Patents Issued in February 19, 2019
  • Patent number: 10208312
    Abstract: The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcriptional regulation of gene expression using RNA molecules to both repress and activate translation of an open reading frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5? untranslated region (5? UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention designed to operate in prokaryotic cells, the stem of the hairpin secondary structure sequesters the ribosome binding site (RBS). In embodiments of the invention designed to operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5? UTR of an mRNA.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 19, 2019
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: James J. Collins, Farren J. Isaacs, Charles R. Cantor, Daniel J. Dwyer
  • Patent number: 10208313
    Abstract: A coryneform bacterium transformant engineered by the following (A) to (D): (A) enhancement of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase activity; (B) prevention, inhibition, or reduction of intracellular sugar uptake mediated by phosphotransferase system (PTS); (C) enhancement of intracellular sugar uptake activity mediated by a sugar transporter different from phosphotransferase system and enhancement of glucokinase activity; and (D) enhancement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity is capable of efficiently producing shikimic acid or the like from a sugar.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: February 19, 2019
    Assignee: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Masayuki Inui, Masako Suda, Kazumi Hiraga, Takahisa Kogure
  • Patent number: 10208314
    Abstract: The present invention provides novel DNA molecules and constructs, including their nucleotide sequences, useful for modulating gene expression in plants and plant cells. The invention also provides transgenic plants, plant cells, plant parts, seeds, and commodity products comprising the DNA molecules operably linked to heterologous transcribable polynucleotides, along with methods of their use.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: February 19, 2019
    Assignee: Monsanto Technology LLC
    Inventor: Stanislaw Flasinski
  • Patent number: 10208315
    Abstract: Soybean oil compositions with unique fatty acid profiles are disclosed. These oils can be derived by the suppression of endogenous soybean FAD2 and FAD3 genes and the expression of a stearoyl acyl ACP thioesterase. Soybean plants and seeds comprising these oils are also disclosed.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: February 19, 2019
    Assignee: Monsanto Technology LLC
    Inventor: Nicholas William Wagner
  • Patent number: 10208316
    Abstract: Provided are methods of increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content and/or abiotic stress tolerance of a plant by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 2560, 2557, 184, 238, 188, 154-156, 158-161, 163-183, 185-187, 189-197, 200-237, 239-264, 266-269, 1351, 1365-1425, 1429-1457, 1459, 1461-1730, 1735, 1739-2397, 2533-2541, 2544-2556, 2558, 2559, 2561-2562 or 2563. Also provided are isolated polynucleotides and polypeptides which can be used to increase nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content and/or abiotic stress tolerance of a plant of a plant.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: February 19, 2019
    Assignee: Evogene Ltd.
    Inventors: Basia Judith Vinocur, Sharon Ayal, Alex Diber, Eyal Emmanuel, Gil Ronen, Michael Gang, Dotan Dimet, Hagai Karchi, Yoav Herschkovitz
  • Patent number: 10208317
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 19, 2019
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 10208318
    Abstract: The present invention relates to compositions and methods for the delivery of therapeutic proteins to the CNS using recombinant AAV vectors. More specifically, the invention relates to compositions and methods for delivering proteins into the cerebrospinal fluid of mammalian subjects through peripheral administration of AAV vectors. The invention may be used to treat various disorders of the central nervous system, including degenerative diseases and motor neuron diseases.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: February 19, 2019
    Assignees: GENETHON, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventor: Martine Barkats
  • Patent number: 10208319
    Abstract: Disclosed herein are methods, compositions, and kits for high efficiency, site-specific genomic editing of cells for treating or preventing genetic blood disorders.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: February 19, 2019
    Assignees: President and Fellows of Harvard College, The Children's Medical Center Corporation
    Inventors: Kiran Musunuru, Chad A. Cowan, Derrick J. Rossi
  • Patent number: 10208320
    Abstract: The invention provides a non-naturally occurring microbial organism having a microbial organism having at least one exogenous gene insertion and/or one or more gene disruptions that confer production of primary alcohols. A method for producing long chain alcohols includes culturing these non-naturally occurring microbial organisms.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: February 19, 2019
    Assignee: Genomatica, Inc.
    Inventors: Jun Sun, Anthony P. Burgard, Priti Pharkya
  • Patent number: 10208321
    Abstract: A method comprising a series of selective extraction techniques for the parallel production of biodiesel and isolation of several valuable co-products including an alkenone hydrocarbon mixture of the kerosene/jet fuel range (primarily C10-, C12-, and C17-hydrocarbons) and fucoxanthin, a high-valued carotenoid, from the marine alkenone-producing microalgae Isochrysis.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 19, 2019
    Assignees: Woods Hole Oceanographic Institution, Western Washington University
    Inventors: Christopher M. Reddy, Gregory W. O'Neil
  • Patent number: 10208322
    Abstract: The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: February 19, 2019
    Assignee: California Institute of Technology
    Inventors: Pedro S. Coelho, Eric M. Brustad, Frances H. Arnold, Zhan Wang, Jared C. Lewis
  • Patent number: 10208323
    Abstract: The present invention relates to a recombinant nucleic acid molecule, a recombinant microorganism, to a method for producing alanine and to the use of the recombinant nucleic acid molecule or the recombinant microorganism for the fermentative production of alanine.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: February 19, 2019
    Assignee: BASF SE
    Inventors: Hartwig Schroeder, Holger Hartmann, Qingzhao Wang, Shakir Siraj Ratani, Zheyuan Guo, Markus Pompejus
  • Patent number: 10208324
    Abstract: The present invention relates to a recombinant nucleic acid molecule, a recombinant microorganism, to a method for producing alanine and to the use of the recombinant nucleic acid molecule or the recombinant microorganism for the fermentative production of alanine.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 19, 2019
    Assignee: BASF SE
    Inventors: Hartwig Schröder, Holger Hartmann, Qingzhao Wang, Shakir Ratani, Zheyuan Guo, Markus Pompejus
  • Patent number: 10208325
    Abstract: Provided are a microorganism of the genus Corynebacterium having an enhanced activity to produce L-lysine as a result of inactivating a secretory protein and a method for producing L-lysine using the microorganism.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: February 19, 2019
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Peter Lee, Jun Ok Moon, Hyung Joon Kim, Song Gi Ryu
  • Patent number: 10208326
    Abstract: The invention relates to recombinant microorganisms and methods for producing manoyl oxide.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: February 19, 2019
    Assignee: EVOLVA SA
    Inventor: Niels Bjerg Jensen
  • Patent number: 10208328
    Abstract: Provided are a rapid antimicrobial susceptibility test, based on an analysis of changes in morphology and growth pattern of a microbial cell under different concentrations of various antimicrobial agents, and an automated cell image analysis system therefor. The antimicrobial susceptibility test is rapidly performed based on an analysis of changes in morphology and growth pattern of a microbial cell under different concentrations of various antimicrobial agents, and this makes it possible to obtain highly reliable test results faster by six to seven times than the standard method recommended by Clinical and Laboratory Standards Institute (CLSI).
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: February 19, 2019
    Assignee: QUANTAMATRIX INC.
    Inventors: Yong-Gyun Jung, Eun-Geun Kim, Jung Heon Yoo, Sunghoon Kwon, Jungil Choi, Hee Chan Kim, Jung Chan Lee, Eui Jong Kim, Sang Hoon Song, Sei Ick Joo, Ji Soo Lee
  • Patent number: 10208329
    Abstract: The present invention relates to a device for measuring the antimicrobial activity of a gas and a method for measuring the antimicrobial activity of a gas. The present invention can be used as a standardized device for measuring the antimicrobial activity of a gas or as a standardized method for measuring the antimicrobial activity of a gas as the present invention is capable of constantly maintaining the concentration of a gas and identifying the growth and development of microorganisms objectively through a color change of a microorganism culture medium containing a pH indicator.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: February 19, 2019
    Assignee: Korea University Research and Business Foundation
    Inventor: Jee-Hoon Ryu
  • Patent number: 10208330
    Abstract: The present disclosure describes methods for concentrating microorganisms with concentration agents in a sampling device and the sampling device described herein. More specifically, methods for concentrating microorganisms from large volume samples with concentration agents in a sampling device can provide for rapid, low cost, simple (involving no complex equipment or procedures), and/or effective processes under a variety of conditions.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: February 19, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Manjiri T. Kshirsagar, Kurt J. Halverson, Neil Percy, James E. Aysta
  • Patent number: 10208331
    Abstract: A bioparticle collection device and an aerosol collection system. The bioparticle collection device includes a collection medium including a plurality of fibers formed into a fiber mat and configured to collect bioparticles thereon, and includes a viability enhancing material provider disposed in a vicinity of the plurality of fibers and configured to provide a viability enhancing material to the collected bioparticles to maintain viability of the bioparticles collected by the fiber mat. The aerosol collection system includes an aerosol pumping device configured to entrain particles in an gas stream, an aerosol saturation device configured to saturate the particles in the gas stream with a biocompatible liquid, and an aerosol collection medium downstream from the aerosol saturation device and including a plurality of fibers formed into a fiber mat for collection of the saturated aerosol particles.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: February 19, 2019
    Assignee: Research Triangle Institute
    Inventors: David Samuel Ensor, Howard Jerome Walls, Karin K. Foarde
  • Patent number: 10208332
    Abstract: Provided herein is a fluidic cartridge having a body comprising a malleable material and a layer comprising a deformable material bonded to a surface of the body that seals one or more fluidic channels that communicate with one or more valve bodies formed in a surface of the body. The valve can be closed by applying pressure to the deformable material sufficient to crush and close off a fluidic channel in the body. Also provided are a cartridge interface configured to engage the cartridge. Also provided is a system including a cartridge interface and methods of using the cartridge and system.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 19, 2019
    Inventors: David Eberhart, William D. Nielsen, Helen Franklin, Stevan B. Jovanovich, Dennis Lehto, Kaiwan Chear, James Klevenberg, Chungsoo Charles Park, Corey Smith, Philip Justus Wunderle, David King
  • Patent number: 10208333
    Abstract: Disclosed are methods for detecting a target nucleic acid in a sample. The methods include contacting said sample, in the presence of a polymerase and an endonuclease, with a sequence conversion oligonucleotide having locked nucleic acids at select positions sufficient to decrease non-specific background signal amplification. Also disclosed are methods for detecting a target nucleic acid in a sample in which said sample is contacted, in the presence of a polymerase and an endonuclease, with a sequence conversion oligonucleotide and a signal amplifier oligonucleotide, both having locked nucleic acids at select positions sufficient to decrease non-specific background signal amplification. The disclosure also provides compositions and kits comprising such sequence conversion and signal amplifier oligonucleotides.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: February 19, 2019
    Assignees: Abbott Laboratories, Tokyo Institute of Technology
    Inventors: Ken Komiya, Makoto Komori, Toru Yoshimura
  • Patent number: 10208334
    Abstract: Systems, methods and compositions of matter according to the present invention, can be used in capture/enrichment, gene expression profiling and targeted sequencing. Provided are systems, methods and compositions concerning the enhancement of nucleic acid hybridization specificity and controlling the shapes of melting curves revealed by nucleic acid hybrid pairs to optimize nucleic acid analysis. These systems, methods and compositions comprise producing a positively charged surface or surface coating, on the surface of microarray slides or other types of surfaces similarly purposed, which enhances melting curve analysis to the point of allowing detection or differentiation of small changes in sequences between nucleic acid binding partners. The accuracy or resolution of melting curve analysis was to be sufficient to distinguish between the melting of perfect matched dsDNA and dsDNA with the smallest possible change in sequence, a one base pair mismatch.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 19, 2019
    Inventor: Michael D. Okura
  • Patent number: 10208335
    Abstract: Various embodiments of methods for analyzing proximity binding assay (PBA) data are disclosed. Proximity binding assays as a class of analyses offer the advantages of the sensitivity and specificity of biorecognition binding, along with the exponential signal amplification offered by a variety of oligonucleotide amplification reactions, such as the polymerase chain reaction (PCR). However, as various proximity binding assays have reaction kinetics governed by an additional step of the binding of a biorecognition probe (BRP) with a target molecule, there is a need for methods for the analysis of PBA data that are particularly suited to the unique characteristics of such data.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: February 19, 2019
    Assignee: Life Technologies Corporation
    Inventors: Shiaw-Min Chen, David W. Ruff, Harrison M. Leong
  • Patent number: 10208336
    Abstract: A method of sample analysis is provided. In certain embodiments, the method may comprise: (a) filtering a liquid sample containing rolling circle amplification (RCA) products using a porous capillary membrane, thereby producing an array of the RCA products on the membrane; wherein the sample contains at least a first population of RCA products and a second population of RCA products, wherein the first and second populations of labeled RCA products are distinguishably labeled; and (b) determining the amount of the first labeled population of RCA products and the amount of the second labeled population of RCA products in an area of the membrane.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: February 19, 2019
    Assignee: Vanadis Diagnostics
    Inventors: Ove Öhman, Fredrik Persson, Mathias Howell
  • Patent number: 10208337
    Abstract: The present invention concerns preparation of DNA molecules, such as a library, using a stem-loop oligonucleotide. In particular embodiments, the invention employs a single reaction mixture and conditions. In particular, at least part of the inverted palindrome is removed during the preparation of the molecules to facilitate amplification of the molecules. Thus, in specific embodiments, the DNA molecules are suitable for amplification and are not hindered by the presence of the palindrome.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: February 19, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Vladimir L. Makarov, Emmanuel Kamberov, Brendan J. Tarrier
  • Patent number: 10208338
    Abstract: The present disclosure describes a method of adapter ligation to the ends of fragmented double-stranded DNA molecules.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: February 19, 2019
    Assignee: SWIFT BIOSCIENCES, INC.
    Inventors: Vladimir Makarov, Julie Laliberte
  • Patent number: 10208339
    Abstract: Provided herein are systems and methods for whole genome amplification and sequencing. In particular, provided herein are systems and methods for detection of nucleic acid variants (e.g., rare variants) in limited samples.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 19, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Alain-Albert Mir, Thomas David Schaal, Jude Dunne, Maithreyan Srinivasan
  • Patent number: 10208340
    Abstract: A random access, high-throughput system and method for preparing a biological sample for polymerase chain reaction (PCR) testing are disclosed. The system includes a nucleic acid isolation/purification apparatus and a PCR apparatus. The nucleic acid isolation/purification apparatus magnetically captures nucleic acid (NA) solids from the biological sample and then suspends the NA in elution buffer solution. The PCR testing apparatus provides multiple cycles of the denaturing, annealing, and elongating thermal cycles. More particularly, the PCR testing apparatus includes a multi-vessel thermal cycler array that has a plurality of single-vessel thermal cyclers that is each individually-thermally-controllable so that adjacent single-vessel thermal cyclers can be heated or cooled to different temperatures corresponding to the different thermal cycles of the respective PCR testing process.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 19, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Robert Adolfsen, Nicolae Dumitrescu, Michael Avdenko, Dario Svenjak
  • Patent number: 10208341
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: February 19, 2019
    Assignee: Life Technologies Corporation
    Inventors: Peter Williams, Daniel J. B. Williams, Linda Bloom, Thomas J. Taylor
  • Patent number: 10208342
    Abstract: Devices and methods that can detect and control an individual polymer in a mixture is acted upon by another compound, for example, an enzyme, in a nanopore are provided. The devices and methods also determine (˜>50 Hz) the nucleotide base sequence of a polynucleotide under feedback control or using signals generated by the interactions between the polynucleotide and the nanopore. The invention is of particular use in the fields of molecular biology, structural biology, cell biology, molecular switches, molecular circuits, and molecular computational devices, and the manufacture thereof.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 19, 2019
    Assignee: The Regents of the University of California
    Inventors: William B. Dunbar, Noah A. Wilson, Mark A. Akeson, David W. Deamer, Kate Lieberman
  • Patent number: 10208343
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: February 19, 2019
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Xinying Zheng, Phillip Belgrader
  • Patent number: 10208344
    Abstract: A method of biomonitoring marine water is provided, as are probes and kits. The method comprises: extracting messenger Ribonucleic Acid (mRNA) from Mytilus species; preparing cDNA from the mRNA; hybridizing a plurality of probes with the cDNA to provide a set of hybridized cDNA, the probes consisting of at least 20 consecutive nucleotides of at least 50 sequences of SEQ ID NO: 1-122; and quantifying an abundance of the set of hybridized cDNA, thereby biomonitoring marine water.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: February 19, 2019
    Inventors: Helen Gurney-Smith, Catherine Thomson, Stewart Johnson
  • Patent number: 10208345
    Abstract: Isolated non-naturally occurring populations of spermatozoa (15) having high purity and technologies to differentiate spermatozoa (28) based on characteristics such as mass, volume, orientation, or emitted light including methods of analysis and apparatus such as beam shaping optics (30) and detectors (32).
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 19, 2019
    Assignee: XY, LLC
    Inventors: Kenneth M. Evans, Erik B. van Munster
  • Patent number: 10208346
    Abstract: The present invention provides an epigenetic haemogram, also referred to as an epigenetic blood cell count that identifies the quantitative, comprehensive picture of cellular composition in a biological sample, wherein advantageously a normalization standard is used. The normalization standard is a nucleic acid molecule comprising at least one marker-region being specific for each of the blood cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies on said molecule and/or a natural blood cell sample of known composition. Furthermore, the present invention relates to a kit and the use of a kit for performing the epigenetic assessment of comprehensive, quantitative cellular composition of a biological sample. The biological sample is derived from e.g.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: February 19, 2019
    Assignee: EPIONTIS GMBH
    Inventors: Sven Olek, Ulrich Hoffmueller
  • Patent number: 10208347
    Abstract: A process of identifying a plurality of biological samples having particular desired attributes by testing pooled samples and selecting, for intended uses such as transfusion, or for subsequent analysis that is thereby enriched for such samples, pooled samples which have, or may have, said desired attributes. The preferred number of samples per pool “d” is determined by selecting an integer value as d which produces the maximum or a value near the maximum of the product of: d times the expected number of unambiguous sample pools, where a sample pool is unambiguous if all of the samples have the desired attributes, and is otherwise ambiguous if at least one sample has the desired attributes. The value selected as d can be greater than the maximum product above, so as to enlarge the total number of samples assayed in determining the desired attributes.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: February 19, 2019
    Assignee: BioInventors & Entrepreneurs Network, LLC
    Inventors: Michael Seul, Ghazala Hashmi
  • Patent number: 10208348
    Abstract: Methods, systems, and apparatus are provided for determining whether a nucleic acid sequence imbalance exists within a biological sample. One or more cutoff values for determining an imbalance of, for example, the ratio of the two sequences (or sets of sequences) are chosen. The cutoff value may be determined based at least in part on the percentage of fetal DNA in a sample, such as maternal plasma, containing a background of maternal nucleic acid sequences. The percentage of fetal DNA can be calculated from the same or different data used to determine the cutoff value, and can use a locus where the mother is homozygous and the fetus is heterozygous. The cutoff value may be determined using many different types of methods, such as sequential probability ratio testing (SPRT).
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: February 19, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Benny Chung-Ying Zee, Ka Chun Chong
  • Patent number: 10208349
    Abstract: The present invention provides the use of lipocalin 2 (LCN2) as a biomarker for IL-17 mediated diseases and for monitoring the response of a patient to anti-IL-17 therapy.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: February 19, 2019
    Assignee: UCB BIOPHARMA SPRL
    Inventors: Adam Samuel Platt, Stephen Edward Rapecki, Mara Fortunato, David Robert Rainey, Jon Leigh Rundle, Paul Alfred Smith, Gillian Sairfull Watt
  • Patent number: 10208350
    Abstract: Methods for assessing infertility and related pathologies and informing treatment type and timing thereof are provided. According to certain embodiments, methods of the invention include determining levels of one or more transcripts present in a sample obtained from a subject suspected of having endometriosis, identifying transcript levels that correspond to a regulation pattern specific to a time-point in a uterine cycle, and characterizing endometriosis of the subject based upon the identified transcript levels. The invention includes methods for assessing age-associated increase in aneuploidy rates based on FSH levels and IVF success rates based on obesity in PCOS patients.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: February 19, 2019
    Assignee: Celmatix Inc.
    Inventors: Piraye Yurttas Beim, David Emlyn Parfitt, Michael Elashoff
  • Patent number: 10208351
    Abstract: The present invention concerns an in vitro method of diagnosis or prognosis of an atherosclerosis-related disorder by detecting a small Y RNA (s-RNY), as well as the use of an inhibitor of s-RNY as a medicament against atherosclerosis-related disorders. The invention also concerns a method for screening for a compound suitable for the treatment of an atherosclerosis-related disorder.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: February 19, 2019
    Assignees: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM), UNIVERSITE PAUL SABATIER TOULOUSE III, UNIVERSITE DE NICE SOPHIA ANTIPOLIS
    Inventors: Michele Trabucchi, Laurent Martinez, Emanuela Repetto
  • Patent number: 10208352
    Abstract: There is provided a canceration information providing method which can detect the possibility of cancer in the initial stage with high accuracy. The canceration information providing method for providing information pertaining to canceration of cells includes: acquiring measurement data including first data pertaining to size of a cell nucleus and second data pertaining to size of a cytoplasm for each cell contained in a measurement sample which includes cells collected from epithelial tissue; extracting the measurement data of cells to be analyzed, which are at least some of the cells located toward the basal membrane side of the cells existing in the surface layer in the epithelial tissue, from the measurement data of a plurality of cells in the measurement sample based on the first data and the second data acquired for each cell; and analyzing the extracted measurement data and outputting the information pertaining to the canceration of cells.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: February 19, 2019
    Assignee: SYSMEX CORPORATION
    Inventors: Ryuichiro Ebi, Koki Tajima, Shigeki Abe, Masanori Kawano
  • Patent number: 10208353
    Abstract: The present invention relates to biomarkers useful for detection of types, grades and stages of human breast cancer. The present invention particularly relates to the development of these identified biomarkers as a miRNA chip for the early and accurate diagnosis of human breast cancer. This patent application highlights the novelty in the utility of these miRNAs, that they could be used as a diagnostic kit (miRNA chip) for early and accurate detection of breast cancer grades, stages and subtypes. Few to hundreds of samples can be checked within a span of 2 to 3 hrs and hence this becomes an easy, fast, robust and high throughput technology for screening program for early detection of breast cancer.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: February 19, 2019
    Assignee: Council of Scientific and Industrial Research
    Inventors: Lekha Dinesh Kumar, Vinod Kumar Verma, Rekha A. Nair, Jem Prabhakar, Jayasree Kattoor
  • Patent number: 10208354
    Abstract: The present invention relates to novel fusion genes comprising NRG1 and a further fusion partner, like CD74. The present invention provides for the use of these fusion genes in diagnosis as well as in medical intervention in cancer.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: February 19, 2019
    Assignee: Universität zu Köln
    Inventors: Lynnette Fernandez-Cuesta, Julie George, Dennis Plenker, Roman Thomas
  • Patent number: 10208355
    Abstract: The invention provides methods and compositions to detect expression of one or more biomarkers for identifying and treating patients having glioblastomas who are likely to be responsive to VEGF antagonist therapy. The invention also provides kits and articles of manufacture for use in the methods.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: February 19, 2019
    Assignee: Genentech, Inc.
    Inventors: Carlos Bais, Richard Bourgon, Thomas Sandmann
  • Patent number: 10208356
    Abstract: The disclosure provides for methods, compositions, and kits for multiplex nucleic acid analysis of single cells. The methods, compositions and systems may be used for massively parallel single cell sequencing. The methods, compositions and systems may be used to analyze thousands of cells concurrently. The thousands of cells may comprise a mixed population of cells (e.g., cells of different types or subtypes, different sizes).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 19, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: Christina Fan, Stephen P. A. Fodor, Glenn Fu, Geoffrey Richard Facer, Julie Wilhelmy
  • Patent number: 10208357
    Abstract: The present invention relates to cell-based assays involving HER2. The assays use assay cells that are transfected with cassettes containing the HER2 gene of interest and measure the effect of mutations on the activity of HER2, and on their response to inhibitors.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: February 19, 2019
    Assignee: Medical Diagnostic Laboratories, LLC
    Inventor: Yick Loi Raymond Yu
  • Patent number: 10208358
    Abstract: Virus capsids protect the viral genome and play roles in its delivery and intracellular transport, making them an attractive target for antiviral therapeutics. The difficulty in targeting capsid assembly is to identify molecules that interfere with the weak protein-protein interactions that drive the reaction. We have developed an in vitro assay for capsid assembly that works on a range of viruses at biologically relevant protein concentrations to facilitate screening large libraries of chemicals for lead compounds.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: February 19, 2019
    Assignee: Indiana University Reasearch and Technology Corporation
    Inventors: Adam Zlotnick, Stella Vieweger
  • Patent number: 10208359
    Abstract: The present disclosure relates to a solid molasses product having a low water content. The solid molasses product retains the physical and palatable properties of untreated/hydrated molasses while having a prolonged shelf-life. It can be advantageously used to sweeten beverages (such as hot beverages) and in the manufacture of pharmaceutical compositions, confectionery as well as animal feed.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: February 19, 2019
    Assignee: IAF SCIENCE HOLDINGS LIMITED
    Inventor: John Lawrence Rowe
  • Patent number: 10208360
    Abstract: Provided is a hot-forged TiAl-based alloy of the present invention containing 40 to 45 atom % of Al and additive elements in the following composition ratio (A) or (B), and the balance Ti with inevitable impurities: (A) Nb: 7 to 9 atom %, Cr: 0.4 to 4.0 atom %, Si: 0.3 to 1.0 atom %, and C: 0.3 to 1.0 atom %; and (B) at least one of Cr: 0.1 to 2.0 atom %, Mo: 0.1 to 2.0 atom %, Mn: 0.1 to 4.0 atom %, Nb: 0.1 to 8.0 atom %, and V: 0.1 to 8.0 atom %. The TiAl-based alloy is characterized by having a fine structure of densely arranged lamella grains that are laminated alternately with a Ti3Al phase (?2-phase) and a TiAl phase (?-phase) and have an average grain size of 1 to 200 ?m.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: February 19, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Toshimitsu Tetsui
  • Patent number: 10208361
    Abstract: In a method for the production of a seamless, multilayered tubular product, a further layer is applied through hardfacing on a base layer of a round or polygonal block, with the further layer made of a metallic material which is different than a metallic material of the base layer. The round or polygonal block with hardfaced further layer is hot formed to produce a tubular product with reduced wall thickness and outer perimeter in one or more stages. A diffusion layer is established between the base layer and the further layer through heat treatment before hot forming and/or after hot forming, thereby producing a thickness of the diffusion layer of at least 5 ?m with the proviso that the thickness of the diffusion layer is 0.1% to 50% of a thickness of the further layer, with the thickness of the further layer being equal to or greater than 100 ?m.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 19, 2019
    Assignee: Benteler Steel/Tube GmbH
    Inventors: Martin Junker, Thomas Vietoris, Christian Kronholz, Albert Lorentz
  • Patent number: 10208362
    Abstract: An HT550 steel plate with ultrahigh toughness and excellent weldability and a manufacturing method thereof are disclosed. Based on a component system with ultralow-C, high-Mn, Nb-microalloying, ultramicro Ti treatment, Mn/C is controlled in the range of 15˜30, (% Si)×(% Ceq) is less than or equal to 0.050, (% C)×(% Si) is less than or equal to 0.010, (% Mo)×[(% C)+0.13(% Si)] is in the range of 0.003˜0.020, the ratio Ti/N is in the range of 2.0˜4.0, the steel plate is alloyed with (Cu+Ni+Mo), Ni/Cu is greater than or equal to 1.0, Ca treatment is performed, and Ca/S is in the range of 0.80˜3.00; by optimizing TMCP process, the steel plate has microstructures of fine ferrite plus self-tempered bainite with an average grain size being less than or equal to 15 ?m, yield strength being 460 MPa or more, tensile strength being 550˜700 MPa, yield ratio being 0.85 or less, and ?60° C.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: February 19, 2019
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Zicheng Liu, Xianju Li