodt |
6002363 | December 14, 1999 | Krasner |
6011951 | January 4, 2000 | King et al. |
6016119 | January 18, 2000 | Krasner |
6023605 | February 8, 2000 | Sasaki et al. |
6023606 | February 8, 2000 | Monte et al. |
6052081 | April 18, 2000 | Krasner |
6052560 | April 18, 2000 | Karabinis |
6052586 | April 18, 2000 | Karabinis |
6061555 | May 9, 2000 | Bultman et al. |
6067442 | May 23, 2000 | Wiedeman et al. |
6072430 | June 6, 2000 | Wyrwas et al. |
6085094 | July 4, 2000 | Vasudevan et al. |
6091933 | July 18, 2000 | Sherman et al. |
6097752 | August 1, 2000 | Wiedeman et al. |
6101385 | August 8, 2000 | Monte et al. |
6104340 | August 15, 2000 | Krasner |
6107960 | August 22, 2000 | Krasner |
6108561 | August 22, 2000 | Mallinckrodt |
6111540 | August 29, 2000 | Krasner |
6131067 | October 10, 2000 | Girerd et al. |
6133871 | October 17, 2000 | Krasner |
6133874 | October 17, 2000 | Krasner |
6134437 | October 17, 2000 | Karabinis et al. |
6150980 | November 21, 2000 | Krasner |
6157811 | December 5, 2000 | Dent |
6157834 | December 5, 2000 | Helm et al. |
6160994 | December 12, 2000 | Wiedeman |
6169878 | January 2, 2001 | Tawil et al. |
6198730 | March 6, 2001 | Hogberg et al. |
6198921 | March 6, 2001 | Youssefzadeh et al. |
6201967 | March 13, 2001 | Goerke |
6208290 | March 27, 2001 | Krasner |
6233463 | May 15, 2001 | Wiedeman et al. |
6236354 | May 22, 2001 | Krasner |
6239742 | May 29, 2001 | Krasner |
6240124 | May 29, 2001 | Wiedeman et al. |
6246880 | June 12, 2001 | Iizuka |
6253080 | June 26, 2001 | Wiedeman et al. |
6255998 | July 3, 2001 | Podger |
6256497 | July 3, 2001 | Chambers |
6259399 | July 10, 2001 | Krasner |
6272325 | August 7, 2001 | Wiedeman et al. |
6272430 | August 7, 2001 | Krasner |
6289041 | September 11, 2001 | Krasner |
6311074 | October 30, 2001 | Luders |
6313786 | November 6, 2001 | Sheynblat et al. |
6324405 | November 27, 2001 | Young et al. |
6339707 | January 15, 2002 | Wainfan et al. |
6356737 | March 12, 2002 | Bjurfjell |
6370117 | April 9, 2002 | Koraitim et al. |
6374094 | April 16, 2002 | Zappala |
6377209 | April 23, 2002 | Krasner |
6418136 | July 9, 2002 | Naor et al. |
6418147 | July 9, 2002 | Wiedeman |
6421002 | July 16, 2002 | Krasner |
6433734 | August 13, 2002 | Krasner |
6449461 | September 10, 2002 | Otten |
6490443 | December 3, 2002 | Freeny, Jr. |
6522865 | February 18, 2003 | Otten |
6542821 | April 1, 2003 | Krasner |
6583757 | June 24, 2003 | Krasner |
6609002 | August 19, 2003 | Krishnamurthy et al. |
6628919 | September 30, 2003 | Curello et al. |
6654357 | November 25, 2003 | Wiedeman |
6665541 | December 16, 2003 | Krasner et al. |
6684057 | January 27, 2004 | Karabinis |
6707422 | March 16, 2004 | Sheynblat et al. |
6724807 | April 20, 2004 | Krasner et al. |
6725159 | April 20, 2004 | Krasner |
6735437 | May 11, 2004 | Mayfield et al. |
6775251 | August 10, 2004 | Wiedeman |
6785543 | August 31, 2004 | Karabinis |
6799050 | September 28, 2004 | Krasner |
6816710 | November 9, 2004 | Krasner |
6856787 | February 15, 2005 | Karabinis |
6859652 | February 22, 2005 | Karabinis et al. |
6879829 | April 12, 2005 | Dutta et al. |
6892068 | May 10, 2005 | Karabinis et al. |
6937857 | August 30, 2005 | Karabinis |
6975837 | December 13, 2005 | Santoru |
6999720 | February 14, 2006 | Karabinis |
7006789 | February 28, 2006 | Karabinis et al. |
7058359 | June 6, 2006 | Doyle et al. |
7142522 | November 28, 2006 | Baudoin et al. |
7221944 | May 22, 2007 | Kanerva |
7321784 | January 22, 2008 | Serceki et al. |
7363056 | April 22, 2008 | Faisy |
7603107 | October 13, 2009 | Ratert et al. |
7940225 | May 10, 2011 | Ball et al. |
RE43137 | January 24, 2012 | Karabinis |
20020041575 | April 11, 2002 | Karabinis et al. |
20020122408 | September 5, 2002 | Mullins |
20020146979 | October 10, 2002 | Regulinski et al. |
20020177465 | November 28, 2002 | Robinett |
20030003815 | January 2, 2003 | Yamada |
20030022625 | January 30, 2003 | Otten et al. |
20030054762 | March 20, 2003 | Karabinis |
20030054814 | March 20, 2003 | Karabinis et al. |
20030054815 | March 20, 2003 | Karabinis |
20030068978 | April 10, 2003 | Karabinis et al. |
20030073436 | April 17, 2003 | Karabinis et al. |
20030149986 | August 7, 2003 | Mayfield et al. |
20030153308 | August 14, 2003 | Karabinis |
20040072539 | April 15, 2004 | Monte et al. |
20040102156 | May 27, 2004 | Loner |
20040121727 | June 24, 2004 | Karabinis |
20040142660 | July 22, 2004 | Churan |
20040192200 | September 30, 2004 | Karabinis |
20040192293 | September 30, 2004 | Karabinis |
20040192395 | September 30, 2004 | Karabinis |
20040203393 | October 14, 2004 | Chen |
20040203742 | October 14, 2004 | Karabinis |
20040240525 | December 2, 2004 | Karabinis et al. |
20050026606 | February 3, 2005 | Karabinis |
20050037749 | February 17, 2005 | Karabinis et al. |
20050041619 | February 24, 2005 | Karabinis et al. |
20050064813 | March 24, 2005 | Karabinis |
20050079816 | April 14, 2005 | Singh et al. |
20050090256 | April 28, 2005 | Dutta |
20050118948 | June 2, 2005 | Karabinis et al. |
20050136836 | June 23, 2005 | Karabinis et al. |
20050164700 | July 28, 2005 | Karabinis |
20050164701 | July 28, 2005 | Karabinis et al. |
20050170834 | August 4, 2005 | Dutta et al. |
20050181786 | August 18, 2005 | Karabinis et al. |
20050201449 | September 15, 2005 | Churan |
20050208890 | September 22, 2005 | Karabinis |
20050221757 | October 6, 2005 | Karabinis |
20050227618 | October 13, 2005 | Karabinis et al. |
20050239399 | October 27, 2005 | Karabinis |
20050239403 | October 27, 2005 | Karabinis |
20050239404 | October 27, 2005 | Karabinis |
20050239457 | October 27, 2005 | Levin et al. |
20050245192 | November 3, 2005 | Karabinis |
20050260947 | November 24, 2005 | Karabinis et al. |
20050260984 | November 24, 2005 | Karabinis |
20050265273 | December 1, 2005 | Karabinis et al. |
20050272369 | December 8, 2005 | Karabinis et al. |
20050282542 | December 22, 2005 | Karabinis |
20050288011 | December 29, 2005 | Dutta |
20060040659 | February 23, 2006 | Karabinis |
20100220024 | September 2, 2010 | Snow et al. |
0 506 255 | September 1992 | EP |
0 597 225 | May 1994 | EP |
0 506 255 | November 1996 | EP |
0 748 065 | December 1996 | EP |
0 755 163 | January 1997 | EP |
0 762 669 | March 1997 | EP |
0 762 669 | March 1997 | EP |
0 797 319 | September 1997 | EP |
0 831 599 | March 1998 | EP |
0 831 599 | March 1998 | EP |
1 059 826 | December 2000 | EP |
1 152 254 | November 2001 | EP |
1 152 254 | November 2001 | EP |
1152 254 | November 2001 | EP |
1 193 989 | April 2002 | EP |
WO 98/17022 | April 1998 | WO |
WO 98/29968 | July 1998 | WO |
WO 01/54314 | July 2001 | WO |
WO 03/079488 | September 2003 | WO |
- Global.com, “Globalstar Demonstrates World's First Prototype of Terrestrial System to Supplemental Satellite Phones,” http://www.globalcomsatphone.com/globalcom/globalstar—terrestrial—system.html, Jul. 18, 2002, 2 pages.
- Ayyagari et al., “A satellite-augmented cellular network concept”, Wireless Networks, Vo. 4, 1998, pp. 189-198.
- PCT International Search Report for PCT/US 03/12701.
- Global Positioning System Overview http://www.colorado.edu/geography/gcraft/notes/gps/gps.html revised May 1, 2000 (first published in Sep. 1994).
- Declaration of Gary Churan Regarding Frequency Response of a Garmin GA 27C GPS Antenna Module and attached Summary of Laboratory Results Entitled “Desensitization Performance of GPS Receivers and MSV System Implications”.
- Braasch, Michael et al.; “GPS Receiver Architectures and Measurements” Proceeding of the IEEE, vol. 87. No. 1, Jan. 1999.
- European Search Report for European App. No. EP 07016723.4, issued Nov. 20, 2007F.
- Australian Office Action (2 pages) corresponding to Australian Patent Application 2007216650; Mailing Date: Sep. 15, 2009.
- Canadian Office Action (2 pages) corresponding to Canadian Patent Application No. 2,725,832; Mailing Date; Mar. 7, 2011.
- Mexican Office Action (2 pages) corresponding to Mexican Patent Application No. MX/A/2008/014573; Mailing Date: Jul. 25, 2011, and English Translation.
- European Search Report Corresponding to European Application No. 10 01 1601; Date of Completion: Aug. 23, 2012; 5 Pages.
- Office Action , Canadian Patent Application No. 2,489,395, ACT Technologies, LLC, Jul. 9, 2010, 7 pages.
Type: Grant
Filed: Feb 12, 2010
Date of Patent: Sep 2, 2014
Assignee: ATC Technologies, LLC (Reston, VA)
Inventor: Peter D. Karabinis (Cary, NC)
Primary Examiner: Temesgh Ghebretinsae
Assistant Examiner: Richard Chan
Application Number: 12/705,135
International Classification: H04W 4/00 (20090101);