Patents Issued in November 6, 2008
  • Publication number: 20080272370
    Abstract: A method for manufacturing a field-effect transistor includes the steps of forming a source electrode and a drain electrode each containing hydrogen or deuterium; forming an oxide semiconductor layer in which the electrical resistance is decreased if hydrogen or deuterium is added; and, causing hydrogen or deuterium to diffuse from the source electrode and the drain electrode to the oxide semiconductor layer.
    Type: Application
    Filed: July 3, 2008
    Publication date: November 6, 2008
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ayanori Endo, Ryo Hayashi, Tatsuya Iwasaki
  • Publication number: 20080272371
    Abstract: A method for determining the depth etch, a method of forming a shielded gate trench (SGT) structure and a semiconductor device wafer are disclosed. A material layer is formed over part of a substrate having a trench. The material fills the trench. A resist mask is placed over a test portion of the material layer thereby defining a test structure that lies underneath the resist mask. The resist mask does not cover the trench. The material is isotropically etched and a signal related to a resistance change of the test structure is measured. A lateral undercut DL of the test structure is determined from the signal and an etch depth DT is determined from DL. The wafer may comprise one or more test structures forming a bridge circuit; one or more metal contacts that electrically connect the test structures through contact holes: and resist layer including over the test structures.
    Type: Application
    Filed: March 23, 2007
    Publication date: November 6, 2008
    Applicant: ALPHA & OMEGA SEMICONDUCTOR, LTD.
    Inventors: Tiesheng Li, Yu Wang, Yingying Lou, Anup Bhalla
  • Publication number: 20080272372
    Abstract: A semiconductor die including a test structure is provided. The semiconductor die includes a loop-back formed on a surface of the semiconductor die. The loop-back structure includes a first bonding pad on a first surface; and a second bonding pad on the first surface, wherein the first and the second bonding pads are electrically disconnected from integrated circuit devices in the semiconductor die. A conductive feature electrically shorts the first and the second bonding pads. An additional die including an interconnect structure is bonded onto the semiconductor die. The interconnect structure includes a third and a fourth bonding pad bonded to the first and the second bonding pads, respectively. Through-wafer vias in the additional die are further connected to the third and fourth bonding pads.
    Type: Application
    Filed: March 19, 2007
    Publication date: November 6, 2008
    Inventors: Wen-Liang Luo, Yung-Liang Kuo, Hsu Ming Cheng
  • Publication number: 20080272373
    Abstract: A flash memory device has a resistivity measurement pattern and method of forming the same. A trench is formed in an isolation film in a Self-Aligned Floating Gate (SAFG) scheme. The trench is buried to form a resistivity measurement floating gate. This allows the resistivity of the floating gate to be measured even in the SAFG scheme. Contacts for resistivity measurement are directly connected to the resistivity measurement floating gate. Therefore, variation in resistivity measurement values, which is incurred by the parasitic interface, can be reduced.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Ki Hong Yang, Sang Wook Park
  • Publication number: 20080272374
    Abstract: To provide a semiconductor display device capable of displaying an image having clarity and a desired color, even when the speed of deterioration of an EL layer is influenced by its environment. Display pixels and sensor pixels of an EL display each have an EL element, and the sensor pixels each have a diode. The luminance of the EL elements of each in the display pixels is controlled in accordance with the amount of electric current flowing in each of the diodes.
    Type: Application
    Filed: July 3, 2008
    Publication date: November 6, 2008
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Publication number: 20080272375
    Abstract: A thin film transistor array panel, a display device including the thin film transistor array panel, and a method for manufacturing the display device. The thin film transistor array panel includes a substrate having first and second surfaces, a first thin film form formed on the first surface and including a first electrode, and a second thin film form formed on the second surface and including a second electrode, to thereby improve the viewing angle and contrast ratio of the display device.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 6, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Chan OH, Yong-Kuk YUN, Woo-Jin BAE
  • Publication number: 20080272376
    Abstract: In a semiconductor device having a substrate which has a metal surface, an insulating film which is formed on the substrate having the metal surface, and a pixel unit which is formed on the insulating film; the pixel unit includes a TFT, and wiring lines connected with the TFT, and a storage capacitor is constituted by the substrate (11) having the metal surface, the insulating film (12), and the wiring line (21). As the insulating film is thinner, and as the area of a region where the insulating film and the wiring line lie in contact is larger, the storage capacitor is endowed with a larger capacity.
    Type: Application
    Filed: July 10, 2008
    Publication date: November 6, 2008
    Inventors: Tatsuya Arao, Atsuo Isobe, Toru Takayama
  • Publication number: 20080272377
    Abstract: Affords high-carrier-concentration, low-cracking-incidence gallium nitride substrates and methods of forming gallium nitride films. A gallium nitride film 52 in which the carrier concentration is 1×1017 cm?3 or more is created. Initially, a gallium nitride layer 51 including an n-type dopant is formed onto a substrate 50. Then, the gallium nitride layer 51 formed on the substrate 50 is heated to form a gallium nitride film 52.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 6, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Seiji Nakahata
  • Publication number: 20080272378
    Abstract: There is provided a method of forming a nitride semiconductor layer, including the steps of firstly providing a substrate on which a patterned epitaxy layer with a pier structure is formed. A protective layer is then formed on the patterned epitaxy layer, exposing a top surface of the pier structure. Next, a nitride semiconductor layer is formed over the patterned epitaxy layer connected to the nitride semiconductor layer through the pier structure, wherein the nitride semiconductor layer, the pier structure, and the patterned epitaxy layer together form a space exposing a bottom surface of the nitride semiconductor layer. Thereafter, a weakening process is performed to remove a portion of the bottom surface of the nitride semiconductor layer and to weaken a connection point between the top surface of the pier structure and the nitride semiconductor layer. Finally, the substrate is separated from the nitride semiconductor layer through the connection point.
    Type: Application
    Filed: June 11, 2008
    Publication date: November 6, 2008
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yih-Der Guo, Chih-Ming Lai, Jenq-Dar Tsay, Po-Chun Liu
  • Publication number: 20080272379
    Abstract: In accordance with the invention, a display apparatus including a light source is provided, the light source having at least one superluminescent light emitting diode (SLED), the apparatus further having at least one light modulating device arranged in a beam path of a light beam emitted by the light source and operable to emit influenced light upon incidence of the light beam, the light modulating device being operatively connected to an electronic control, the display apparatus further having a projection optics arranged in a beam path of the influenced light.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Applicant: EXALOS AG
    Inventors: Valerio Laino, Lorenzo Occhi, Christian Velez
  • Publication number: 20080272380
    Abstract: An LED apparatus for illumination toward a preferential side in a downward and outward direction including a shield member in the form of a layer positioned over LED packages and secondary lens members. The shield member has a shield portion and a substantially planar non-shield portion thereabout. In preferred embodiments, the shield portion extends over a part of the lens portion of the secondary lens member. A cover preferably secures the shield member with respect to the secondary lens member, the primary lens and the LED package, the shield member preferably being sandwiched between the cover and the flange of the secondary lens member.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Applicant: RUUD LIGHTING, INC.
    Inventor: Kurt S. Wilcox
  • Publication number: 20080272381
    Abstract: Provided is an organic light emitting display, in which a semiconductor circuit unit of 2T-1C structure including a switching transistor and a driving transistor formed of single crystalline silicon is formed on a plastic substrate. A method of fabricating the single crystalline silicon includes: growing a single crystalline silicon layer to a predetermined thickness on a crystal growth plate; depositing a buffer layer on the single crystalline silicon layer; forming a partition layer at a predetermined depth in the single crystalline silicon layer by, e.g., implanting hydrogen ions in the single crystalline silicon layer from an upper portion of an insulating layer; attaching a substrate to the buffer layer; and releasing the partition layer of the single crystalline silicon layer by heating the partition layer from the crystal growth plate to obtain a single crystalline silicon layer of a predetermined thickness on the substrate.
    Type: Application
    Filed: July 18, 2008
    Publication date: November 6, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Takashi NOGUCHI, Wenxu Xianyu, Huaxiang Yin
  • Publication number: 20080272382
    Abstract: A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.
    Type: Application
    Filed: February 16, 2007
    Publication date: November 6, 2008
    Applicants: LG Electronics Inc., LG INNOTEK CO., LTD.
    Inventors: Jong Wook Kim, Hyun Kyong Cho, Gyu Chul Yi, Sung Ji An, Jin Kyoung Yoo, Young Joon Hong
  • Publication number: 20080272383
    Abstract: Side-mountable semiconductor light emitting device packages include an electrically insulating substrate having a front face and a back face and a side face extending therebetween. The side face is configured for mounting on an underlying surface. An electrically conductive contact is provided proximate an edge of the substrate on the back face of the substrate and/or on a recessed region on the side face of the substrate. The contact is positioned to be positioned proximate an electrical connection region of the underlying surface when the semiconductor light emitting device package is side mounted on the underlying surface. A conductive trace extends along the front face of the substrate and is electrically connected to the contact. A semiconductor light emitting device is mounted on the front face of the substrate and electrically connected to the conductive trace.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Inventor: Ban P. Loh
  • Publication number: 20080272384
    Abstract: A light emitting diode (LED) having disposed on a top of a package an optical mechanism comprised of multiple grooves or dots to promote optical use efficiency of the packaging through light condensing effects produced by the optical mechanism to collect a light source inside the LED to emit in a given direction through the optical mechanism for effectively reducing discriminating escape of the light source in both right and left sides of the given direction thus to significantly upgrade general luminance performance of the LED.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Inventors: Ting-Tung Cheng, Wen-Pao Tseng, Hsin-Chien Chiang
  • Publication number: 20080272385
    Abstract: A light emitting diode includes a base, a light emitting chip, and a wavelength converting layer. The base is formed with a recessed portion that has a bottom wall surface, and a sidewall surface extending upwardly from the bottom wall surface and cooperating with the bottom wall surface to define a receiving space. The light emitting chip is provided on the bottom wall surface of the receiving space, and has a top chip surface disposed below a top surface of the base, and a peripheral chip surface extending downwardly from the top chip surface and being substantially parallel to and forming a gap with the side wall surface of the recessed portion. The wavelength converting layer is filled in the receiving space in the recessed portion so as to cover the top chip surface and the peripheral chip surface of the light emitting chip.
    Type: Application
    Filed: July 23, 2007
    Publication date: November 6, 2008
    Inventors: Chia-Hao Wu, Tien-Yu Lee
  • Publication number: 20080272386
    Abstract: Broad spectrum light emitting devices and methods and semiconductor chips for fabricating such devices include a light emitting element, such as a diode or laser, which emits light in a predefined range of frequencies. The light emitting element includes a shaped substrate suitable for light extraction through the substrate and a cavity in the substrate proximate the light emitting element. For example, a trench adjacent the light emitting element may be provided. The cavity/trench is configured to contain light conversion material such that light extracted from sidewalls of the cavity/trench passes through the light conversion material contained in the cavity/trench. Methods of fabricating such devices and/or chips are also provided.
    Type: Application
    Filed: July 15, 2008
    Publication date: November 6, 2008
    Inventor: Peter S. Andrews
  • Publication number: 20080272387
    Abstract: An adapted LED is provided comprising a short-wavelength LED and a re-emitting semiconductor construction, wherein the re-emitting semiconductor construction comprises at least one potential well not located within a pn junction. The potential well(s) are typically quantum well(s). The adapted LED may be a white or near-white light LED. The re-emitting semiconductor construction may additionally comprise absorbing layers surrounding or closely or immediately adjacent to the potential well(s). In addition, graphic display devices and illumination devices comprising the adapted LED according to the present invention are provided.
    Type: Application
    Filed: July 16, 2008
    Publication date: November 6, 2008
    Inventors: Thomas J. Miller, Michael A. Haase, Terry L. Smith, Xiaoguang Sun
  • Publication number: 20080272388
    Abstract: A method for fabricating a thin film pattern on a substrate, includes the steps of: forming a concave part on the substrate that conforms to the thin film pattern; and applying a function liquid into the concave part.
    Type: Application
    Filed: July 1, 2008
    Publication date: November 6, 2008
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Toshihiro Ushiyama, Toshimitsu Hirai, Toshiaki Mikoshiba, Hiroshi Kiguchi, Hironori Hasei
  • Publication number: 20080272389
    Abstract: A sealed infrared radiation source includes an emitter membrane stimulated by an electrical current conducted through the membrane, which acts like an electrical conductor, wherein the membrane is mounted between first and second housing parts, at least one being transparent in the IR range, each housing part defining a cavity between the membrane and the respective housing part of each side of the membrane. The housing parts are at least partially electrical conductive, and a first of the housing parts is electrically coupled to a first end of the electrical conductor and insulated from the second end of the electrical conductor, the second housing part being electrically coupled to a second end of the electrical conductor and being insulated from the first end of the electrical conductor, thus allowing a current applied from the first housing part to the second housing part to pass through and heat the membrane.
    Type: Application
    Filed: September 13, 2005
    Publication date: November 6, 2008
    Applicant: SINTEF
    Inventors: Henrik Rogne, Dag Thorstein Wang, Trond Andreas Hansen, Sigurd Teodor Moe, Alain Ferber
  • Publication number: 20080272390
    Abstract: An LED apparatus comprises a base, an LED device, an electrode member and an insulation layer. The base has a bevel side to be embedded with a corresponding receiving base for electrical conduction of an electrode (e.g., a negative electrode). The LED device is placed on an upper surface of the base. The electrode member comprising a metal rod and an electrode plate is connected to the LED device for electrical conduction of an electrode (e.g., a positive electrode). The insulation layer is placed between the electrode plate of the electrode member and the base for electrical insulation. The bevel side of the base can be modified as desired, and is generally less than 10 degrees, and preferably less than 5 degrees, and may be less than 3 degrees if needed.
    Type: Application
    Filed: January 4, 2008
    Publication date: November 6, 2008
    Applicant: POLYTRONICS TECHNOLOGY CORPORATION
    Inventors: David Shau Chew Wang, Jyh Ming Yu, Jen Chien Wang, Hsieh Chang Huang
  • Publication number: 20080272391
    Abstract: Various methods and devices are implemented using efficient silicon compatible integrated light communicators. According to one embodiment of the present invention, a semiconductor device is implemented for communicating light, such as by detecting, modulating or emitting light. The device has a silicon-seeding location, an insulator layer and a second layer on the insulator layer. The second layer includes a silicon-on-insulator region and an active region surrounded by the silicon-on-insulator region and connected to the silicon-seeding location. The active region includes a single-crystalline germanium-based material that extends from the silicon-seeding location through a passageway with a cross-sectional area that is sufficiently small to mitigate crystalline growth defects.
    Type: Application
    Filed: March 28, 2008
    Publication date: November 6, 2008
    Inventors: Pawan Kapur, Michael West Wiemer
  • Publication number: 20080272392
    Abstract: A nitride crystal is characterized in that, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the nitride crystal obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a surface of the crystal while X-ray diffraction conditions of the specific parallel crystal lattice planes are satisfied, a uniform distortion at a surface layer of the crystal represented by a value of |d1?d2|/d2 obtained from the plane spacing d1 at the X-ray penetration depth of 0.3 ?m and the plane spacing d2 at the X-ray penetration depth of 5 ?m is equal to or lower than 2.1×10?3.
    Type: Application
    Filed: July 1, 2008
    Publication date: November 6, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Tokiko Kaji, Seiji Nakahata, Takayuki Nishiura
  • Publication number: 20080272393
    Abstract: A semiconductor device includes a semiconductor substrate that includes a substrate layer having a first composition of semiconductor material. A source region, drain region, and a channel region are formed in the substrate, with the drain region spaced apart from the source region and the gate region abutting the channel region. The channel region includes a channel layer having a second composition of semiconductor material. Additionally, the substrate layer abuts the channel layer and applies a stress to the channel region along a boundary between the substrate layer and the channel layer.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Publication number: 20080272394
    Abstract: Junction field effect transistors (JFET) formed in substrates containing germanium. JFETs having polycrystalline semiconductor surface contacts with self-aligned silicide formed thereon and self-aligned source, drain and gate regions formed by thermal drive-in of impurities from surface contacts into the substrate, and implanted link regions. Others have a polycrystalline semiconductor gate surface contact and metal back gate, source and drain contacts and a metal surface contact to the gate surface contact with implanted source and drains and a self-aligned gate region. JFETs having a polycrystalline semiconductor gate surface contact and metal back gate, source and drain contacts and a metal surface contact to the gate surface contact with implanted source and drains and a self-aligned gate region and silicide formed on the top of the source, drain and back gate contacts and on top of the gate polycrystalline semiconductor gate contact to which the metal surface contacts make electrical contact.
    Type: Application
    Filed: October 10, 2007
    Publication date: November 6, 2008
    Inventors: Ashok Kumar Kapoor, Madhukar B. Vora, Weimin Zhang, Sachin R. Sonkusale, Yujie Liu
  • Publication number: 20080272395
    Abstract: Enhanced hole mobility p-type JFET and fabrication methods. A p-type junction field effect transistor including a substrate of n-type, a source region and a drain region formed in the substrate; wherein the source region and the drain region are p-type doped and at least one of the source region and the drain region is formed with silicon-germanium compound (Si1-xGex), a p-type channel disposed between the source and the drain in the substrate; wherein compressive stress is induced in the p-type channel substantially along a channel length by the Si1-xGex, and an n-type gate region within the p-type channel. The n-type gate region is electrically coupled to a gate contact that is operable to modulate a depletion width of the p-type channel.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventor: Srinivasa R. Banna
  • Publication number: 20080272396
    Abstract: Method to produce a structure consisting of depositing a material by columnar epitaxy on a crystalline face of a substrate (2), of continuing so that the columns (4) give a continuous layer (5). The surface is provided with a period array of bumps (3) on a nanometric scale, each bump (3) having a support zone (35) and being obtained from an array of crystalline defects and/or strain fields created within a crystalline region (16) located in the vicinity of a bonding interface (15) between two crystalline elements (11, 12) whose crystalline lattices have a twist and/or tilt angle and/or have interfacial lattice mismatch, able to condition the period (38) of the array of bumps (3). The period (38) of the array, the height (36) of the bumps and the size of their support zone (35) being adjusted so that the continuous layer (40) has a critical thickness that is greater than that obtained using epitaxy without the bumps.
    Type: Application
    Filed: December 4, 2006
    Publication date: November 6, 2008
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Frank Fournel, Hubert Moriceau
  • Publication number: 20080272397
    Abstract: The current invention introduces a modulated field element incorporated into the semiconductor device outside the controlling electrode and active areas. This element changes its conductivity and/or dielectric properties depending on the electrical potentials of the interface or interfaces between the modulated field element and the semiconductor device and/or incident electromagnetic radiation. The element is either connected to only one terminal of the semiconductor device, or not connected to any terminal of a semiconductor device nor to its active area(s). Such an element can be used as modulated field plate, or a part of a field plate, as a passivation layer or its part, as a guard ring or its part, as a smart field or charge control element or its part, as a feedback element or its part, as a sensor element or its part, as an additional electrode or its part, as an electromagnetic signal path or its part, and/or for any other functions optimizing or modernizing device performance.
    Type: Application
    Filed: November 26, 2007
    Publication date: November 6, 2008
    Inventors: Alexei Koudymov, Michael Shur, Remigijus Gaska
  • Publication number: 20080272398
    Abstract: A method of forming a conductive spacer on a semiconductor device. The method includes depositing a polysilicon layer on the semiconductor device, selectively implanting dopant ions in the polysilicon layer on a first side of a transistor region of the semiconductor device to define a conductive spacer area, and removing the polysilicon layer except for the conductive spacer area. Optionally, a silicidation process can be performed on the conductive spacer area so that the conductive spacer is made up of metal silicide.
    Type: Application
    Filed: August 31, 2007
    Publication date: November 6, 2008
    Inventors: Gary Bela Bronner, David Michael Fried, Jeffrey Peter Gambino, Leland Chang, Ramachandra Divakaruni, Haizhou Yin, Gregory Costrini, Viraj Y. Sardesai
  • Publication number: 20080272399
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080272400
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080272401
    Abstract: A junction field effect transistor includes a substrate and a well region on the substrate. A channel region lies in the well region. A source region lies in the channel region. A drain region lies in the channel region and apart from the source region. A gate region is isolated from the source, drain, and channel regions. The gate region is in contact with a portion of the well region.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventors: Madhu Vora, Ashok K. Kapoor
  • Publication number: 20080272402
    Abstract: A junction field effect transistor comprises a semiconductor substrate. A first impurity region of a first conductivity type is formed in the substrate. A second impurity region of the first conductivity type is formed in the substrate and spaced apart from the first impurity region. A channel region of the first conductivity type is formed between the first and second impurity regions. A gate region of a second conductivity type is formed in the substrate between the first and second impurity regions. A gap region is formed in the substrate between the gate region and the first impurity region such that the first impurity region is spaced apart from the gate region.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Inventors: Samar K. Saha, Ashok K. Kapoor
  • Publication number: 20080272403
    Abstract: A junction field effect transistor comprises a semiconductor substrate. A source region of a first conductivity type is formed in the substrate. A drain region of the first conductivity type is formed in the substrate. A channel region of the first conductivity type is formed in the substrate. A gate region of a second conductivity type is formed in the substrate between the source and drain regions. A first virtual link region is formed in the substrate between the gate region and either the source region or the drain region. A dielectric material overlays the first virtual link region. A first electrode region overlays the dielectric material.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Inventors: Samar K. Saha, Ashok K. Kapoor
  • Publication number: 20080272404
    Abstract: A semiconductor device includes a substrate of semiconductor material. A source region, a drain region, and a conducting region of the semiconductor device are formed in the substrate and doped with a first type of impurities. The conducting region is operable to conduct current between the drain region and the source region when the semiconductor device is operating in an on state. A gate region is also formed in the substrate and doped with a second type of impurities. The gate region abuts a channel region of the conducting region. A stress layer is deposited on at least a portion of the conducting region. The stress layer applies a stress to the conducting region along a boundary of the conducting region that strains at least a portion of the conducting region.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Publication number: 20080272405
    Abstract: A semiconductor device that includes a memory cell having a junction field effect transistor (JFET) used to form a content addressable memory (CAM) cell is disclosed. The JFET may include a data storage region disposed between a first and second insulating region. The data storage region provides a first threshold voltage to the JFET when storing a first data value and provides a second threshold voltage to the JFET when storing a second data value. The memory cell is a dynamic random access memory (DRAM) cell and can be used to form a CAM cell. The CAM cell may be a ternary CAM cell formed with as few as two JFETs.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventor: Damodar R. Thummalapally
  • Publication number: 20080272406
    Abstract: Double gate JFET with reduced area consumption and fabrication method therefore. Double-gate semiconductor device including a substrate having a shallow trench isolator region comprising a first STI and a second STI, a channel region having a first and second channel edges, the channel region formed in the substrate and disposed between and in contact with the first STI and the second STI at the first and second channel edge. The first STI has a first cavity at the first channel edge, and the second STI has a second cavity at the second channel edge. The device further includes a gate electrode region comprising conductive material filling at least one of the first and second cavities. At least one of the first and second cavities is physically configured to provide electrical coupling of the gate electrode region to a back-gate P-N junction.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 6, 2008
    Applicant: DSM SOLUTIONS, INC.
    Inventor: Srinivasa R. Banna
  • Publication number: 20080272407
    Abstract: A semiconductor device includes a silicon on insulator (SOI) substrate, comprising an insulation layer formed on semiconductor material, and a fin structure. The fin structure is formed of semiconductor material and extends from the SOI substrate. Additionally, the fin structure includes a source region, a drain region, a channel region, and a gate region. The source region, drain region, and the channel region are doped with a first type of impurities, and the gate region is doped with a second type of impurities. The gate region abuts the channel region along at least one boundary, and the channel region is operable to conduct current between the drain region and the source region when the semiconductor device is operating in an on state.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Publication number: 20080272408
    Abstract: Integrated active area isolation structure for transistor to replace larger and more expensive Shallow Trench Isolation or field oxide to isolate transistors. Multiple well implant is formed with PN junctions between wells and with surface contacts to substrate and wells so bias voltages applied to reverse bias PN junctions to isolate active areas. Insulating layer is formed on top surface of substrate and interconnect channels are etched in insulating layer which do not go down to the semiconductor substrate. Contact openings for surface contacts to wells and substrate are etched in insulating layer down to semiconductor layer. Doped silicon or metal is formed in contact openings for surface contacts and to form interconnects in channels. Silicide may be formed on top of polycrystalline silicon contacts and interconnect lines to lower resistivity. Any JFET or MOS transistor may be integrated into the resulting junction isolated active area.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 6, 2008
    Applicant: DSM SOLUTIONS, INC.
    Inventor: Madhukar B. Vora
  • Publication number: 20080272409
    Abstract: A junction field effect transistor comprises a semiconductor substrate, a source region formed in the substrate, a drain region formed in the substrate and spaced apart from the source region, and a gate region formed in the substrate. The transistor further comprises a first channel region formed in the substrate and spaced apart from the gate region, and a second channel region formed in the substrate and between the first channel region and the gate region. The second channel region has a higher concentration of doped impurities than the first channel region.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Inventors: Sachin R. Sonkusale, Weimin Zhang, Ashok K. Kapoor
  • Publication number: 20080272410
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) having self-aligned spacer contacts is provided. In accordance with embodiments of the present invention, a transistor, having a gate electrode and source/drain regions formed on opposing sides of the gate electrode, is covered with a first dielectric layer. A first contact opening is formed in the first dielectric layer to expose at least a portion of one of the source/drain regions. A second dielectric layer is formed over the first dielectric layer. Thereafter, an inter-layer dielectric layer is formed over the second dielectric layer and a second contact opening is formed through the inter-layer dielectric layer. In an embodiment, an etch-back process may be performed on the second dielectric layer prior to forming the inter-layer dielectric layer.
    Type: Application
    Filed: May 2, 2007
    Publication date: November 6, 2008
    Inventor: Chung-Te Lin
  • Publication number: 20080272411
    Abstract: A semiconductor device has at least two tensile stressor layers that are cured with UV radiation. A second tensile stressor layer is formed after a first stressor layer. In some examples, the tensile stressor layers include silicon nitride and hydrogen. In some examples, the second tensile stressor layer has a greater shrinkage percentage due to the curing than the first tensile stressor layer. In one form, the second tensile stressor layer after the curing exerts a greater tensile stress than the first tensile stressor layer. The tensile stressors layers are utilized to improve carrier mobility in an N-channel transistor and thus enhance transistor performance. In one form a single group of overlying tensile stressor layers is provided with each layer being increasingly thicker and having increasingly more hydrogen prior to being cured. In other embodiments multiple overlying groups are formed, each group having a similar repeating depth and hydrogen profile.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Inventors: Xiangzheng Bo, Tien Ying Luo, Kurt H. Junker, Paul A. Grudowski, Venkat R. Kolagunta
  • Publication number: 20080272412
    Abstract: A method (and system) of reducing contact resistance on a silicon-on-insulator device, including controlling a silicide depth in a source-drain region of the device.
    Type: Application
    Filed: July 17, 2008
    Publication date: November 6, 2008
    Applicant: International Business Machines Corporation
    Inventors: Brian J. Greene, Louis Lu-Chen Hsu, Jack Allan Mandelman, Chun-Yung Sung
  • Publication number: 20080272413
    Abstract: In order to detect light with in particular a high blue component, the inversion zone and the space charge zone of a CMOS-like structure are used. In conjunction with an at least partly transparent gate electrode, in particular a transparent conductive oxide or a patterned gate electrode, it becomes possible to absorb the short-wave component of incident light within the inversion zone and to reliably conduct away the generated charge carrier pairs to first and second contacts. During operation, a control voltage is applied to the gate electrode with a magnitude that generates a continuous inversion zone below the optionally patterned gate electrode.
    Type: Application
    Filed: January 26, 2006
    Publication date: November 6, 2008
    Inventors: Hubert Enichlmair, Jochen Kraft, Georg Rohrer
  • Publication number: 20080272414
    Abstract: An image sensing device can include one or more image sensing cells. Each image sensing cell can have a charge store element formed from a semiconductor material doped to a first conductivity type. The charge store element can be in contact with a channel region formed from a semiconductor material doped to a second conductivity type. The charge store element can have one or more surfaces for exposure to an image source. Each image sensing cell can also include a charge electrode formed from a semiconductor material doped to the first conductivity type that is separated from the charge store element by a semiconductor material doped to the second conductivity type. In addition, one or more current detection electrodes can be included in each image sensing cell. A current detection electrode can pass a current flowing through the channel region in a read operation. Such an image sensing cell can be compact in size and/or have a large image sensing area.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventor: Madhu P. Vora
  • Publication number: 20080272415
    Abstract: A solid-state imaging device includes a photoelectric conversion section which is provided for each pixel and which converts light incident on a first surface of a substrate into signal charges, a circuit region which reads signal charges accumulated by the photoelectric conversion section, a multilayer film including an insulating film and a wiring film, the multilayer film being disposed on a second surface of the substrate opposite to the first surface, and a transmission-preventing film disposed at least between the wiring film in the multilayer film and the substrate.
    Type: Application
    Filed: June 26, 2008
    Publication date: November 6, 2008
    Inventors: Masakazu Furukawa, Keiji Mabuchi
  • Publication number: 20080272416
    Abstract: Provided is an image sensor and method of manufacturing the same. The image sensor can include a semiconductor substrate, a metal interconnection layer, an inorganic layer, lens seed patterns, and microlenses. The semiconductor substrate can include unit pixels. The metal interconnection layer can be disposed on the semiconductor substrate to provide signal and poser connections to the unit pixels. The inorganic layer can be disposed on the metal interconnection layer. The lens seed patterns are selectively disposed on the inorganic layer and are formed of an organic material. The microlenses are formed on the lens seed patterns.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 6, 2008
    Inventor: Young Je Yun
  • Publication number: 20080272417
    Abstract: An image sensor and method for manufacturing the same are provided. The image sensor can include an isolation area and active area on a substrate; a photodiode area and a transistor area provided on the active area; a gate insulating layer on the transistor area; and a gate electrode provided on the gate insulating layer and a portion of the photodiode area by extending over a portion of the isolation area between the transistor area and the photodiode area. In one embodiment, the gate electrode can be a gate electrode of a drive transistor of a 3-T type image sensor.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 6, 2008
    Inventor: IN GUEN YEO
  • Publication number: 20080272418
    Abstract: A method for forming a buried mirror in a semiconductor component includes the steps of forming a structure comprising a semiconductor layer laid on an insulating layer covering a substrate; forming one or several openings in the semiconductor layer emerging at the surface of the insulating layer; eliminating a portion of the insulating layer, whereby a recess is formed; forming a second thin insulating layer against the wall of the recess; and forming a metal layer in the recess against the second insulating layer.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 6, 2008
    Applicants: STMicroelectronics SA, STMicroelectronics (Canada) Inc.
    Inventors: Sebastien Jouan, Michel Marty
  • Publication number: 20080272419
    Abstract: A solid-state imaging device includes a photoelectric conversion section which is provided for each pixel and which converts light incident on a first surface of a substrate into signal charges, a circuit region which reads signal charges accumulated by the photoelectric conversion section, a multilayer film including an insulating film and a wiring film, the multilayer film being disposed on a second surface of the substrate opposite to the first surface, and a transmission-preventing film disposed at least between the wiring film in the multilayer film and the substrate.
    Type: Application
    Filed: June 26, 2008
    Publication date: November 6, 2008
    Inventors: Masakazu Furukawa, Keiji Mabuchi