Intramedullary implants for replacing lost bone

A bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system includes a housing having a wall with a longitudinal opening extending a length along a portion thereof. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a ribbon extending on opposing sides of the transport sled and substantially covering the longitudinal opening.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS CROSS-REFERENCE TO RELATED APPLICATIONS

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 9,770,274. The applications for reissue of U.S. Pat. No. 9,770,274 include application Ser. No. 16/577,436, filed on Sep. 20, 2019, and present application Ser. No. 17/714,600, filed on Apr. 6, 2022.

This application is an application for reissue of U.S. Pat. No. 9,770,274, and is also a divisional of U.S. application Ser. No. 16/577,436, filed Sep. 20, 2019, which is an application for reissue of U.S. Pat. No. 9,770,274. U.S. Pat. No. 9,770,274 issued on Sep. 26, 2017 on U.S. application Ser. No. 15/212,090, filed Jul. 15, 2016, which is a continuation of U.S. patent application Ser. No. 14/451,190, filed Aug. 4, 2014, now U.S. Pat. No. 9,421,046, issued Aug. 23, 2016, which is a continuation of U.S. patent application Ser. No. 13/655,246, filed Oct. 18, 2012, now U.S. Pat. No. 9,044,281, issued Jun. 2, 2015. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

BACKGROUND OF THE INVENTION

Field of the Invention

The field of the invention generally relates to medical devices for treating disorders of the skeletal system.

Description of the Related Art

Distraction osteogenesis is a technique which has been used to grow new bone in patients with a variety of defects. For example, limb lengthening is a technique in which the length of a bone (for example a femur or tibia) may be increased. By creating a corticotomy, or osteotomy, in the bone, which is a cut through the bone, the two resulting sections of bone may be moved apart at a particular rate, such as one (1.0) mm per day, allowing new bone to regenerate between the two sections as they move apart. This technique of limb lengthening is used in cases where one limb is longer than the other, such as in a patient whose prior bone break did not heal correctly, or in a patient whose growth plate was diseased or damaged prior to maturity. In some patients, stature lengthening is desired, and is achieved by lengthening both femurs and/or both tibia to increase the patient's height.

Bone transport is a similar procedure, in that it makes use of osteogenesis, but instead of increasing the distance between the ends of a bone, bone transport fills in missing bone in between. There are several reasons why significant amounts of bone may be missing. For example, a prior non-union of bone, such as that from a fracture, may have become infected, and the infected section may need to be removed. Segmental defects may be present, the defects often occurring from severe trauma when large portions of bone are severely damaged. Other types of bone infections or osteosarcoma may be other reasons for a large piece of bone that must be removed or is missing.

Limb lengthening is often performed using external fixation, wherein an external distraction frame is attached to the two sections of bone by pins which pass through the skin. The pins can be sites for infection and are often painful for the patient, as the pin placement site remains a somewhat open wound “pin tract” throughout the treatment process. The external fixation frames are also bulky, making it difficult for patient to comfortably sit, sleep and move. Intramedullary lengthening devices also exist, such as those described in U.S. Patent Application Publication No. 2011/0060336, which is incorporated by reference herein. Bone transport is typically performed by either external fixation, or by bone grafting.

In external fixation bone transport, a bone segment is cut from one of the two remaining sections of bone and is moved by the external fixation, usually at a rate close to one (1.0) mm per day, until the resulting regenerate bone fills the defect. The wounds created from the pin tracts are an even worse problem than in external fixation limb lengthening, as the pins begin to open the wounds larger as the pins are moved with respect to the skin. In bone grafting, autograft (from the patient) or allograft (from another person) is typically used to create a lattice for new bone growth. Bone grafting can be a more complicated and expensive surgery than the placement of external fixation pins.

SUMMARY OF THE INVENTION

In one embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system includes a housing having a wall with a longitudinal opening extending a length along a portion thereof. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a ribbon extending on opposing sides of the transport sled and substantially covering the longitudinal opening.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof and having a length. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to move along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a dynamic cover which is configured to cover substantially all of the portion of the longitudinal opening that is not occupied by the transport sled independent of the position of the transport sled along the length of the longitudinal opening.

In another embodiment of the invention, a method for performing a bone transport procedure includes placing a bone transport system within an intramedullary canal of a bone, the bone transport system comprising a nail having a proximal end and a distal end, a housing section having a wall with a longitudinal opening extending along a portion thereof, a transport sled disposed in the longitudinal opening and configured to move along the longitudinal opening in response to actuation of a magnetic assembly disposed within the nail, and a dynamic cover configured to cover substantially all of the longitudinal opening not occupied by the transport sled. The method further includes securing the proximal end of the nail to a first portion of bone, securing the distal end of the nail to a second portion of bone, and securing a third portion of bone to the transport sled. The method further includes applying a moving magnetic field to the magnetic assembly to actuate the magnetic assembly and cause the transport sled to move along the longitudinal opening, wherein the dynamic cover substantially covers all of the longitudinal opening regardless of the location of the transport sled within the longitudinal opening.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof and having a length. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to move along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly turns a lead screw, which in turn moves the transport sled along the longitudinal opening, and wherein the lead screw includes a threaded surface having a coating thereon, the coating selected from either molybdenum disulfide or amorphous diamond-like carbon.

In another embodiment of the invention, and implantable dynamic apparatus includes a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone, the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail, wherein the second portion of the nail includes an internally threaded feature. The apparatus further includes a magnetic assembly configured to be non-invasively actuated by a moving magnetic field. The apparatus further includes a lead screw having an externally threaded portion, the lead screw coupled to the magnetic assembly, wherein the externally threaded portion of the lead screw engages the internally threaded feature of the second portion of the nail, wherein actuation of the magnetic assembly turns the lead screw, which in turn changes the longitudinal displacement between the first portion of the nail and the second portion of the nail. The apparatus further includes a first abutment surface coupled to the lead screw, a second abutment surface coupled to the second portion of the nail, and wherein the turning of the lead screw in a first direction causes the first abutment to contact the second abutment, stopping the motion of the lead screw with respect to the second portion of the nail, and wherein subsequent turning of the nail in a second direction is not impeded by any jamming between the internally threaded feature and the externally threaded portion.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening, the transport sled having a first stopping surface. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled thereto and moves the transport sled along the longitudinal opening. The system further includes a stop secured to the lead screw and having a second contact surface, and wherein when the first contact surface contacts the second contact surface in response to rotation of the lead screw, the stop is configured to radially expand and prevent additional rotation of the lead screw.

In another embodiment of the invention, a non-invasively adjustable implant includes a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone, the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail. The implant further includes a magnetic assembly configured to be non-invasively actuated. The system further includes a cylindrical permanent magnet having at least two radially-directed poles, the cylindrical permanent magnet configured to be turned by a moving magnetic field, the cylindrical permanent magnet held by a magnet holder, the magnet holder rotationally coupled to the magnetic assembly, wherein actuation of the magnetic assembly changes the longitudinal displacement between the first portion of the nail and the second portion of the nail. The implant further includes a friction applicator which couples the magnet holder to the cylindrical permanent magnet, wherein the friction applicator is configured to apply a static frictional torque to the magnet so that when a moving magnetic field couples to the cylindrical permanent magnet at a torque below the static frictional torque, the cylindrical permanent magnet and the magnet hold turn in unison, and when a moving magnetic field couples to the cylindrical permanent magnet at a torque above the static frictional torque, the cylindrical permanent magnet turns while the magnet holder remains rotationally stationary.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening, the magnetic assembly having a magnetic housing containing a permanent magnet therein and a biasing member interposed between the magnetic housing and the permanent magnet, wherein the magnetic housing and the permanent magnet are rotationally locked by the biasing member up to a threshold torque value.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled to a nut moveable along a length of the lead screw in response to rotation thereof. The system further includes a ribbon secured to the nut at one end and secured to the transport sled at an opposing end, the ribbon passing over at least one pulley, wherein movement of the nut in a first direction translates into movement of the transport sled in a second, opposing direction.

In another embodiment of the invention, a method for performing a bone transport procedure includes preparing the medullary canal of a bone for placement of a nail configured to change its configuration at least partially from a moving magnetic field supplied by an external adjustment device, the change in configuration including the longitudinal movement of a transport sled. The method further includes placing a nail within the medullary canal of the bone, securing a first end of the nail to a first portion of the bone, and securing a second end of the nail to a second portion of the bone. The method further includes storing information in the external adjustment device, the information including the orientation of the nail within the bone and the direction of planned movement of the transport sled.

In another embodiment of the invention, a bone transport system includes a nail having a first end and a second end, the first end configured for securing to a first portion of bone, the second end configured for securing to a second portion of bone. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled to a nut moveable along a length of the lead screw in response to rotation thereof, the nut containing at least one pulley affixed thereto. The system further includes at least one pulley disposed within the nail at the first end. The system further includes at least one tension line fixed relative to the first end and passing over both the at least one pulley of the nut and the at least one pulley disposed within the nail at the first end, and wherein the tension line is configured to be secured to a third portion of bone.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening, and wherein the nail has an ultimate failure torque greater than 19 Newton-meters.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an intramedullary bone transport device for replacing lost bone according to one embodiment.

FIG. 2 illustrates a longitudinal section of the intramedullary bone transport device of FIG. 1.

FIG. 3 illustrates detail 3 of FIG. 2.

FIG. 4 illustrates detail 4 of FIG. 2.

FIG. 5 illustrates the intramedullary bone transport device secured within the medullary canal of a tibia, prior to transporting a bone segment.

FIG. 6 illustrates the intramedullary bone transport device secured within the medullary canal of a tibia, after transporting a bone segment.

FIG. 7 illustrates an exploded view of the internal components located within an enclosed housing portion of an actuator of the intramedullary bone transport device.

FIG. 8 illustrates an enclosed housing portion of the actuator of the intramedullary bone transport device.

FIG. 9 illustrates a screw assembly for securing a transport sled to a bone segment.

FIG. 10 illustrates detail view of an end stop for avoiding jamming of a transport sled.

FIG. 11 illustrates a spring friction slip clutch incorporated into a magnetic assembly.

FIG. 12 illustrates a longitudinal section of FIG. 11, taken along lines 12-12.

FIG. 13 illustrated a cross-section of FIG. 11, taken along lines 13-13.

FIG. 14 illustrates an adjustable friction slip clutch incorporated into a magnetic assembly.

FIG. 15 illustrates detail 15 of FIG. 14.

FIG. 16 illustrates a wave disc used as a spring component in the slip clutch of FIGS. 14 and 15.

FIG. 17 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a first embodiment.

FIG. 18 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a second embodiment.

FIG. 19 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a third embodiment.

FIG. 20 is a longitudinal section of the actuator of FIG. 18.

FIG. 21 illustrates detail 21 of the actuator of FIG. 20.

FIG. 22 illustrates internal components of an external adjustment device for non-invasively adjusting an intramedullary bone transport device according to one embodiment.

FIG. 23 illustrates an external adjustment device in a configuration for adjusting an intramedullary bone transport device implanted within the femur.

FIG. 24 illustrates an external adjustment device in a configuration for adjusting an intramedullary bone transport device implanted within the tibia.

FIG. 25A illustrates the transport sled of the intramedullary bone transport device of FIG. 17.

FIG. 25B illustrates a cross-section of the transport sled in the open housing of the intramedullary bone transport device of FIG. 17.

FIG. 26 illustrates the transport sled of the intramedullary bone transport device of FIG. 18.

FIG. 27 illustrates an alternative embodiment of an end stop prior to reaching the end of travel.

FIG. 28 illustrates the end stop of FIG. 27 at the end of travel in one direction.

FIG. 29 illustrates an additional embodiment of an end stop prior to reaching the end of travel.

FIG. 30 illustrates the end stop of FIG. 29 at the end of travel in one direction.

FIG. 31A illustrates an intramedullary bone transport device having a reverse block and tackle arrangement.

FIG. 31B illustrates the intramedullary bone transport device of FIG. 31A with a portion of the housing removed.

FIG. 32 illustrates detail 32 of FIG. 31B with portions removed for clarity.

FIG. 33 illustrates an intramedullary bone transport device having an alternative drive system.

FIG. 34 illustrates a longitudinal section of the intramedullary bone transport device of FIG. 33 taken along lines 34-34.

FIG. 35 illustrates detail 35 of FIG. 34.

FIG. 36 illustrates detail 36 of FIG. 34.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 illustrates an intramedullary bone transport device 100 in a “nail” configuration, having an actuator 102, a first extension rod 104 coupled to the actuator 102 at a first end 108 of the intramedullary bone transport device 100, and a second extension rod 106 coupled to the actuator 102 at a second end 110 of the intramedullary bone transport device 100. First extension rod 104 and second extension rod 106 are secured to actuator 102 by set screws 112, 114. A variety of different extension rods are available, each having a particular angulation and length. In FIG. 1, first extension rod 104 is angled for use in the proximal tibia while second extension rod 106 is straight for use in the distal tibia. Multiple configurations are contemplated for tibial use, as well as antegrade use in the femur and retrograde use in the femur. Holes 116, 118, 120, 122, 124 are configured with specific diameters and orientations, in order to accommodate bone screws 126, 128, 130, 132, 134 for securing intramedullary bone transport device 100 to the bone as seen in FIGS. 5 and 6. FIGS. 5 and 6 show the intramedullary bone transport device 100 secured in the medullary canal of a tibia 136. The tibia 136 is shown having a proximal portion 138 and a distal portion 140. Additionally, there is a missing section 142 of tibia 136. The bone that was originally in this missing section 142 may be missing because of several reasons. It may have been destroyed because of severe trauma to this area of the tibia. It may also have been removed as part of a treatment of osteosarcoma in this area. The intramedullary bone transport device 100 facilitates the replacement of this bone by facilitating the controlled movement of a bone segment 144, which can be cut from one of the two portions 138, 140 of the tibia 136. In the case illustrated in FIGS. 5 and 6, the bone segment 144 is cut from the proximal portion 138 of the tibia 136.

Returning to FIG. 1, the actuator 102 includes an enclosed housing 146 and an open housing 148. The open housing 148 contains a longitudinal slit 150 on one side along which a transport sled 152 is configured for axial movement. Longitudinal slit has a length of 140 mm, but can be a range of lengths, depending on the desired amount of bone transport. Referring more specifically to FIGS. 2, 3 and 4, the transport sled 152 includes a moveable transport tube 154 having an internal nut 156. A support stage 158 is attached to the transport tube 154, the support stage 158 being configured for axial movement within the longitudinal slit 150 of the open housing 148. The internal nut 156 is threaded and coupled to a correspondingly threaded lead screw 160, so that rotation of the lead screw 160 in a first rotational direction causes the transport tube 154 and support stage 158 (i.e., transport sled 152) to move along the longitudinal slit 150 in a first axial direction and rotation of the lead screw 160 in a second, opposite rotational direction causes the transport sled 152 to move along the longitudinal slit 150 in a second axial direction, opposite of the first axial direction. Internal nut 156 may have female threads cut directly into the transport tube 154. Alternatively, internal nut 156 may have external male threads and the transport tube 154 may have internal female threads, so that the internal female threads of the transport tube 154 and the external male threads of the internal nut 156 create a helical engagement surface. The two parts may be held together at this surface with adhesive, epoxy, etc. A representative thread design is 80 turns per inch.

Intramedullary bone transport device 100 is configured to allow controlled, precise translation of the transport sled 152 along the length of the longitudinal slit 150 by non-invasive remote control, and thus controlled, precise translation of the bone segment 144 that is secured to the transport sled 152. Within the enclosed housing 146 of the actuator 102 is located a rotatable magnetic assembly 176. Further detail can be seen in FIGS. 7 and 8. The magnetic assembly 176 includes a cylindrical, radially-poled permanent magnet 162 (FIG. 22) contained within a magnet housing 164 having an end cap 166. The permanent magnet 162 may include rare earth magnet materials, such as Neodymium-Iron-Boron. The permanent magnet 162 has a protective Phenolic coating and may be held statically within the magnet housing 164 and end cap 166 by epoxy or other adhesive. The magnet housing 164, end cap 166 and epoxy form a seal to further protect the permanent magnet 162. Magnet housing 164 may also be welded to end cap 166 to create a hermetic seal. End cap 166 includes cylindrical extension or axle 168 which fits within the inner diameter of a radial bearing 170, allowing for low friction rotation. Outer diameter of radial bearing 170 fits within cavity 172 of an actuator end cap 174 as seen, for example, in FIG. 4. Actuator end cap 174 may be welded to enclosed housing 146 of actuator 102. Referring to FIG. 7, the magnetic assembly 176 terminates at an opposing end in a first sun gear 178 which is integral to magnet housing 164. First sun gear 178 may also be made as a separate component and secured to magnet housing 164, for example by welding. First sun gear 178 turns with rotation of magnetic assembly 176 (in a 1:1 fashion) upon application of a moving magnetic field applied to the patient from an external location. The first sun gear 178 is configured to insert within opening 190 of a first gear stage 180 having three planetary gears 186 which are rotatably held in a frame 188 by axles 192. Second sun gear 194, which is the output of the first gear stage 180, turns with frame. The identical components exist in second gear stage 182, which outputs to a third sun gear 196, and third gear stage 184, which outputs to an output shaft 198 as best seen in FIG. 4. Along the length that the gear stages 180, 182, 184 extend, the inner wall 200 of enclosed housing 146 (as seen in FIG. 8) has internal teeth 202 along which the externally extending teeth 204 of the planetary gears 186 engage, as they turn. Each gear stage illustrated has a 4:1 gear ratio, so the output shaft 198 turns once for every 64 turns of the magnetic assembly 176. The output shaft 198 is coupled to lead screw 160 by a pin 206 (FIG. 4) which passes through holes 208 in a lead screw coupling cup 240 (FIG. 7) which is welded to output shaft 198 and a hole 210 in the lead screw 160 (FIG. 4). Pin 206 is held in place by retaining cylinder 242. A pin 206 diameter of 0.055 inches on a pin 206 made from 400 series stainless steel allows for a tensile break force of over 600 pounds between the lead screw 160 and the lead screw coupling cup 240. The torque applied on the magnetic assembly 176 by the action of the rotating magnetic field on the cylindrical permanent magnet 162, is therefore augmented on the order of 64 times in terms of the turning torque of the lead screw 160. This allows the transport sled 152 to be able to move with high precision. Returning to FIGS. 5 and 6, bone segment 144 is attached to transport sled 152 by three screw assemblies 212, which engage with internally threaded holes 214 of the support stage 158 of the transport sled 152. Because of the 64:1 gear ratio, the intramedullary bone transport device is able to axially displace the bone segment 144 against severe resisting forces, for example those created by soft tissue. A thrust bearing 262 (FIG. 4) is sandwiched between the lead screw 160 and the gear stages 180, 182, 184 in order to protect the gear stages 180, 182, 184 and the magnetic assembly 176 from high compressive forces. The thrust bearing 262 butts up against a flange 264 inside the enclosed housing 146. A shim spacer 270 can be added to assembly in order to maintain a desired amount of axial play. Shim spacer 270 can be a tube, chosen from a variety of lengths to optimize this axial spacing of the components.

FIG. 9 illustrates a bone segment 144 and a screw assembly 212 for securing the bone segment 144 to the support stage 158 of the transport sled 152. For clarity purposes, the remainder of the tibia is not shown, nor is the transport sled, which would be located inside the reamed medullary canal of the bone segment 144. A drill site 220 is chosen for drilling through the bone segment 144. This drill site 220 corresponds to one of the threaded holes 214 of the support stage 158 of the transport sled 152, and is located using fluoroscopy or surgical navigation during the surgical procedure. The holes 214 themselves may be made with radiopaque markings to further locate them. The cortex of a single wall of the bone segment 144 is drilled at the drill location 220 to make a pilot hole. A conventional tap (not shown) may then be used to cut internal threads in the bone at the drill location. Cannulated screw 216 is then secured into the tapped hole with external threads 222 engaging with tapped threads. Alternatively, if the cannulated screw 216 is self-tapping, then the initial hole need only be piloted. Cannulated screw is tightened into place with a hex driver, which engages with female hex 226. Torx® shapes may be used instead of hex shapes. Inner screw 218, having a head 228 and a threaded shaft 230 is then placed through a non-threaded through hole 224 in the cannulated screw 216 and threaded shaft 230 is engaged with and tightened into threaded hole 214 of the support stage 158 of the transport sled 152. Hex driver is placed into female hex 232 to tighten inner screw 218. As illustrated in FIGS. 5 and 6, there may be three of these connections made, to connect three screw assemblies 212 with the three threaded screw holes 214 of the support stage 158 of the transport sled 152, though at times it might be desired to make fewer than three connections or even more than three connections.

Referring back to FIG. 4, the gear stages 180, 182, 184 and the magnetic assembly 176 are protected from any biological material that may enter longitudinal slit 150, by a dynamic seal assembly 234. The lead screw 160 includes a long threaded portion 236 and a smooth diameter (non-threaded) portion 238. An O-ring 244 having an “X” cross-section seals over the outer diameter of the smooth diameter portion 238 and maintains the seal during rotation. A retaining structure 246 is welded with termination 248 of enclosed housing 146 and termination 250 of open housing at weld point 252. A face 254 of retaining structure 246 serves as an axial abutment of O-ring 244 while longitudinal extension 256 of retaining structure 246 retains O-ring 244 at its outer diameter. The retaining structure 246 also further retains thrust bearing 262. A seal gland 258 presses or snaps in place within the inner diameter of enclosed portion 260 of open housing, to further retain O-ring 244. The O-ring 244 material may be EPDM or other similarly performing material.

The majority of components in the intramedullary bone transport device can be made of titanium, or titanium alloys, or other metals such as stainless steel or cobalt chromium. Bearings 170, 262 and pin 206 can be made of 400 series stainless steel. A 10.7 mm diameter actuator having a longitudinal slit 150 length of approximately 134 mm has a total transport length of 110 mm. A 10.7 mm diameter actuator having a longitudinal slit 150 length of approximately 89 mm allows for a total transport length of 65 mm. A torsional finite element analysis was performed on a Titanium-6-4 alloy actuator having these dimensions. The yield torque was 25 Newton-meters. This compares favorably to commonly used trauma nails, some of which experience failure (ultimate torque) at 19 Newton-meters. Yield torque is defined as the torque at which the nail begins to deform plastically, and thus the ultimate torque of the 10.7 mm diameter actuator is above the 25 Newton-meter yield torque.

In FIGS. 2 through 4, the transport sled 152 abuts end stops 266, 268 at each respective end of its travel over the lead screw 160. FIG. 10 illustrates an end stop 266 having a threaded inner diameter 265 configured for engaging the external threads 161 of lead screw 160. Pin 276 is fit through hole 278 on end 272 of lead screw 160, and is sized so that pin 276 fits within the inner diameter of counterbore 280 on end stop 266, thus limiting the axial travel of the end stop 266 in first axial direction 274. An analogous assembly may be used, using instead a c-clip which clips over a circumferential groove around the end 272 of the lead screw 160, thus replacing the hole 278 and the pin 276. Still referring to FIG. 10, a spring portion 282 is laser cut at one end of end stop 266. End of transport tube 154 includes ledges 284, 286 which are configured so that when transport tube 154 approaches end stop 266, the end 288 of spring portion 282 abuts one of the ledges 284, 286. Because the end stop 266 is held statically be combination of counterbore 280, threads 161, 265, and pin 276, the end 288 places a tangential force on ledge 284 or 286 of transport tube 154. This causes spring portion 282 to increase in diameter until it is restrained by inner wall 290 of transport tube 154. The transport sled 152 is thus stopped axially, and even if a large torque is placed on permanent magnet 162 by an external rotating magnetic field. Thus, even a large force that pushes transport sled 152 will not cause the transport tube 154 to jam with lead screw 160, because the binding is between spring portion 282 of end stop 266 and inner wall 290 of transport tube 154, and not between internal nut 156 and lead screw 160. When subsequently a torque is placed in an opposite direction on permanent magnet 162 by a rotating magnetic field to move the transport sled 152 in a direction opposite the first axial direction 274 the tangential force between the end 288 and one of ledge 286 or 286 decreases, the spring portion 282 decreases in diameter and the transport tube 154 is free to move away from the end 288 of spring portion 282. End stop 268, seen at other end of lead screw 260 in FIG. 4, does not need a pin 276 or c-clip to hold it axially, but instead abuts the increase in diameter between the smaller diameter threaded portion 236 of the lead screw 260 160 and the smooth diameter portion 238 of the lead screw 260 160. The spring portion 282 of end stop 266, 268 may alternatively be made from a split lock washer, for simplicity and cost purposes. FIGS. 11-13 illustrate an alternative magnetic assembly 376 having a spring friction slip clutch 377. The slip clutch 377 serves to limit the maximum amount of force applied on the body tissue, in this case the bone segment 144 and its neighboring soft tissue. It should be noted that the assembly described may be used on other devices that are not bone transport devices, for example, limb lengthening devices, spine distraction devices, jaw distraction devices and cranial distraction devices in which too large of a torque applied to the permanent magnet 162 results in too large of a distraction force, and thus possible damage to tissue or pain. In the alternative magnetic assembly 376, the permanent magnet 162 is held inside a magnetic housing 364 and an end cap 366 having a cylindrical extension or axle 368. In this case, however, the permanent magnet 162 is not bonded in place, but is held in place with respect to the magnetic housing 364 and end cap 366 by the use of friction. The magnetic housing 364 and end cap 366 are welded together along a circumferential weld 292. A spring 294 is laser cut or etched from a material such as superelastic Nitinol®, and may be heat formed so that center portion 296 is axially displaced from outer portion 298, giving it spring capabilities in the axial direction. FIG. 12 shows the spring 294 trapped between the permanent magnet 162 and the end cap 366, so that the center portion 296 of spring 294 is axially compressed and therefore places a normal force on the end 300 of the permanent magnet 162. By controlling the material, the thickness and the dimensions of the spring 294, a controlled spring constant is achieved, thus applying a consistent normal force, and proportional frictional torque that must be overcome in order to allow permanent magnet 162 to rotate freely within magnet housing 364 and end cap 366. For example, in a scoliosis distraction device, it is desired that at a torque up to two inch-pounds (0.23 Newton-meter), the permanent magnet 162 and the magnet housing/end cap 364/366 remain static to each other, thus allowing the magnetic assembly 376 to turn the lead screw 160. In this application, the gear stages 180, 182, 184 may be omitted. This represents a distraction force of approximately 125 pounds (556 Newton), at which damage may occur to vertebrae at their attachment point to the implant. Above two inch-pounds, it may be desired that the spring 294 allow the permanent magnet 162 to turn freely with respect to the magnet housing/end cap 364/366, thus stopping the turning of the lead screw. Alternatively, in a bone transport or limb lengthening device having gear stages 180, 182, 184, and a total gear ratio of 64:1, it may be desired that this slippage occur at 0.046 inch-pounds (0.005 Newton-meter). This limit would potentially be desired in order to protect the device itself or to protect the bone or soft tissue, for example in a patient with an intramedullary tibial implant, in which the external moving magnetic field is placed extremely close to the permanent magnet 162, and thus able to apply a significantly large torque to it.

FIGS. 14-16 illustrate an alternative magnetic assembly 476 which can be adjusted upon assembly in order to set a specific amount of slip torque between the permanent magnet 162 and the magnet housing 464 and end cap 466. A wave disc 302 (similar to a wave washer, but without a center hole) is held between a flat washer 304 and an adjustable compression stage 306. The flat washer 304 serves to protect the permanent magnet 162 and also provide a consistent material surface for friction purposes. The wave disc 302 may be made from stainless steel, and the flat washer 304 may be made from a titanium alloy. Adjustable compression stage 306 has a shaft 316 with a male thread 308 which is engaged within female threads 310 of a cylindrical extension 468. A hex tool may be placed within access hole 314 of the cylindrical extension 468 and into female hex 312 of the shaft 316 of the adjustable compression stage 306. Turning in one direction increases compression on the wave disc 302 and thus increases the normal force and frictional slip torque. Turning in the opposite direction decreases these values. Upon assembly, adhesive may be placed on the threads 308, 310 to permanently bond the adjustable compression stage 306 to the cylindrical extension 468 and maintain the desired amount of frictional slip torque.

The intramedullary bone transport device 100 having a longitudinal slit 150 as shown in FIGS. 1-4 is configured to be implanted within a reamed medullary canal. For example a 10.7 mm diameter device may necessitate reaming to a diameter of 11.0 mm to 13.0 mm. At the beginning of implantation, a certain portion of the longitudinal slit 150 is located where there is no bone (FIG. 5). Because the longitudinal slit 150 is thus exposed to both the internal environment of the medullary canal and the soft tissue (muscle, etc.) of the limb being treated, there is a potential for biological tissue growth on the moveable portions of the mechanism, such as the lead screw 160. One way to protect the threads of the lead screw 160, is by adding a special coating to the surface of the lead screw 160. Coatings may be applied a variety of ways, for example through deposition, and preferably are biocompatible, hard, thin and resistant to adherence of body tissues or fluids. Exemplary coatings include MoST® (based on molybdenum disulfide) or ADLC (Amorphous Diamond-like Carbon).

Though the coating of the lead screw 160 may prevent biological adherence, it may also be desired to prevent any ingrowth or protuberance of bone material into the longitudinal slit 150. One reason that this protuberance may interfere with the treatment of the patient is that it may push against some of the dynamic structures of the bone transport device 100, limiting their functionality. Another reason is that ingrowth of bone into the longitudinal slit 150 may make removal of the bone transport device 100 more difficult, more or less “locking” it in place. Several embodiments of bone transport device 100 having dynamic covers 320 are presented in FIGS. 17 through 19, each dynamic cover 320 with the capability of protecting the longitudinal slit 150 from the ingrowth of bone, while still allowing for the functionality of the transport sled 152 mechanism of the bone transport device 100. FIG. 17 illustrates a bone transport device 318 having a dynamic cover 320 including two opposing combs 322, 324, each of whose teeth extend towards the center line 326 of the longitudinal slit 328. The dynamic cover 320 substantially covers the portion of the longitudinal slit 328 not occupied by the transport sled 152. Comb material may be chosen from superelastic Nitinol, MP35N, Elgiloy® which are biocompatible and have a good combination of strength and repetitive bending characteristics. Individual comb teeth 334 may be 0.105″ in length, 0.050″ in width and 0.003″ in thickness. Transport sled 330 has a specially angled prow 332 on each end, the prows causing the teeth 334 of the combs 322, 324 on each side to be pushed against the side of the slit 328 with relatively low force as the transport sled 330 passes by that particular area. The prow 322 is symmetric along the centerline 326. After the transport sled 330 passes by, the teeth 334 return to their original position covering their half of the slit 328. The angulation of the prow 332, allows the transport sled 330 to slide past the flexing teeth 334 with minimal interference or frictional force. An exemplary included angle of the top of the prow 332 (in relation to the centerline 326) is 60°. A more detailed view of the transport sled 330 is seen in FIGS. 25A and 25B. Grooves 335 on each side of transport sled 330 allow transport sled 330 to ride along rails 337 at edges of slit 328 along the open housing 331 of bone transport device 318.

FIG. 18 illustrates a bone transport device 336 having a dynamic cover 320 having a static ribbon 338 which covers the slit 340. Transport sled 342 is configured to slide over the static ribbon 338. The bone transport device 336 having a static ribbon 338 is shown in more detail in FIGS. 20 and 21. Static ribbon 338 is secured to the open housing 348 at first end 344 and second end 346, both ends adjacent to slit 340. Static ribbon 338 is made of 0.002″ thick Nitinol and has a width of 0.140″. A detailed view of the transport sled 342 is shown in FIG. 26. The transport sled 342 has a total width (W1) of 0.288″. A channel 350 is wirecut in each end of transport sled 342, the channel 350 allows the static ribbon 338 to pass from the outside to the inside of transport sled 342 (and vice versa). During operation, the static ribbon 338 stays in place, while the transport sled 342 slides over it. The channel 350 width (W2) is 0.191″, and channel thickness is 0.012″ giving enough space for the 0.002″ thick static ribbon 338 to slide freely with respect to the transport sled 342. A first radius 352 and a second radius 354 further aid in smooth sliding of the transport sled 342 over the static ribbon 338. The centerline of channel 350 through each radius 352, 354 follows a 0.036″ radius. As with many components of the bone transport device 336, the transport sled 342 may be made from Titanium alloy, for example titanium-6A1-4V. Alternatively, the components may be made of cobalt chromium or stainless steel. By controlling the tension at which the static ribbon 338 is held, the dynamic frictional force as the transport sled 342 slides over the static ribbon 338 can be varied, but is typically on the order of about one pound. An alternative to bone transport device 336 is envisioned, wherein the static ribbon 338 is replaced by a ribbon which is fixedly secured to the transport sled 342, and which slides in a similar manner to a conveyor belt.

FIG. 19 illustrates a bone transport device 356 with a dynamic cover 320 having a freely rotatable spiral-cut tube 358 configured to cover the slit 360. Spiral-cut tube 358 has a single spiral gap or cut 362 in its wall, helically oriented along its length. The width of the spiral gap 362 in the axial direction is about the same as the length of the transport sled 370. As the transport sled 370 moves in an axial direction 372, the spiral cut tube 358 is forced to turn in a rotational direction 374, as the leading end 359 transport sled 370 contacts the edge 361 of the spiral cut tube 358 along the spiral gap 362. In this manner, the spiral-cut tube 358 always covers the portion of the slit 360 that is not already covered by the transport sled 370. Spiral-cut tube 358 may be formed from a number of different materials, such as PEEK (polyether ether ketone) or titanium, stainless steel or cobalt chromium.

An alternative to the mechanical dynamic covers 320 of FIGS. 17-19, a self-healing hydrogel may be coated or sprayed over the longitudinal slit 150. Hydrogels of this type have been described in “Rapid self-healing hydrogels” by Phadke et. al., Proceedings of the National Academy of Sciences, Volume 109, No. 12, pages 4383-4388, which is incorporated by reference herein. A self-healing hydrogel acts like molecular Velcro®, and can cover the area of the longitudinal slit 150. As the transport sled 152 moves longitudinally, the hydrogel is slit open in the direction of longitudinal movement of the transport sled 152, while the transport sled 152 moves away from an already slit portion of the hydrogel. By controlling the pH and side chain molecule lengths in the manufacture of the hydrogel, a hydrogel can be made that both allows the slitting by the transport sled 152 and allows the rebinding of the prior slit.

FIGS. 22-24 illustrate an external adjustment device 378 configured for applying a moving magnetic field to allow for non-invasive adjustment of the bone transport device 100, 318, 336, 356 by turning a permanent magnet 162 within the bone transport device 100, 318, 336, 356, as described. FIG. 22 illustrates the internal components of the external adjustment device 378, and for clear reference, shows the permanent magnet 162 of the bone transport device 100, 318, 336, 356, without the rest of the assembly. The internal working components of the external adjustment device 378 may, in certain embodiments, be similar to that described in U.S. Patent Application Publication No. 2012/0004494, which is incorporated by reference herein. A motor 380 with a gear box 382 outputs to a motor gear 384. Motor gear 384 engages and turns central (idler) gear 386, which has the appropriate number of teeth to turn first and second magnet gears 388, 390 at identical rotational speeds. First and second magnets 392, 394 turn in unison with first and second magnet gears 388, 390, respectively. Each magnet 392, 394 is held within a respective magnet cup 396 (shown partially). An exemplary rotational speed is 60 RPM or less. This speed range may be desired in order to limit the amount of current density induced in the body tissue and fluids, to meet international guidelines or standards. As seen in FIG. 22, the south pole 398 of the first magnet 392 is oriented the same as the north pole 404 of the second magnet 394, and likewise, the first magnet 392 has its north pole 400 oriented the same as the south pole 402 of the second magnet 394. As these two magnets 392, 394 turn synchronously together, they apply a complementary and additive moving magnetic field to the radially-poled, permanent magnet 162, having a north pole 406 and a south pole 408. Magnets having multiple north poles (for example, two) and multiple south poles (for example, two) are also contemplated in each of the devices. As the two magnets 392, 394 turn in a first rotational direction 410 (e.g., counter-clockwise), the magnetic coupling causes the permanent magnet 162 to turn in a second, opposite rotational direction 412 (e.g., clockwise). The rotational direction of the motor 380 and corresponding rotational direction of the magnets 392, 394 is controlled by buttons 414, 416. One or more circuit boards 418 contain control circuitry for both sensing rotation of the magnets 392, 394 and controlling the rotation of the magnets 392, 394.

FIGS. 23 and 24 show the external adjustment device 378 for use with a bone transport device 100, 318, 336, 356 placed in the femur (FIG. 23) or the tibia (FIG. 24). The external adjustment device 378 has a first handle 424 for carrying or for steadying the external adjustment device 378, for example, steadying it against an upper leg 420, as in FIG. 23. An adjustable handle 426 is rotationally attached to the external adjustment device 378 at pivot points 428, 430. Pivot points 428, 430 have easily lockable/unlockable mechanisms, such as a spring loaded brake, ratchet or tightening screw, so that a desired angulation of the adjustable handle 426 in relation to housing 436 can be adjusted and locked in orientation. Adjustable handle 426 is shown in two different positions in FIGS. 23 and 24. In FIG. 23, adjustable handle 426 is set so that apex 432 of loop 434 rests against housing 436. In this position, patient 438 is able to hold onto one or both of grips 440, 442 while the adjustment procedure (for example transporting bone between 0.10 mm and 1.50 mm) is taking place. It is contemplated that the procedure could also be a lengthening procedure for an intramedullary bone lengthening device or a lengthening procedure for a lengthening plate which is attached external to the bone. Turning to FIG. 24, when the bone transport device 100, 318, 336, 356 is implanted in a tibia, the adjustable handle 426 may be changed to a position in which the patient 438 can grip onto the apex 432 so that the magnet area 444 of the external adjustment device 378 is held over the portion the bone transport device 100, 318, 336, 356 containing the permanent magnet 162. In both cases, patient is able to clearly view control panel 446 including a display 448. In a different configuration from the two directional buttons 414, 416 in FIG. 22, control panel 446 includes a start button 450, a stop button 452 and a mode button 454. Control circuitry contained on circuit boards 418 may be used by the surgeon to store important information related to the specific aspects of each particular patient. For example, in some patients an implant may be placed antegrade into the tibia. In other patients the implant may be placed either antegrade or retrograde into the femur. In each of these three cases, it may be desired to transport the bone either from distal to proximal or from proximal to distal. There are thus six (6) different scenarios. By having the ability to store information of this sort that is specific to each particular patient within the external adjustment device 378, the external adjustment device 378 can be configured to direct the magnets 392, 394 to turn in the correct direction automatically, while the patient need only place the external adjustment device 378 at the desired position, and push the start button 450. The information of the maximum allowable bone transport length per day and maximum allowable bone transport length per session can also be input and stored by the surgeon for safety purposes. These may also be added via an SD card or USB device, or by wireless input. An additional feature is a camera at the portion of the external adjustment device 378 that is placed over the skin. For example, the camera may be located between first magnet 392 and second magnet 394. The skin directly over the implanted permanent magnet 162 may be marked with indelible ink. A live image from the camera is then displayed on the display 448 of the control panel 446, allowing the user to place the first and second magnets 392, 394 directly over the area marked on the skin. Crosshairs can be overlayed on the display 448 over the live image, allowing the user to align the mark on the skin between the crosshairs, and thus optimally place the external adjustment device 378.

FIGS. 27 and 28 illustrate an alternative embodiment to the anti-jamming end stop described in FIGS. 2-4 and in FIG. 10. Transport sled 152 has been removed so that the rest of the anti-jamming assembly 482 can clearly be seen. Internal nut 456 is similar to internal nut 156 of FIGS. 2-4, 10 in that it can be made, simply as an internal thread of the transport tube 154, or alternatively, it can be a separate component. For example, the outer surface of the internal nut 456 may be made with an external thread 458 and the inner surface of the transport tube 154 may be made with a mating internal thread. These two surfaces may be bonded to each other, with adhesives, epoxies, etc., so that the internal thread of the internal nut 456 mates with the external threads 161 of the lead screw 160. In FIG. 27, a single pawl ring 460, having a single pawl 462 is secured to the lead screw 160 by welding, adhesive, epoxy or other methods. The single pawl 462 thus turns in unison with the lead screw 160. The end of the internal nut 456 has a ledge 470 at its end. This ledge 470 is configured to abut the single pawl 462 when the lead screw 160 reaches the end of its desired travel in relation to the internal nut 456. In FIG. 27, there are several turns remaining in the travel of the lead screw 160. In FIG. 28, the lead screw has reached the end of its desired travel and the single pawl 462 now abuts the ledge 470, thus not allowing any more rotation in this direction for the lead screw 160. The opposing forces between the single pawl 462 and the ledge 470 assure that the internal threads of the internal nut 456 will not jam with the external threads 161 of the lead screw 160. Another single pawl 480 at the opposite end of the internal nut 456 may be used to engage with another ledge (not shown) at the opposite end of the lead screw 160, thus eliminating jamming at the opposite end of travel of the internal nut 456 and lead screw 160.

FIGS. 29 and 30 show an alternative anti jamming assembly 484 to the embodiment of FIGS. 27 and 28. In FIG. 29, the end piece 472 of the lead screw 160 has multiple pawls 474, which engage multiple ledges or teeth 478 when lead screw 160 reaches the end of its travel. The stress between the pawl and ledge is now distributed amongst multiple pawls 474 and ledges or teeth 478, thus also allowing a smaller axial dimension of the pawls 474 and ledges 478.

Returning to FIGS. 5 and 6, a bone transport procedure is described. After patient is prepped for surgery, a drill entry point 131 is chosen to ream a hole in the medullary canal of the tibia 136. Intramedullary bone transport device 100 is inserted into reamed medullary canal and secured with bone screws 126, 128, 130, 132, 134. Prior to creating an osteotomy 147, bone segment 144 for transport is chosen and secured to transport sled 152 with screw assemblies 112 212 as described herein. Osteotomy 147 is then made, freeing bone segment 144 from proximal portion of tibia 138. Osteotomy 147 may be made with osteotomes or a Gigli saw. As an alternative, the osteotomy 147 may be made prior to securing the bone segment 144 to the transport sled 152. Prior to recovering the patient, a test transport procedure may be performed in the operating theater, for example using an external adjustment device 378 covered with a sterile drape. This test transport procedure may be done either to confirm that the intramedullary bone transport device 100 has not been damaged by the insertion procedure or to set the osteotomy 147 at a desired initial gap distance, for example zero (0) to five (5.0) mm. The patient is then recovered, and within the first week after surgery, non-invasive bone transport procedures are initiated by the physician, patient or family or friend of patient, typically consisting of transporting about 1 mm per day. For example 1 mm, once per day, or 0.5 mm, twice per day, 0.33 mm, three times per day, etc. using the external adjustment device 378 as in FIGS. 23 and 24. As the bone segment 144 transports, new bone 153 begins to form where the missing portion 142 had previously been. Towards the end of the patient's transport period of treatment, the bone segment 144 nears the proximal end 135 of the distal portion 140 of the tibia 136. (All procedures described may be done on a variety of different bones.) A final gap 151 may be decided upon by the physician, and when this final gap 151 is reached (for example, 5 mm), the surgeon may desire to do a grating procedure to facilitate the continuity of bone between the bone segment 144 and the distal portion 140 of the tibia 136. The new bone 153 is typically allowed approximately one month per 10 mm of transported length to consolidate, but this time period can vary greatly depending upon the biological characteristic (e.g. diabetes) and habits (e.g. smoking) of the patient.

FIG. 31A illustrates an intramedullary bone transport device 550 having a reverse block and tackle arrangement according to another embodiment. A first housing portion 578 and a second housing portion 548 enclose the internal reverse block and tackle components, shown in FIGS. 31B and 32. First housing portion 578 contains two slits 551 through which first tension line 552 and second tension line 554 exit. After implantation, bone segment 144 is secured to tension lines 552, 554 using bone screws having a clamp feature at their tips that enters the intramedullary canal and grips each of the tension lines 552, 554. The lead screw 556 is turned by permanent magnet 162 and gear stages 180, 182, 184 as in other embodiments. The nut 558 moves along lead screw 556 in first direction 553 as lead screw 556 is turned. The tension lines 552, 554 wrap around nut pulleys 566, 565 respectively (shown without nut 558 in FIG. 32). The nut pulleys 566, 565 are held rotatably to the nut 558 by pins 555, 557. The exit pulleys 563, 564 are held rotatably to the wire seal block 562 and first housing portion 578 with axle pin 574, which may be welded to the first housing portion 578 at each end. The tension lines 552, 554 wrap around exit pulleys 564, 563 respectively. At the end of tension lines 552, 554 are crimped lugs 576, which are secured axially within cavities in the wire seal block 562. A seal 570 is sandwiched between the wire seal block 562 and a seal support plate 568 by screw 572. The four (4) inner diameters 571 passing through the seal 570 are sized to be slightly smaller than the outer diameter of the tension lines 552, 554, so that any body fluids entering through slits 551 cannot enter further into the section of first housing portion 578 and second housing portion 548 containing lead screw 556, nut 558, permanent magnet 162 and gear stages 180, 182, 184. The seal 570 is made from an elastomer such as EPDM, so that tension lines 552, 554 may move through inner diameters 571 while still maintaining a sealed condition. In FIG. 32, the nut 558 and the wire seal block 562 are not shown so that more detail of the pathway of the tension lines 552, 554 may be seen. A guide rod 560 is secured to the assembly of the wire seal block 562, seal 570, and seal support plate 568. The nut 558 has an off center guide hole sized for sliding over the guide rod 560. As the nut 558 moves in first direction 553 over turning lead screw 556, nut pulleys 566, 565 move along with nut 558, causing each tension line 552, 554 to be pulled around exit pulleys 564, 563, thus allowing tension lines 552, 554 to pull bone segment 144 in second direction 559. Because of the reverse block and tackle arrangement, the tension lines 552, 554 move at a axial rate that is twice as fast as the rate of axial movement rate of the nut 558. Thus, for a nut 558 that travels only 55 mm total travel over lead screw 556, the tension lines 552, 554 are each pulled for 110 mm total travel, allowing for a compact device which still produces a large amount of bone transport length capability.

FIGS. 33 through 36 illustrate an intramedullary bone transport device 528 according to another embodiment having a ribbon-driven transport sled 530. Lead screw 160 is driven by permanent magnet 162, with gear stages 180,182, 184 as in FIGS. 1-4, however, the connection between lead screw 160 and transport sled 530 is no longer direct. Nut 532 having internal threading is coupled to lead screw 160 and moves longitudinally as lead screw 160 turns. Ribbon 534 is secured to nut 532, for example by welding or crimping, at one end and to transport sled 530 at the other end. Pulley 536 is rotatably coupled to enclosed housing 546 via axle 538. Ribbon 534 extends around pulley 536 so that movement of nut 532 in first direction 540 pulls ribbon 534 around pulley 536, causing transport sled to move in second direction 542. The multiple types of dynamic covers 320 described in prior embodiments, would also be usable in this embodiment. The ribbon in FIGS. 33-36 is a single material ribbon made from Nitinol or stainless steel, for example 0.006″ thick Nitinol ribbon. As yet a further embodiment, ribbon 534 may be constructed of a laminate of several ribbon layers bonded together, for example four layers of 0.002″ thick Nitinol or three layers of 0.003″ thick Nitinol. The layers are bonded together with a flexible adhesive, such as a urethane adhesive, which allows the layers to slide slightly in longitudinal relation to each other, as they move around the pulley 536. Each of the layers may be a single ribbon structure as described, or may also be a multifilar, woven ribbon. The laminate construction allows for a nut 532 that not only can pull transport sled 530, but also push transport sled 530, due to the increased column stiffness during compression. When this push/pull embodiments is in push mode, radii 544 (as seen in FIG. 35) in the inner walls of enclosed housing 546 serve as a path for the ribbon 534 when the ribbon 534 is in compression (pushing). Ribbon 534 can refer to any analogous tensile member, for example one or more wires or cables configured to extend around pulley 536.

Other alternatives exist for constructing any of the embodiments presented herein. As one example, instead of solid rare earth magnet material, the magnets presented may be made as composite rare earth magnets, such as those described in U.S. Patent Application Publication Nos. 2011/0057756, 2012/0019341, and 2012/0019342, which are incorporated by reference herein.

A maintenance feature, such as a magnetic plate, may be incorporated on any of the embodiments of the implant devices presented herein, such as those described in U.S. Patent Application Publication No. 2012/0035661.

While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. The invention, therefore, should not be limited, except to the following claims, and their equivalents.

Claims

1. An implantable dynamic apparatus comprising:

a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone;
the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail, wherein the second portion of the nail includes an internally threaded feature;
a magnetic assembly configured to be non-invasively actuated by a moving magnetic field;
a lead screw having an externally threaded portion, the lead screw coupled to the magnetic assembly, wherein the externally threaded portion of the lead screw engages the internally threaded feature of the second portion of the nail;
wherein actuation of the magnetic assembly turns the lead screw, which in turn changes the longitudinal displacement between the first portion of the nail and the second portion of the nail;
a first abutment surface coupled to the lead screw;
a second abutment surface coupled to the second portion of the nail; and
wherein the turning of the lead screw in a first direction causes the first abutment surface to contact the second abutment surface, stopping the motion of the lead screw with respect to the second portion of the nail, and wherein subsequent turning of the nail in a second direction is not impeded by any jamming between the internally threaded feature and the externally threaded portion.

2. A method for performing a bone transport procedure, the method comprising:

preparing the medullary canal of a bone for placement of an implantable dynamic apparatus configured to change its configuration at least partially from a moving magnetic field supplied by an external adjustment device, the change in configuration comprising the longitudinal movement of a transport sled;
placing the implantable dynamic apparatus within the medullary canal of the bone;
securing a first end of a nail to a first portion of the bone;
securing a second end of a nail to a second portion of the bone; and
storing information in the external adjustment device, the information comprising an orientation of the nail within the bone and a direction of planned movement of the transport sled.

3. The method of claim 2, wherein the implantable dynamic apparatus further comprises: and wherein the method further comprises:

a housing having a wall with a longitudinal opening extending a length along a portion thereof;
the transport sled disposed in the longitudinal opening and configured to move along the longitudinal opening;
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by the moving magnetic field;
a lead screw coupled to the magnetic assembly;
a first abutment coupled to the lead screw; and
a second abutment coupled to the second end of the nail,
securing a third portion of the bone to the transport sled; and
applying the moving magnetic field to the magnetic assembly, thereby actuating the magnetic assembly and causing the lead screw to rotate and the transport sled to move along the longitudinal opening,
wherein a rotation of the lead screw in a first direction causes the first abutment to contact the second abutment and stops the motion of the lead screw with respect to the nail.

4. The method of claim 3, wherein an externally threaded portion of the lead screw and an internally threaded feature of the nail are configured to allow turning of the nail in a second direction, opposite the first direction subsequent to the applying step.

5. The method of claim 3, further comprising:

by applying the moving magnetic field to the magnetic assembly, causing an externally threaded portion of the lead screw to engage with an internally threaded feature of the nail.

6. The method of claim 3, wherein the transport sled has a length that is shorter than the length of the longitudinal opening.

7. The method of claim 3, wherein the lead screw comprises an externally threaded surface having a coating thereon.

8. The method of claim 3, wherein the applying of the moving magnetic field further comprises using the external adjustment device to rotate at least one rotatable magnet.

9. A method for performing a bone transport procedure, the method comprising:

placing an implantable dynamic apparatus within a medullary canal of a bone, the implantable dynamic apparatus comprising: a nail having a proximal end and a distal end; a housing having a wall with a longitudinal opening extending a length along a portion thereof; a transport sled disposed in the longitudinal opening and configured to move along the longitudinal opening, the transport sled including a first contact surface; a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field; a lead screw coupled to the magnetic assembly;
securing the proximal end of the nail to a first portion of the bone;
securing the distal end of the nail to a second portion of the bone;
securing a third portion of the bone to the transport sled;
applying the moving magnetic field to the magnetic assembly to actuate the magnetic assembly and cause the lead screw to rotate and the transport sled to move along the longitudinal opening; and
securing a stop having a second contact surface to the lead screw, wherein in response to the rotation of the lead screw, the stop radially expands and prevents additional rotation of the lead screw.

10. The method of claim 9, wherein the magnetic assembly comprises a cylindrical permanent magnet configured to be turned by the moving magnetic field.

11. The method of claim 10, wherein the cylindrical permanent magnet is held by a magnet holder rotationally coupled to the magnetic assembly.

12. The method of claim 9, wherein the applying comprises applying the moving magnetic field by using an external adjustment device to rotate at least one rotatable magnet.

13. The method of claim 12, further comprising: storing information in the external adjustment device, the information comprising an orientation of the nail within the bone and a direction of planned movement of the transport sled.

14. A method for performing a bone transport procedure, the method comprising:

placing an implantable dynamic apparatus within a medullary canal of a bone, the implantable dynamic apparatus comprising: a nail having a proximal end and a distal end, a housing having a wall with a longitudinal opening extending a length along a portion thereof, a transport sled disposed in the longitudinal opening and configured to move along the longitudinal opening, a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein the magnetic assembly comprises a cylindrical permanent magnet configured to be turned by the moving magnetic field and to be held by a magnet holder rotationally coupled to the magnetic assembly, and a lead screw coupled to the magnetic assembly;
securing the proximal end of the nail to a first portion of the bone;
securing the distal end of the nail to a second portion of the bone;
securing a third portion of the bone to the transport sled; and
applying the moving magnetic field to the magnetic assembly, thereby actuating the magnetic assembly, wherein the actuating causes the lead screw to rotate and the transport sled to move along the longitudinal opening.

15. The method of claim 14, further comprising coupling the magnet holder to the cylindrical permanent magnet.

16. The method of claim 15, wherein the coupling further comprises:

applying a static frictional torque to the cylindrical permanent magnet,
wherein:
when the moving magnetic field couples to the cylindrical permanent magnet at a torque below the static frictional torque, the cylindrical permanent magnet and the magnet holder turn in unison, and
when the moving magnetic field couples to the cylindrical permanent magnet at a torque above the static frictional torque, the cylindrical permanent magnet turns while the magnet holder remains rotationally stationary.

17. The method of claim 16, further comprising adjusting the static friction torque over a range of static frictional torques.

18. The method of claim 14, wherein the magnetic assembly comprises a magnetic housing containing the cylindrical permanent magnet therein and a biasing member interposed between the magnetic housing and the cylindrical permanent magnet, wherein the magnetic housing and the cylindrical permanent magnet are rotationally locked by the biasing member up to a threshold torque value.

19. The method of claim 14, further comprising:

coupling the lead screw to a nut moveable along a length of the lead screw in response to rotation thereof; and
securing a ribbon to the nut at one end and to the transport sled at an opposing end and passing the ribbon over at least one pulley, wherein movement of the nut in a first direction translates into movement of the transport sled in a second, opposing direction.

20. The method of claim 14, further comprising:

coupling the lead screw to a nut moveable along a length of the lead screw in response to rotation thereof, the nut containing at least one nut pulley affixed thereto;
disposing at least one exit pulley within the implantable dynamic apparatus at the proximal end;
fixing at least one tension line relative to the proximal end and passing the at least one tension line over both the at least one nut pulley and the at least one exit pulley; and
securing the at least one tension line to the third portion of bone.

21. The method of claim 14, wherein the applying comprises applying the moving magnetic field by using an external adjustment device comprising at least one rotatable magnet, and the method further comprises storing information in the external adjustment device, the information comprising an orientation of the nail within the bone and a direction of planned movement of the transport sled.

Referenced Cited
U.S. Patent Documents
2702031 February 1955 Wenger
3111945 November 1963 Von Solbrig
3372476 March 1968 Peiffer
3377576 April 1968 Langberg
3512901 May 1970 Law
3597781 August 1971 Eibes
3900025 August 1975 Barnes, Jr.
3915151 October 1975 Kraus
RE28907 July 20, 1976 Eibes et al.
3976060 August 24, 1976 Hildebrandt et al.
4010758 March 8, 1977 Rockland et al.
4056743 November 1, 1977 Clifford et al.
4068821 January 17, 1978 Morrison
4078559 March 14, 1978 Nissinen
4164794 August 21, 1979 Spector et al.
4204541 May 27, 1980 Kapitanov
4357946 November 9, 1982 Dutcher et al.
4386603 June 7, 1983 Mayfield
4448191 May 15, 1984 Rodnyansky et al.
4486176 December 4, 1984 Tardieu et al.
4501266 February 26, 1985 McDaniel
4522501 June 11, 1985 Shannon
4537520 August 27, 1985 Ochiai et al.
4550279 October 29, 1985 Klein
4561798 December 31, 1985 Elcrin et al.
4573454 March 4, 1986 Hoffman
4592355 June 3, 1986 Antebi
4595007 June 17, 1986 Mericle
4642257 February 10, 1987 Chase
4658809 April 21, 1987 Ulrich et al.
4700091 October 13, 1987 Wuthrich
4747832 May 31, 1988 Buffet
4854304 August 8, 1989 Zielke
4904861 February 27, 1990 Epstein et al.
4931055 June 5, 1990 Bumpus et al.
4940467 July 10, 1990 Tronzo
4957495 September 18, 1990 Kluger
4973331 November 27, 1990 Pursley et al.
5010879 April 30, 1991 Moriya et al.
5030235 July 9, 1991 Campbell, Jr.
5041112 August 20, 1991 Mingozzi et al.
5064004 November 12, 1991 Lundell
5074882 December 24, 1991 Grammont et al.
5092889 March 3, 1992 Campbell, Jr.
5133716 July 28, 1992 Plaza
5142407 August 25, 1992 Varaprasad et al.
5156605 October 20, 1992 Pursley et al.
5263955 November 23, 1993 Baumgart et al.
5290289 March 1, 1994 Sanders et al.
5306275 April 26, 1994 Bryan
5330503 July 19, 1994 Yoon
5334202 August 2, 1994 Carter
5336223 August 9, 1994 Rogers
5356411 October 18, 1994 Spievack
5356424 October 18, 1994 Buzerak et al.
5364396 November 15, 1994 Robinson et al.
5403322 April 4, 1995 Herzenberg et al.
5429638 July 4, 1995 Muschler et al.
5437266 August 1, 1995 McPherson et al.
5466261 November 14, 1995 Richelsoph
5468030 November 21, 1995 Walling
5480437 January 2, 1996 Draenert
5509888 April 23, 1996 Miller
5516335 May 14, 1996 Kummer et al.
5527309 June 18, 1996 Shelton
5536269 July 16, 1996 Spievack
5549610 August 27, 1996 Russell et al.
5573012 November 12, 1996 McEwan
5575790 November 19, 1996 Chen et al.
5582616 December 10, 1996 Bolduc et al.
5620445 April 15, 1997 Brosnahan et al.
5620449 April 15, 1997 Faccioli et al.
5626579 May 6, 1997 Muschler et al.
5626613 May 6, 1997 Schmieding
5632744 May 27, 1997 Campbell, Jr.
5659217 August 19, 1997 Petersen
5662683 September 2, 1997 Kay
5672175 September 30, 1997 Martin
5672177 September 30, 1997 Seldin
5700263 December 23, 1997 Schendel
5704938 January 6, 1998 Staehlin et al.
5704939 January 6, 1998 Justin
5720746 February 24, 1998 Soubeiran
5743910 April 28, 1998 Bays et al.
5762599 June 9, 1998 Sohn
5771903 June 30, 1998 Jakobsson
5810815 September 22, 1998 Morales
5827286 October 27, 1998 Incavo et al.
5830221 November 3, 1998 Stein et al.
5879375 March 9, 1999 Larson, Jr. et al.
5902304 May 11, 1999 Walker et al.
5935127 August 10, 1999 Border
5945762 August 31, 1999 Chen et al.
5961553 October 5, 1999 Coty et al.
5976138 November 2, 1999 Baumgart et al.
5979456 November 9, 1999 Magovern
6022349 February 8, 2000 McLeod et al.
6033412 March 7, 2000 Losken et al.
6034296 March 7, 2000 Elvin et al.
6102922 August 15, 2000 Jakobsson et al.
6106525 August 22, 2000 Sachse
6126660 October 3, 2000 Dietz
6126661 October 3, 2000 Faccioli et al.
6138681 October 31, 2000 Chen et al.
6139316 October 31, 2000 Sachdeva et al.
6162223 December 19, 2000 Orsak et al.
6183476 February 6, 2001 Gerhardt et al.
6200317 March 13, 2001 Aalsma et al.
6234956 May 22, 2001 He et al.
6241730 June 5, 2001 Alby
6245075 June 12, 2001 Betz et al.
6315784 November 13, 2001 Djurovic
6319255 November 20, 2001 Grundei et al.
6331744 December 18, 2001 Chen et al.
6336929 January 8, 2002 Justin
6343568 February 5, 2002 McClasky
6358283 March 19, 2002 Hogfors et al.
6375682 April 23, 2002 Fleischmann et al.
6389187 May 14, 2002 Greenaway et al.
6400980 June 4, 2002 Lemelson
6402753 June 11, 2002 Cole et al.
6409175 June 25, 2002 Evans et al.
6416516 July 9, 2002 Stauch et al.
6499907 December 31, 2002 Baur
6500110 December 31, 2002 Davey et al.
6508820 January 21, 2003 Bales
6510345 January 21, 2003 Van Bentem
6537196 March 25, 2003 Creighton, IV et al.
6554831 April 29, 2003 Rivard et al.
6565573 May 20, 2003 Ferrante et al.
6565576 May 20, 2003 Stauch et al.
6582313 June 24, 2003 Perrow
6583630 June 24, 2003 Mendes et al.
6616669 September 9, 2003 Ogilvie et al.
6626917 September 30, 2003 Craig
6656135 December 2, 2003 Zogbi et al.
6656194 December 2, 2003 Gannoe et al.
6667725 December 23, 2003 Simons et al.
6673079 January 6, 2004 Kane
6702816 March 9, 2004 Buhler
6706042 March 16, 2004 Taylor
6709293 March 23, 2004 Mori et al.
6730087 May 4, 2004 Butsch
6761503 July 13, 2004 Breese
6769499 August 3, 2004 Cargill et al.
6789442 September 14, 2004 Forch
6796984 September 28, 2004 Soubeiran
6802844 October 12, 2004 Ferree
6809434 October 26, 2004 Duncan et al.
6835207 December 28, 2004 Zacouto et al.
6852113 February 8, 2005 Nathanson et al.
6918838 July 19, 2005 Schwarzler et al.
6918910 July 19, 2005 Smith et al.
6921400 July 26, 2005 Sohngen
6923951 August 2, 2005 Contag et al.
6971143 December 6, 2005 Domroese
7001346 February 21, 2006 White
7008425 March 7, 2006 Phillips
7011658 March 14, 2006 Young
7029472 April 18, 2006 Fortin
7029475 April 18, 2006 Panjabi
7041105 May 9, 2006 Michelson
7060080 June 13, 2006 Bachmann
7063706 June 20, 2006 Wittenstein
7105029 September 12, 2006 Doubler et al.
7105968 September 12, 2006 Nissen
7114501 October 3, 2006 Johnson et al.
7115129 October 3, 2006 Heggeness
7135022 November 14, 2006 Kosashvili et al.
7160312 January 9, 2007 Saadat
7163538 January 16, 2007 Altarac et al.
7189005 March 13, 2007 Ward
7191007 March 13, 2007 Desai et al.
7218232 May 15, 2007 DiSilvestro et al.
7238191 July 3, 2007 Bachmann
7241300 July 10, 2007 Sharkawy et al.
7243719 July 17, 2007 Baron et al.
7255682 August 14, 2007 Bartol, Jr. et al.
7282023 October 16, 2007 Frering
7285087 October 23, 2007 Moaddeb et al.
7302015 November 27, 2007 Kim et al.
7302858 December 4, 2007 Walsh et al.
7314443 January 1, 2008 Jordan et al.
7333013 February 19, 2008 Berger
7357037 April 15, 2008 Hnat et al.
7357635 April 15, 2008 Belfor et al.
7360542 April 22, 2008 Nelson et al.
7390007 June 24, 2008 Helms et al.
7390294 June 24, 2008 Hassler, Jr.
7402134 July 22, 2008 Moaddeb et al.
7402176 July 22, 2008 Malek
7429259 September 30, 2008 Cadeddu et al.
7445010 November 4, 2008 Kugler et al.
7458981 December 2, 2008 Fielding
7485149 February 3, 2009 White
7489495 February 10, 2009 Stevenson
7530981 May 12, 2009 Kutsenko
7531002 May 12, 2009 Sutton et al.
7553298 June 30, 2009 Hunt et al.
7561916 July 14, 2009 Hunt et al.
7601156 October 13, 2009 Robinson
7611526 November 3, 2009 Carl et al.
7618435 November 17, 2009 Opolski
7658754 February 9, 2010 Zhang et al.
7666184 February 23, 2010 Stauch
7666210 February 23, 2010 Franck et al.
7678136 March 16, 2010 Doubler et al.
7678139 March 16, 2010 Garamszegi et al.
7708737 May 4, 2010 Kraft et al.
7708762 May 4, 2010 McCarthy et al.
7727143 June 1, 2010 Birk et al.
7753913 July 13, 2010 Szakelyhidi, Jr. et al.
7753915 July 13, 2010 Eksler et al.
7762998 July 27, 2010 Birk et al.
7763080 July 27, 2010 Southworth
7766855 August 3, 2010 Miethke
7775215 August 17, 2010 Hassler, Jr. et al.
7776068 August 17, 2010 Ainsworth et al.
7776075 August 17, 2010 Bruneau et al.
7776091 August 17, 2010 Mastrorio et al.
7787958 August 31, 2010 Stevenson
7794476 September 14, 2010 Wisnewski
7811328 October 12, 2010 Molz, IV et al.
7835779 November 16, 2010 Anderson et al.
7837691 November 23, 2010 Cordes et al.
7862586 January 4, 2011 Malek
7867235 January 11, 2011 Fell et al.
7875033 January 25, 2011 Richter et al.
7887566 February 15, 2011 Hynes
7901381 March 8, 2011 Birk et al.
7909852 March 22, 2011 Boomer et al.
7918844 April 5, 2011 Byrum et al.
7938841 May 10, 2011 Sharkawy et al.
7985256 July 26, 2011 Grotz et al.
7988709 August 2, 2011 Clark et al.
8002809 August 23, 2011 Baynham
8011308 September 6, 2011 Picchio
8034080 October 11, 2011 Malandain et al.
8043299 October 25, 2011 Conway
8043338 October 25, 2011 Dant
8057473 November 15, 2011 Orsak et al.
8057513 November 15, 2011 Kohm et al.
8083741 December 27, 2011 Morgan et al.
8092499 January 10, 2012 Roth
8095317 January 10, 2012 Ekseth et al.
8105360 January 31, 2012 Connor
8105363 January 31, 2012 Fielding et al.
8114158 February 14, 2012 Carl et al.
8123805 February 28, 2012 Makower et al.
8133280 March 13, 2012 Voellmicke et al.
8147517 April 3, 2012 Trieu et al.
8147549 April 3, 2012 Metcalf et al.
8162897 April 24, 2012 Byrum
8162979 April 24, 2012 Sachs et al.
8177789 May 15, 2012 Magill et al.
8197490 June 12, 2012 Pool et al.
8211149 July 3, 2012 Justis
8211151 July 3, 2012 Schwab et al.
8211179 July 3, 2012 Molz, IV et al.
8216275 July 10, 2012 Fielding et al.
8221420 July 17, 2012 Keller
8226690 July 24, 2012 Altarac et al.
8236002 August 7, 2012 Fortin et al.
8241331 August 14, 2012 Arnin
8246630 August 21, 2012 Manzi et al.
8252063 August 28, 2012 Stauch
8267969 September 18, 2012 Altarac et al.
8278941 October 2, 2012 Kroh et al.
8282671 October 9, 2012 Connor
8298240 October 30, 2012 Giger et al.
8323290 December 4, 2012 Metzger et al.
8357182 January 22, 2013 Seme
8366628 February 5, 2013 Denker et al.
8372078 February 12, 2013 Collazo
8386018 February 26, 2013 Stauch et al.
8394124 March 12, 2013 Biyani
8403958 March 26, 2013 Schwab
8414584 April 9, 2013 Brigido
8419801 April 16, 2013 DiSilvestro et al.
8425608 April 23, 2013 Dewey et al.
8435268 May 7, 2013 Thompson et al.
8439915 May 14, 2013 Harrison et al.
8439926 May 14, 2013 Bojarski et al.
8444693 May 21, 2013 Reiley
8469908 June 25, 2013 Asfora
8470004 June 25, 2013 Reiley
8486070 July 16, 2013 Morgan et al.
8486076 July 16, 2013 Chavarria et al.
8486110 July 16, 2013 Fielding et al.
8486147 July 16, 2013 De Villiers et al.
8494805 July 23, 2013 Roche et al.
8496662 July 30, 2013 Novak et al.
8518062 August 27, 2013 Cole et al.
8523866 September 3, 2013 Sidebotham et al.
8529474 September 10, 2013 Gupta et al.
8529606 September 10, 2013 Alamin et al.
8529607 September 10, 2013 Alamin et al.
8556901 October 15, 2013 Anthony et al.
8556911 October 15, 2013 Mehta et al.
8556975 October 15, 2013 Ciupik et al.
8562653 October 22, 2013 Alamin et al.
8568457 October 29, 2013 Hunziker
8617220 December 31, 2013 Skaggs
8579979 November 12, 2013 Edie et al.
8585595 November 19, 2013 Heilman
8585740 November 19, 2013 Ross et al.
8591549 November 26, 2013 Lange
8591553 November 26, 2013 Eisermann et al.
8613758 December 24, 2013 Linares
8623036 January 7, 2014 Harrison et al.
8632544 January 21, 2014 Haaja et al.
8632548 January 21, 2014 Soubeiran
8632563 January 21, 2014 Nagase et al.
8636771 January 28, 2014 Butler et al.
8636802 January 28, 2014 Serhan et al.
8641719 February 4, 2014 Gephart et al.
8641723 February 4, 2014 Connor
8657856 February 25, 2014 Gephart et al.
8663285 March 4, 2014 Dall et al.
8663287 March 4, 2014 Butler et al.
8668719 March 11, 2014 Alamin et al.
8709090 April 29, 2014 Makower et al.
8758347 June 24, 2014 Weiner et al.
8758355 June 24, 2014 Fisher et al.
8771272 July 8, 2014 LeCronier et al.
8777947 July 15, 2014 Zahrly
8777995 July 15, 2014 McClintock et al.
8790343 July 29, 2014 McClellan et al.
8790409 July 29, 2014 Van den Heuvel et al.
8828058 September 9, 2014 Elsebaie et al.
8828087 September 9, 2014 Stone et al.
8840651 September 23, 2014 Reiley
8870881 October 28, 2014 Rezach et al.
8870959 October 28, 2014 Arnin
8894663 November 25, 2014 Giger et al.
8915915 December 23, 2014 Harrison et al.
8915917 December 23, 2014 Doherty et al.
8920422 December 30, 2014 Homeier et al.
8945188 February 3, 2015 Rezach et al.
8961521 February 24, 2015 Keefer et al.
8961567 February 24, 2015 Hunziker
8968402 March 3, 2015 Myers et al.
8968406 March 3, 2015 Arnin
8992527 March 31, 2015 Guichet
9022917 May 5, 2015 Kasic et al.
9044218 June 2, 2015 Young
9044281 June 2, 2015 Pool et al.
9060810 June 23, 2015 Kercher et al.
9078703 July 14, 2015 Arnin
9113967 August 25, 2015 Soubeiran
9138266 September 22, 2015 Stauch
20020050112 May 2, 2002 Koch et al.
20020072758 June 13, 2002 Reo et al.
20020164905 November 7, 2002 Bryant
20030040671 February 27, 2003 Somogyi et al.
20030144669 July 31, 2003 Robinson
20030220643 November 27, 2003 Ferree
20030220644 November 27, 2003 Thelen et al.
20040011137 January 22, 2004 Hnat et al.
20040011365 January 22, 2004 Govari et al.
20040019353 January 29, 2004 Freid et al.
20040023623 February 5, 2004 Stauch et al.
20040055610 March 25, 2004 Forsell
20040133219 July 8, 2004 Forsell
20040138725 July 15, 2004 Forsell
20040193266 September 30, 2004 Meyer
20050034705 February 17, 2005 McClendon
20050049617 March 3, 2005 Chatlynne et al.
20050065529 March 24, 2005 Liu et al.
20050090823 April 28, 2005 Bartim
20050159754 July 21, 2005 Odrich
20050234448 October 20, 2005 McCarthy
20050234462 October 20, 2005 Hershberger
20050246034 November 3, 2005 Soubeiran
20050261779 November 24, 2005 Meyer
20050272976 December 8, 2005 Tanaka et al.
20060004459 January 5, 2006 Hazebrouck et al.
20060009767 January 12, 2006 Kiester
20060036259 February 16, 2006 Carl et al.
20060036323 February 16, 2006 Carl et al.
20060036324 February 16, 2006 Sachs et al.
20060047282 March 2, 2006 Gordon
20060058792 March 16, 2006 Hynes
20060069447 March 30, 2006 DiSilvestro et al.
20060074448 April 6, 2006 Harrison et al.
20060079897 April 13, 2006 Harrison et al.
20060136062 June 22, 2006 DiNello et al.
20060142767 June 29, 2006 Green et al.
20060155279 July 13, 2006 Ogilvie
20060195087 August 31, 2006 Sacher et al.
20060195088 August 31, 2006 Sacher et al.
20060200134 September 7, 2006 Freid et al.
20060204156 September 14, 2006 Takehara et al.
20060235299 October 19, 2006 Martinelli
20060235424 October 19, 2006 Vitale et al.
20060241746 October 26, 2006 Shaoulian et al.
20060241767 October 26, 2006 Doty
20060249914 November 9, 2006 Dulin
20060271107 November 30, 2006 Harrison et al.
20060282073 December 14, 2006 Simanovsky
20060293683 December 28, 2006 Stauch
20070010814 January 11, 2007 Stauch
20070010887 January 11, 2007 Williams et al.
20070021644 January 25, 2007 Woolson et al.
20070031131 February 8, 2007 Griffitts
20070043376 February 22, 2007 Leatherbury et al.
20070050030 March 1, 2007 Kim
20070118215 May 24, 2007 Moaddeb
20070161984 July 12, 2007 Cresina et al.
20070173837 July 26, 2007 Chan et al.
20070179493 August 2, 2007 Kim
20070185374 August 9, 2007 Kick et al.
20070233098 October 4, 2007 Mastrorio et al.
20070239159 October 11, 2007 Altarac et al.
20070239161 October 11, 2007 Giger et al.
20070255088 November 1, 2007 Jacobson et al.
20070264605 November 15, 2007 Belfor et al.
20070270803 November 22, 2007 Giger et al.
20070276368 November 29, 2007 Trieu et al.
20070276369 November 29, 2007 Allard et al.
20070276373 November 29, 2007 Malandain
20070276378 November 29, 2007 Harrison et al.
20070276493 November 29, 2007 Malandain et al.
20070288024 December 13, 2007 Gollogly
20070288183 December 13, 2007 Bulkes et al.
20080009792 January 10, 2008 Henniges et al.
20080015577 January 17, 2008 Loeb
20080021454 January 24, 2008 Chao et al.
20080021455 January 24, 2008 Chao et al.
20080021456 January 24, 2008 Gupta et al.
20080027436 January 31, 2008 Cournoyer et al.
20080033431 February 7, 2008 Jung et al.
20080033436 February 7, 2008 Song et al.
20080051784 February 28, 2008 Gollogly
20080082118 April 3, 2008 Edidin et al.
20080086128 April 10, 2008 Lewis
20080097487 April 24, 2008 Pool et al.
20080097496 April 24, 2008 Chang et al.
20080108995 May 8, 2008 Conway et al.
20080161933 July 3, 2008 Grotz et al.
20080167685 July 10, 2008 Allard et al.
20080172063 July 17, 2008 Taylor
20080177319 July 24, 2008 Schwab
20080177326 July 24, 2008 Thompson
20080190237 August 14, 2008 Radinger et al.
20080228186 September 18, 2008 Gall et al.
20080255615 October 16, 2008 Vittur et al.
20080272928 November 6, 2008 Shuster
20080275557 November 6, 2008 Makower et al.
20090030462 January 29, 2009 Buttermann
20090062798 March 5, 2009 Conway
20090076597 March 19, 2009 Dahlgren et al.
20090082815 March 26, 2009 Zylber et al.
20090088803 April 2, 2009 Justis et al.
20090093820 April 9, 2009 Trieu et al.
20090093890 April 9, 2009 Gelbart
20090112263 April 30, 2009 Pool et al.
20090163780 June 25, 2009 Tieu
20090171356 July 2, 2009 Klett
20090192514 July 30, 2009 Feinberg et al.
20090198144 August 6, 2009 Phillips et al.
20090216113 August 27, 2009 Meier et al.
20090254088 October 8, 2009 Soubeiran
20090275984 November 5, 2009 Kim et al.
20090281542 November 12, 2009 Justis
20090318919 December 24, 2009 Robinson
20100004654 January 7, 2010 Schmitz et al.
20100057127 March 4, 2010 McGuire et al.
20100094306 April 15, 2010 Chang et al.
20100100185 April 22, 2010 Trieu et al.
20100106192 April 29, 2010 Barry
20100114322 May 6, 2010 Clifford et al.
20100130941 May 27, 2010 Conlon et al.
20100137872 June 3, 2010 Kam et al.
20100145449 June 10, 2010 Makower et al.
20100145462 June 10, 2010 Ainsworth et al.
20100168751 July 1, 2010 Anderson et al.
20100249782 September 30, 2010 Durham
20100249847 September 30, 2010 Jung et al.
20100256626 October 7, 2010 Muller et al.
20100262239 October 14, 2010 Boyden et al.
20100318129 December 16, 2010 Seme et al.
20100331883 December 30, 2010 Schmitz et al.
20110004076 January 6, 2011 Janna et al.
20110057756 March 10, 2011 Marinescu et al.
20110060336 March 10, 2011 Pool et al.
20110066188 March 17, 2011 Seme et al.
20110098748 April 28, 2011 Jangra
20110152725 June 23, 2011 Demir et al.
20110196435 August 11, 2011 Forsell
20110202138 August 18, 2011 Shenoy et al.
20110238126 September 29, 2011 Soubeiran
20110257655 October 20, 2011 Copf et al.
20110284014 November 24, 2011 Cadeddu et al.
20120019341 January 26, 2012 Gabay et al.
20120019342 January 26, 2012 Gabay et al.
20120035661 February 9, 2012 Pool et al.
20120053633 March 1, 2012 Stauch
20120088953 April 12, 2012 King
20120109207 May 3, 2012 Trieu
20120116535 May 10, 2012 Ratron et al.
20120158061 June 21, 2012 Koch et al.
20120172883 July 5, 2012 Sayago
20120179215 July 12, 2012 Soubeiran
20120203282 August 9, 2012 Sachs et al.
20120221106 August 30, 2012 Makower et al.
20120271353 October 25, 2012 Barry
20120283781 November 8, 2012 Arnin
20120296234 November 22, 2012 Wilhelm et al.
20120329882 December 27, 2012 Messersmith et al.
20130013066 January 10, 2013 Landry et al.
20130072932 March 21, 2013 Stauch
20130123847 May 16, 2013 Anderson et al.
20130138017 May 30, 2013 Jundt et al.
20130138154 May 30, 2013 Reiley
20130150863 June 13, 2013 Baumgartner
20130150889 June 13, 2013 Fening et al.
20130178903 July 11, 2013 Abdou
20130211521 August 15, 2013 Shenoy et al.
20130245692 September 19, 2013 Hayes et al.
20130253344 September 26, 2013 Griswold et al.
20130253587 September 26, 2013 Carls et al.
20130261672 October 3, 2013 Horvath
20130296863 November 7, 2013 Globerman et al.
20130296864 November 7, 2013 Burley et al.
20130296940 November 7, 2013 Northcutt et al.
20130325006 December 5, 2013 Michelinie et al.
20130325071 December 5, 2013 Niemiec et al.
20140005788 January 2, 2014 Haaja et al.
20140025172 January 23, 2014 Lucas et al.
20140052134 February 20, 2014 Orisek
20140058392 February 27, 2014 Mueckter et al.
20140058450 February 27, 2014 Arlet
20140066987 March 6, 2014 Hestad et al.
20140088715 March 27, 2014 Ciupik
20140128920 May 8, 2014 Kantelhardt
20140142631 May 22, 2014 Hunziker
20140163664 June 12, 2014 Goldsmith
20140236234 August 21, 2014 Kroll et al.
20140236311 August 21, 2014 Vicatos et al.
20140257412 September 11, 2014 Patty et al.
20140277446 September 18, 2014 Clifford et al.
20140296918 October 2, 2014 Fening et al.
20140303538 October 9, 2014 Baym et al.
20140303539 October 9, 2014 Baym et al.
20140324047 October 30, 2014 Zahrly et al.
20140358150 December 4, 2014 Kaufman et al.
20150105782 April 16, 2015 D'Lima et al.
20150105824 April 16, 2015 Moskowitz et al.
Foreign Patent Documents
1697630 November 2005 CN
101040807 September 2007 CN
1541262 June 1969 DE
8515687 December 1985 DE
19626230 January 1998 DE
19745654 April 1999 DE
102005045070 April 2007 DE
0663184 July 1995 EP
1905388 April 2008 EP
2901991 December 2007 FR
2900563 August 2008 FR
2892617 September 2008 FR
2916622 September 2009 FR
2961386 December 2011 FR
2961386 December 2011 FR
H0956736 March 1997 JP
2002500063 January 2002 JP
WO1998044858 October 1998 WO
WO1999051160 October 1999 WO
WO2001024697 April 2001 WO
WO2001045485 June 2001 WO
WO2001045487 June 2001 WO
WO2001067973 September 2001 WO
WO2001078614 October 2001 WO
WO2007013059 February 2007 WO
WO2007015239 February 2007 WO
WO2011116158 September 2011 WO
WO2013119528 August 2013 WO
WO2014040013 March 2014 WO
Other references
  • Abe et al., “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.”, Spine, 1999, pp. 646-653, 24, No. 7.
  • Ahlbom et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.”, Health Physics, 1998, pp. 494-522, 74, No. 4.
  • Amer et al., “Evaluation of treatment of late-onset tibia vara using gradual angulation translation high tibial osteotomy”, ACTA Orthopaedica Belgica, 2010, pp. 360-366, 76, No. 3.
  • Angrisani et al., “Lap-Band® Rapid Port™ System: Preliminary results in 21 patients”, Obesity Surgery, 2005, p. 936, 15, No. 7.
  • Baumgart et al., “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.”, Practice of Intramedullary Locked Nails, 2006, pp. 189-198.
  • Baumgart et al., “The bioexpandable prosthesis: A new perspective after resection of malignant bone tumors in children.”, J Pediatr Hematol Oncol, 2005, pp. 452-455, 27, No. 8.
  • Bodó et al., “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.”, Eklem Hastaliklari ve Cerrahisi—Joint Diseases and Related Surgery, 2008, pp. 27-32, 19, No. 1.
  • Boudjemline et al., “Off-label use of an adjustable gastric banding system for pulmonary artery banding.”, The Journal of Thoracic and Cardiovascular Surgery, 2006, pp. 1130-1135, 131, No. 5.
  • Brown et al., “Single port surgery and the Dundee Endocone.”, Sages Annual Scientific Sessions: Emerging Technology Poster Abstracts, 2007, ETP007, pp. 323-324.
  • Buchowski et al., “Temporary internal distraction as an aid to correction of severe scoliosis”, J Bone Joint Surg Am, 2006, pp. 2035-2041, 88-A, No. 9.
  • Burghardt et al., “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.”, J Bone Joint Surg Br, 2011, pp. 639-643, 93-B, No. 5.
  • Burke, “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature”, Studies in Health Technology and Informatics, 2006, pp. 378-384, 123.
  • Carter et al., “A cumulative damage model for bone fracture.”, Journal of Orthopaedic Research, 1985, pp. 84-90, 3, No. 1.
  • Chapman et al., “Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review.”, Surgery, 2004, pp. 326-351, 135, No. 3.
  • Cole et al., “Operative technique intramedullary skeletal kinetic distractor: Tibial surgical technique.”, Orthofix, 2005.
  • Cole et al., “The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.”, Injury, 2001, pp. S-D-129-S-D-139, 32.
  • Dailey et al., “A novel intramedullary nail for micromotion stimulation of tibial fractures.”, Clinical Biomechanics, 2012, pp. 182-188, 27, No. 2.
  • Daniels et al., “A new method for continuous intraoperative measurement of Harrington rod loading patterns.”, Annals of Biomedical Engineering, 1984, pp. 233-246, 12, No. 3.
  • De Giorgi et al., “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.”, European Spine Journal, 1999, pp. 8-15, No. 1.
  • Dorsey et al., “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.”, Journal of Knee Surgery, 2006, pp. 95-98, 19, No. 2.
  • Edeland et al., “Instrumentation for distraction by limited surgery in scoliosis treatment.”, Journal of Biomedical Engineering, 1981, pp. 143-146, 3, No. 2.
  • Elsebaie, “Single growing rods (Review of 21 cases). Changing the foundations: Does it affect the results?”, Journal of Child Orthop, 2007, 1:258.
  • Ember et al., “Distraction forces required during growth rod lengthening.”, J of Bone Joint Surg BR, 2006, p. 229, 88-B, No. Suppl. II.
  • European Patent Office, “Observations by a third party under Article 115 EPC in EP08805612 by Soubeiran.”, 2010.
  • Fabry et al., “A technique for prevention of port complications after laparoscopic adjustable silicone gastric banding.”, Obesity Surgery, 2002, pp. 285-288, 12, No. 2.
  • Fried et al., “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.”, Obesity Surgery, 2004, p. 914, 14, No. 7.
  • Gao et al., CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis, American Journal of Human Genetics, 2007, pp. 957-965, 80.
  • Gebhart et al., “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet; The Phenix M. system”, International Society of Limb Salvage 14th International Symposium on Limb Salvage. Sep. 3, 2007, Hamburg, Germany. (2 pages).
  • Gillespie et al. “Harrington instrumentation without fusion.”, J Bone Joint Surg Br, 1981, p. 461, 63-B, No. 3.
  • Goodship et al., “Strain rate and timing of stimulation in mechanical modulation of fracture healing.”, Clinical Orthopaedics and Related Research, 1998, pp. S105-S115, No. 355S.
  • Grass et al., “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.”, Spine, 1997, pp. 1922-1927, 22, No. 16.
  • Gray, “Gray's anatomy of the human body.”, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007.
  • Grimer et al. “Non-invasive extendable endoprostheses for children—Expensive but worth it!”, International Society of Limb Salvage 14th International Symposium on Limb Salvage, 2007.
  • Grünert, “The development of a totally implantable electronic sphincter.” (translated from the German “Die Entwicklung eines total implantierbaren elektronischen Sphincters”), Langenbecks Archiv fur Chirurgie, 1969, pp. 1170-1174, 325.
  • Guichet et al. “Gradual femoral lengthening with the Albizzia intramedullary nail”, J Bone Joint Surg Am, 2003, pp. 838-848, 85-A, No. 5.
  • Gupta et al., “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.”, J Bone Joint Surg Br, 2006, pp. 649-654, 88-B, No. 5.
  • Hankemeier et al., “Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD).”, Oper Orthop Traumatol, 2005, pp. 79-101, 17, No. 1.
  • Harrington, “Treatment of scoliosis. Correction and internal fixation by spine instrumentation.”, J Bone Joint Surg Am, 1962, pp. 591-610, 44-A, No. 4.
  • Hennig et al., “The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis.”, Journal of Knee Surgery, 2007, pp. 6-14, 20, No. 1.
  • Hofmeister et al., “Callus distraction with the Albizzia nail.”, Practice of Intramedullary Locked Nails, 2006, pp. 211-215.
  • Horbach et al., “First experiences with the routine use of the Rapid Port™ system with the Lap-Band®.”, Obesity Surgery, 2006, p. 418, 16, No. 4.
  • Hyodo et al., “Bone transport using intramedullary fixation and a single flexible traction cable.”, Clinical Orthopaedics and Related Research, 1996, pp. 256-268, 325.
  • International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to static magnetic fields.” Health Physics, 2009, pp. 504-514, 96, No. 4.
  • INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB.
  • Kasliwal et al., “Management of high-grade spondylolisthesis.”, Neurosurgery Clinics of North America, 2013, pp. 275-291, 24, No. 2.
  • Kenawey et al., “Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications.”, Injury, 2011, pp. 150-155, 42, No. 2.
  • Kent et al., “Assessment and correction of femoral malrotation following intramedullary nailing of the femur.”, Acta Orthop Belg, 2010, pp. 580-584, 76, No. 5.
  • Klemme et al., “Spinal instrumentation without fusion for progressive scoliosis in young children”, Journal of Pediatric Orthopaedics. 1997, pp. 734-742, 17, No. 6.
  • Korenkov et al., “Port function after laparoscopic adjustable gastric banding for morbid obesity.”, Surgical Endoscopy, 2003, pp. 1068-1071, 17, No. 7.
  • Krieg et al., “Leg lengthening with a motorized nail in adolescents.”, Clinical Orthopaedics and Related Research, 2008, pp. 189-197, 466, No. 1.
  • Kucukkaya et al., “The new intramedullary cable bone transport technique.”, Journal of Orthopaedic Trauma, 2009, pp. 531-536, 23, No. 7.
  • Lechner et al., “In vivo band manometry: A new method in band adjustment”, Obesity Surgery, 2005, p. 935, 15, No. 7.
  • Lechner et al., “Intra-band manometry for band adjustments: The basics”, Obesity Surgery, 2006, pp. 417-418, 16, No. 4.
  • Li et al., “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.”, Injury, 1999, pp. 525-534, 30, No. 8.
  • Lonner, “Emerging minimally invasive technologies for the management of scoliosis.”, Orthopedic Clinics of North America, 2007, pp. 431-440, 38, No. 3.
  • Matthews et al., “Magnetically adjustable intraocular lens.”, Journal of Cataract and Refractive Surgery, 2003, pp. 2211-2216, 29, No. 11.
  • Micromotion, “Micro Drive Engineering-General catalogue.”, 2009, pp. 14-24.
  • Mineiro et al., “Subcutaneous rodding for progressive spinal curvatures: Early results.”, Journal of Pediatric Orthopaedics, 2002, pp. 290-295, 22, No. 3.
  • Moe et al., “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.”, Clinical Orthopaedics and Related Research, 1984, pp. 35-45, 185.
  • Montague et al., “Magnetic gear dynamics for servo control.”, Melecon 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 1192-1197.
  • Montague et al., “Servo control of magnetic gears.”, IEEE/ASME Transactions on Mechatronics, 2012, pp. 269-278, 17, No. 2.
  • Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.”, The Journal of Bone and Joint Surgery, 1971, pp. 445-465, 53, No. 3.
  • Nachlas et al., “The cure of experimental scoliosis by directed growth control.”, The Journal of Bone and Joint Surgery, 1951, pp. 24-34, 33-A, No. 1.
  • Newton et al., “Fusionless scoliosis correction by anterolateral tethering . . . can it work?.”, 39th Annual Scoliosis Research Society Meeting, 2004.
  • Oh et al., “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.”, Archives of Orthopaedic and Trauma Surgery, 2008, pp. 801-808, 128, No. 8.
  • Ozcivici et al., “Mechanical signals as anabolic agents in bone.”, Nature Reviews Rheumatology, 2010, pp. 50-59, 6, No. 1.
  • Piorkowski et al., Preventing Port Site Inversion in Laparoscopic Adjustable Gastric Banding, Surgery for Obesity and Related Diseases, 2007, 3(2), pp. 159-162, Elsevier; New York, U.S.A.
  • Prontes, “Longest bone in body.”, eHow.com, 2012.
  • Rathjen et al., “Clinical and radiographic results after implant removal in idiopathic scoliosis.”, Spine, 2007, pp. 2184-2188, 32, No. 20.
  • Ren et al., “Laparoscopic adjustable gastric banding: Surgical technique”, Journal of Laparoendoscopic & Advanced Surgical Techniques, 2003, pp. 257-263, 13, No. 4.
  • Reyes-Sanchez et al., “External fixation for dynamic correction of severe scoliosis”, The Spine Journal, 2005, pp. 418-426, 5, No. 4.
  • Rinsky et al., “Segmental instrumentation without fusion in children with progressive scoliosis.”, Journal of Pediatric Orthopedics, 1985, pp. 687-690, 5, No. 6.
  • Rode et al., “A simple way to adjust bands under radiologic control”, Obesity Surgery, 2006, p. 418, 16, No. 4.
  • Schmerling et al., “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.”, Journal of Biomedical Materials Research, 1976, pp. 879-892, 10, No. 6.
  • Scott et al., “Transgastric, transcolonic and transvaginal cholecystectomy using magnetically anchored instruments.”, Sages Annual Scientific Sessions, Poster Abstracts, Apr. 18-22, 2007, P511, p. 306.
  • Sharke, “The machinery of life”, Mechanical Engineering Magazine, Feb. 2004, Printed from Internet site Oct. 24, 2007 http://www.memagazine.org/contents/current/features/moflife/moflife.html.
  • Shiha et al., “Ilizarov gradual correction of genu varum deformity in adults.”, Acta Orthop Belg, 2009, pp. 784-791,75, No. 6.
  • Simpson et al., “Femoral lengthening with the intramedullary skeletal kinetic distractor.”, Journal of Bone and Joint Surgery, 2009, pp. 955-961, 91-B, No. 7.
  • Smith, “The use of growth-sparing instrumentation in pediatric spinal deformity.”, Orthopedic Clinics of North America, 2007, pp. 547-552, 38, No. 4.
  • Soubeiran et al. “The Phenix M System, a fully implanted non-invasive lengthening device externally controllable through the skin with a palm size permanent magnet. Applications in limb salvage.” International Society of Limb Salvage 14th International Symposium on Limb Salvage, Sep. 13, 2007, Hamburg, Germany. (2 pages).
  • Soubeiran et al., “The Phenix M System. A fully implanted lengthening device externally controllable through the skin with a palm size permanent magnet; Applications to pediatric orthopaedics”, 6th European Research Conference in Pediatric Orthopaedics, Oct. 6, 2006, Toulouse, France (7 pages).
  • Stokes et al., “Reducing radiation exposure in early-onset scoliosis surgery patients: Novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Prospective validation study and assessment of clinical algorithm”, 20th International Meeting on Advanced Spine Techniques, Jul. 11, 2013. Vancouver, Canada. Scoliosis Research Society.
  • Sun et al., “Masticatory mechanics of a mandibular distraction osteogenesis site: Interfragmentary micromovement.”, Bone, 2007, pp. 188-196, 41, No. 2.
  • Synthes Spine, “Veptr II. Vertical Expandable Prosthetic Titanium Rib II: Technique Guide.”, 2008, 40 pgs.
  • Synthes Spine, “Veptr Vertical Expandable Prosthetic Titanium Rib, Patient Guide.”, 2005, 26 pgs.
  • Takaso et al., “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.”, Journal of Orthopaedic Science, 1998, pp. 336-340, 3, No. 6.
  • Teli et al., “Measurement of forces generated during distraction of growing rods.”, Journal of Children's Orthopaedics, 2007, pp. 257-258, 1, No. 4.
  • Tello, “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities: Experience and technical details.”, The Orthopedic Clinics of North America, 1994, pp. 333-351, 25, No. 2.
  • Thaller et al., “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.”, Injury, 2014 (E-published Oct. 28, 2013), pp. S60-S65, 45.
  • Thompson et al., “Early onset scoliosis: Future directions”, 2007, J Bone Joint Surg Am, pp. 163-166, 89-A, Suppl 1.
  • Thompson et al., “Growing rod techniques in early-onset scoliosis”, Journal of Pediatric Orthopedics, 2007, pp. 354-361, 27, No. 3.
  • Thonse et al., “Limb lengthening with a fully implantable, telescopic, intramedullary nail.”, Operative Techniques in Orthopedics, 2005, pp. 355-362, 15, No. 4.
  • Trias et al., “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.”, Spine, 1979, pp. 228-235, 4, No. 3.
  • Verkerke et al., “An extendable modular endoprosthetic system for bone tumor management in the leg”, Journal of Biomedical Engineering, 1990, pp. 91-96, 12, No. 2.
  • Verkerke et al., “Design of a lengthening element for a modular femur endoprosthetic system”, Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1989, pp. 97-102, 203, No. 2.
  • Verkerke et al., “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.”, The International Journal of Artificial Organs, 1994, pp. 155-162, 17, No. 3.
  • Weiner et al., “Initial clinical experience with telemetrically adjustable gastric banding”, Surgical Technology International, 2005, pp. 63-69, 15.
  • Wenger, “Spine jack operation in the correction of scoliotic deformity: A direct intrathoracic attack to straighten the laterally bent spine: Preliminary report”, Arch Surg, 1961, pp. 123-132 (901-910), 83, No. 6.
  • White, III et al., “The clinical biomechanics of scoliosis.”, Clinical Orthopaedics and Related Research, 1976, pp. 100-112, 118.
  • Yonnet, “A new type of permanent magnet coupling.”, IEEE Transactions on Magnetics, 1981, pp. 2991-2993, 17, No. 6.
  • Yonnet, “Passive magnetic bearings with permanent magnets.”, IEEE Transactions on Magnetics, 1978, pp. 803-805, 14, No. 5.
  • Zheng et al., “Force and torque characteristics for magnetically driven blood pump.”, Journal of Magnetism and Magnetic Materials, 2002, pp. 292-302, 241, No. 2.
  • Hyodo, A., Kotschi, H., Kambic, H., Muschler, G., “Bone Transport Using Intramedullary Fixation and a Single Flexible Traction Cab;e”, Clinical Orthopaedics and Related Research, 1996, No. 325, pp. 256-268.
  • Li, G. et al., Case report: Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated Segment. Injury, Int'l. J. Care Injured 30 (1999) 525-534, Elsevier, Oxford, United Kingdom.
  • Kucukkaya, M. et al., The New Intramedullary Cable Bone Transport Technique, J. Orthop Trauma, 23:7 (2009) 531-536, Raven Press, New York, U.S.A.
  • Oh, C. et al., Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia, Arch Orthop Trauma Surg, 128:8 (2008) 801-808. Springer, New York, U.S.A.
Patent History
Patent number: RE49720
Type: Grant
Filed: Apr 6, 2022
Date of Patent: Nov 7, 2023
Assignee: NuVasive Specialized Orthopedics, Inc. (San Diego, CA)
Inventors: Scott Pool (Laguna Hills, CA), Blair Walker (Mission Viejo, CA)
Primary Examiner: David O Reip
Application Number: 17/714,600
Classifications
Current U.S. Class: Expanding In Diameter Or Length (606/63)
International Classification: A61B 17/72 (20060101); A61B 17/84 (20060101); A61B 17/86 (20060101); A61B 17/88 (20060101);