Patents Issued in February 20, 2024
-
Patent number: 11909344Abstract: A control device includes a processor configured to control operation of an inverter by a synchronous pulse width modulation control using a pulse width modulation signal. The inverter is coupled to a motor. The pulse width modulation signal is generated by comparison of a carrier signal and a voltage command. In the synchronous pulse width modulation control, on the condition that resonance is caused, in a circuit including the inverter, by a particular harmonic component out of harmonic components to be generated in accordance with the pulse width modulation signal, the processor is configured to change the number of pulses of the carrier signal in one cycle of the voltage command, from the main number of pulses to the sub-number of pulses.Type: GrantFiled: May 3, 2021Date of Patent: February 20, 2024Assignee: SUBARU CORPORATIONInventor: Kazuma Shimojo
-
Patent number: 11909345Abstract: Apparatus and method for motor braking using selectively connectable resistance. The method includes controlling, using a motor controller of the power tool, a power switching network to drive a motor of the power tool in response to actuation of a user input and determining, using the motor controller, a variable tool characteristic. The method further includes determining, using the motor controller, that the user input is de-actuated. The method also includes controlling, using the motor controller, the power switching network to brake the motor when the variable tool characteristic satisfies the tool characteristic threshold and controlling, using the motor controller, a braking circuit to brake the motor when the variable tool characteristic does not satisfy the tool characteristic threshold. The braking circuit includes one or more resistive loads and is selectively coupled to the motor terminals of the motor.Type: GrantFiled: December 13, 2021Date of Patent: February 20, 2024Assignee: Milwaukee Electric Tool CorporationInventors: Timothy R. Obermann, Alexander Huber
-
Patent number: 11909346Abstract: An electric motor system includes a drive shaft, a first electric motor, a second electric motor, a first inverter, a second inverter and a control unit. The drive shaft is rotatable around an axis. The first electric motor and the second electric motor rotate the drive shaft. The first inverter supplies power in order to generate a torque to the first electric motor. The second inverter supplies power in order to generate a torque to the second electric motor. The control unit controls the first inverter and the second inverter. The controller is configured to be able to change a ratio between an output torque of the first electric motor and an output torque of the second electric motor.Type: GrantFiled: September 24, 2021Date of Patent: February 20, 2024Assignee: Daikin Industries, Ltd.Inventors: Takaaki Ono, Yusuke Irino, Hiroshi Hibino
-
Patent number: 11909347Abstract: A stepping motor control device includes a driving unit that drives a stepping motor including a rotor that rotates a hand and a coil that generates a magnetic flux for rotating the rotor, a control unit that outputs, to the driving unit, a driving pulse for rotating the rotor and a swinging pulse for swinging the rotor, a voltage detecting unit that detects an induced voltage generated in the coil when the rotor vibrates, and a determining unit that determines, based on a result of the detection of the voltage detecting unit, a mechanical load received by the rotor.Type: GrantFiled: December 3, 2021Date of Patent: February 20, 2024Assignee: SEIKO WATCH KABUSHIKI KAISHAInventors: Akihito Okumura, Kosuke Yamamoto, Tetsuya Nobe, Kazumi Sakumoto
-
Patent number: 11909348Abstract: A stepping motor control device is provided, which controls a stepping motor including a rotor position detector by micro-step driving. The control device has a plurality of operation modes including an adjustment mode and a use mode. In the adjustment mode, the control device generates control data for a closed loop control for controlling the winding current of the stepping motor based on the detection value of the rotor position detector, and performs a stepping motor acceleration operation and a stepping motor deceleration operation according to the control data. In the use mode, the control device performs the stepping motor acceleration operation and the stepping motor deceleration operation so that a winding current observed in the adjustment mode is reproduced by an open loop control for controlling the winding current of the stepping motor based on the control data generated in the adjustment mode.Type: GrantFiled: March 2, 2021Date of Patent: February 20, 2024Assignee: ORIENTAL MOTOR CO., LTD.Inventors: Masayuki Someya, Akihiko Houda
-
Patent number: 11909349Abstract: Disclosed are a main beam and a use thereof and a photovoltaic tracking bracket, wherein the main beam includes a flat plate and an elliptical curved plate, each of both ends of the flat plate are respectively fixedly connected to a corresponding end of the elliptical curved plate to form a ring shape, and a plane where the flat plate is located is perpendicular to a long axis of an ellipse where the elliptical curved plate is located. Also provided is the use of the main beam in the photovoltaic tracking bracket. The photovoltaic tracking bracket includes the main beam; a stand column; and a bearing seat comprising a bearing ring, a Z-shaped support plate and a bottom plate connected sequentially from top to bottom, wherein the Z-shaped support plate has a Z-shaped cross section, the main beam is installed inside the bearing ring, the flat plate of the main beam faces a photovoltaic assembly, and the bottom plate is connected to the stand column.Type: GrantFiled: January 17, 2020Date of Patent: February 20, 2024Assignee: Arctech Solar Holding Co., Ltd.Inventors: Shitao Wang, Pengxiao Yu, Jianmin Li
-
Patent number: 11909350Abstract: A support housing includes a housing body and a housing cover. The housing body defines an accommodating space and has an opening spatially communicated with the accommodating space. The housing cover includes a cover plate and a plurality of retaining mechanisms. The cover plate is connected to the housing body and operable to close and open the opening. The cover plate is adapted to support a solar power panel. The retaining mechanisms are connected to the cover plate and slidable in a first direction relative to the cover plate. The retaining mechanisms are spaced apart from one another in the first direction. Any two adjacent ones of the retaining mechanisms are movable toward and away from each other to adjust a distance therebetween so that the solar power panel is clamped therebetween.Type: GrantFiled: November 9, 2022Date of Patent: February 20, 2024Inventor: Chih-Ying Chen
-
Patent number: 11909351Abstract: An inline DC feeder DC/DC voltage step-up harness for photovoltaic solar facilities includes a housing, a plurality of PV input connectors, an at least one PV output connector. The housing incorporates a DC/DC converter, and has an input and an output. The plurality of PV input connectors are operatively connected to the housing at the input. The PV output connector is operatively connected to the housing at the output.Type: GrantFiled: October 7, 2022Date of Patent: February 20, 2024Assignee: ADERIS ENERGY, LLCInventors: Olee Joel Olsen, Jr., Adam Will Foodman, Bradley Allan Micallef
-
Patent number: 11909352Abstract: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C.Type: GrantFiled: March 28, 2017Date of Patent: February 20, 2024Assignee: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUNDInventors: Matthew David Escarra, Qi Xu, Yaping Ji, Brian C. Riggs, Adam Ollanik, Kazi M. Islam, Daniel Codd, Vince Romanin, Nicholas David Farrar-Foley
-
Patent number: 11909353Abstract: A ground-fault detecting device includes: a first detecting module, having a first input terminal, a second input terminal, and a third input terminal coupled to a first-phase electric power, a second-phase electric power, and a third-phase electric power on an AC side of a photovoltaic power generating system respectively, for sampling voltages of the first-phase electric power, the second-phase electric power, and the third-phase electric power to generate a first sampled voltage, a second sampled voltage, and a third sampled voltage respectively; and a controller, coupled to the first detecting module, for determining if a ground-fault occurs in the AC side before the photovoltaic power generating system is connected to a grid according to the first sampled voltage, the second sampled voltage, and the third sampled voltage; wherein the controller generates an alarm signal when the ground-fault occurs in the AC side.Type: GrantFiled: September 8, 2022Date of Patent: February 20, 2024Assignee: KEHUA HENGSHENG CO., LTD.Inventors: Chunbao Zeng, Peizai Hong, Wen Wei, Zhenhuang Lin, Kailong Chen
-
Patent number: 11909354Abstract: One or more heating elements are provided to heat a MEMS component (such as a resonator) to a temperature higher than an ambient temperature range in which the MEMS component is intended to operate—in effect, heating the MEMS component and optionally related circuitry to a steady-state “oven” temperature above that which would occur naturally during component operation and thereby avoiding temperature-dependent performance variance/instability (frequency, voltage, propagation delay, etc.). In a number of embodiments, an IC package is implemented with distinct temperature-isolated and temperature-interfaced regions, the former bearing or housing the MEMS component and subject to heating (i.e., to oven temperature) by the one or more heating elements while the latter is provided with (e.g., disposed adjacent) one or more heat dissipation paths to discharge heat generated by transistor circuitry (i.e., expel heat from the integrated circuit package).Type: GrantFiled: May 25, 2022Date of Patent: February 20, 2024Assignee: SiTime CorporationInventors: Carl Arft, Aaron Partridge, Markus Lutz, Charles I. Grosjean
-
Patent number: 11909355Abstract: To prevent an undesired operating mode of voltage-controlled oscillation (VCO) circuitry from dominating a desired operating mode (e.g., an in-phase operating mode or an out-of-phase operating mode), a supply reset and ramp pulse may be provided to the VCO circuitry when switching to a new mode, such that supply voltage to the VCO circuitry is reset (e.g., set to 0 V or another reference voltage), and gradually increased or ramped up back to a steady-state voltage (e.g., used to maintain a mode) within a time duration. Additionally or alternatively, a switch control bootstrap pulse may be provided to the VCO circuitry that is bootstrapped to (e.g., applied instantaneously or concurrently with) switching the VCO circuitry to the new mode. After a time duration, the VCO circuitry may switch back to a steady-state voltage (e.g., used to maintain the new mode).Type: GrantFiled: September 12, 2022Date of Patent: February 20, 2024Assignee: Apple Inc.Inventors: Hongrui Wang, Abbas Komijani
-
Patent number: 11909356Abstract: An integrated circuit transceiver device includes a plurality of functional circuits, and clock circuitry for distributing synchronous, in-phase, phase-locked clock signals to all transceiver circuits. The clock circuitry includes a frequency-controllable distributed oscillator including at least one coupled pair of transmission line oscillators having a respective oscillator core, and at least one respective transmission line segment. At least one impedance element couples the at least one respective transmission line segment of a first transmission line oscillator to the at least one respective transmission line segment of a second transmission line oscillator. Impedance of the impedance element is different from impedance of each respective transmission line segment to cause reflection at the at least one impedance element.Type: GrantFiled: June 17, 2022Date of Patent: February 20, 2024Assignee: Marvell Asia Pte LtdInventors: Morteza Azarmnia, Tomas Dusatko, Fazil Ahmad, Marco Garampazzi
-
Patent number: 11909357Abstract: An amplifier includes an amplification circuit, a power supplying circuit and an input circuit. A first end of the amplification circuit is connected with a first end of the input circuit; a second end of the amplification circuit is connected with the power supplying circuit; and a third end of the amplification circuit is connected with a second end of the input circuit. The power supplying circuit is at least configured to supply power to the amplification circuit so that the amplification circuit operates in an amplification region. The input circuit is at least configured to receive an input signal; the amplification circuit is configured to obtain an amplification gain in case of operating in the amplification region, and amplify the input signal by using the obtained amplification gain.Type: GrantFiled: December 25, 2020Date of Patent: February 20, 2024Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.Inventors: Zhenfei Peng, Qiang Su
-
Patent number: 11909358Abstract: Described is a system for modulating power to one or more radio frequency (RF) amplifiers to suppress undesired output signal components, improve linearity and reduce noise. The described systems and techniques enable shaping of spectral components introduced via an amplifier bias voltage owing to transitions among bias discrete states. The systems and techniques facilitate operation of multilevel, RF amplifiers under a wider range of operating conditions. In embodiments, the system includes modulators coupled to a supply terminal port of each of the one or more amplifiers to modulate the voltage levels supplied to the one or more amplifiers. The outputs of the modulators may be combined to provide a combined signal coupled to the amplifiers. A delay circuit delays switching of at least one of the power modulators relative to other modulator, by a variable time delay. This results in suppression of undesired output signal components of the amplifier output.Type: GrantFiled: January 22, 2021Date of Patent: February 20, 2024Assignee: Murata Manufacturing Co., LTD.Inventors: David J. Perreault, John R. Hoversten, Yevgeniy A. Tkachenko
-
Patent number: 11909359Abstract: An enhanced current mirror can be utilized to accurately control a bias current associated with an amplifier. A current controller component (CCC) can employ the enhanced current mirror and can be associated with the amplifier. The CCC can comprise a comparator that can compare an adjusted supply voltage level to a reference voltage level, the adjusted supply voltage level relating to a supply voltage level of a supply voltage supplied to the amplifier and CCC. The CCC can control switching of an operational state of a transistor of the comparator to switch in or out a resistance of a reference resistor component associated with the supply voltage, based on a result of the comparison of the adjusted supply voltage level to the reference voltage level, to facilitate accurately controlling an amount of bias current associated with the amplifier. The CCC and amplifier can be situated on the same die.Type: GrantFiled: October 7, 2021Date of Patent: February 20, 2024Assignee: MACOM Technology Solutions Holdings, Inc.Inventor: Jean-Marc Mourant
-
Patent number: 11909360Abstract: A radio frequency circuit includes a power amplifier configured to selectively amplify one of a first radio frequency signal and a second radio frequency signal that have different bandwidths, and when the first radio frequency signal is input to the power amplifier, a first bias signal is applied to the power amplifier, and when the second radio frequency signal is input to the power amplifier, a second bias signal different from the first bias signal is applied to the power amplifier.Type: GrantFiled: August 18, 2022Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Tomohiro Sano, Hirotsugu Mori
-
Patent number: 11909361Abstract: The invention discloses a broadband logarithmic detector with high dynamic range, comprising a low noise amplifier, a compensate detection unit, a current summation and driving unit, an N-stage clipper amplifier and an N-stage detection unit. The invention improves the detection sensibility of the overall detector by adding a low noise amplifier before the first-stage clipper amplifier and extends the dynamic detection range of the overall detector through combination of the low noise amplifier and the compensate detection unit.Type: GrantFiled: October 22, 2019Date of Patent: February 20, 2024Assignee: NANJING MILLIWAY MICROELECTRONICS TECHNOLOGY CO., LTD.Inventors: Jianjun Wu, Mengjiao Si, Ying Zhang
-
Patent number: 11909362Abstract: This application relates to amplifier circuitry, in particular class-D amplifiers, operable in open-loop and closed-loop modes. An amplifier (300) has a forward signal path for receiving an input signal (SIN) and outputting an output signal (SOUT) and a feedback path operable to provide a feedback signal (SFB) from the output. A feedforward path provide a feedforward signal (SFF) from the input and a combiner (105) is operable to determine an error signal (?) based on a difference between the feedback signal and the feedforward signal. The feedforward comprises a compensation module (201) configured to apply a controlled transfer function to the feedforward signal in the closed-loop mode of operation, such that an overall transfer function for the amplifier is substantially the same in the closed-loop mode of operation and the open-loop mode of operation.Type: GrantFiled: June 8, 2022Date of Patent: February 20, 2024Assignee: Cirrus Logic Inc.Inventor: John Paul Lesso
-
Patent number: 11909363Abstract: A radiofrequency power amplifier includes a balun transformer and a plurality of power transistor pairs arranged in a push-pull configuration. The balun transformer has an unbalanced coil extending between a first single-ended signal terminal and a first reference, and a balanced coil extending between a first balanced signal terminal and a second balanced signal terminal. The balun transformer also includes an auxiliary coil electrically isolated from the unbalanced coil and the balanced coil. The auxiliary coil is inductively coupled to the unbalanced coil and extends between a third balanced signal terminal and a fourth balanced signal terminal forming a balanced combiner-divider. An output of a first one of the power transistor pairs is coupled to the first and second balanced signal terminals and an output of a second one of the power transistor pairs is coupled to the third and fourth balanced signal terminals.Type: GrantFiled: September 18, 2019Date of Patent: February 20, 2024Assignee: PRODRIVE TECHNOLOGIES INNOVATION SERVICES B.V.Inventor: Bart Gerardus Maria Van Ark
-
Patent number: 11909364Abstract: Embodiments of the present disclosure provide a chopper amplifier circuit that includes an operational amplifier, and a notch filter to be operated by a chopping pulse. The notch filter has a first branch that has a first capacitor, and a second branch that has a second capacitor. A chopping delay switch is connected to the first branch and the second branch of the notch filter. A control circuit is to close the chopping delay switch to short-circuit the first branch and the second branch of the notch filter to each other. The control circuit is to detect establishment of feedback signal at the chopper amplifier. The control circuit is to open the chopping delay switch, responsive to detecting establishment of the feedback signal at the chopper amplifier.Type: GrantFiled: May 25, 2021Date of Patent: February 20, 2024Assignee: Cypress Semiconductor CorporationInventor: Katsuyuki Yasukouchi
-
Patent number: 11909365Abstract: Example techniques involve controlling playback volumes. An example implementation includes displaying a group volume control of a synchrony group, the group volume control comprising a group volume indicator on a group volume slider and receiving, via the displayed group volume control, input data representing a selection of the group volume control. The implementation also includes displaying, concurrently with the group volume control, a first volume control comprising a first volume indicator on a first volume slider and a second volume control comprising a second volume indicator on a second volume slider. The implementation also includes receiving, via the displayed group volume control, input data representing an input to modify a first volume setting of the synchrony group to a second volume setting and transmitting instructions to cause the synchrony group to modify volume settings according to the second volume setting of the synchrony group.Type: GrantFiled: March 6, 2023Date of Patent: February 20, 2024Assignee: Sonos, Inc.Inventor: Eduardo Ahumada Apodaca
-
Patent number: 11909366Abstract: Various technologies described herein pertain to variable gain amplification for a sensor application. A multistage variable gain amplifier system provides variable gain amplification of an input signal. The multistage variable gain amplifier system includes a plurality of amplification stages. The multistage variable gain amplifier system further includes a power detector configured to detect a power level of an input signal received by the multistage variable gain amplifier system. The multistage variable gain amplifier system also includes a controller configured to control the amplification stages based on the power level of the input signal. The multistage variable gain amplifier system can output an output signal such that the amplification stages are controlled to adjust a gain applied to the input signal by the multistage variable gain amplifier system to output the output signal.Type: GrantFiled: December 19, 2021Date of Patent: February 20, 2024Assignee: GM CRUISE HOLDINGS LLCInventors: Kamel Benboudjema, Richard Kalantar Ohanian, Aram Garibyan, Abdelkrim El Amili, Scott Singer
-
Patent number: 11909367Abstract: The present disclosure relates to a broadband filter for confining or attenuating electromagnetic interference noise from one or more electrical signal sources, In an embodiment, the broadband filter comprises one or more filter stages electrically coupled by galvanic or by electromagnetic means to the one or more electrical signal sources for confining or attenuating conducted electromagnetic interference noise; one or more conductive shields electrically coupled by galvanic or by electromagnetic means to the electrical signal sources wherein the shields encapsulate the filter stages for confining or attenuating conducted and/or radiated electromagnetic interference noise; and one or more conductive partition layers to encapsulate the one or more filter stages such that the partition layers electromagnetically couple adjacent filter stages for a selected frequency range of the electromagnetic interference noise. The thickness of the conductive partition layers is chosen to control the degree of coupling.Type: GrantFiled: May 4, 2020Date of Patent: February 20, 2024Assignees: The Thinking Pod Innovations Ltd, The University of NottinghamInventors: Zhe Zhang, Jordi Espina, Mark Johnson
-
Patent number: 11909368Abstract: A dual mode notch filter for use in a multi-band millimeter wave (mmW) transmitter includes a transmit filter circuit disposed between two amplifiers in a mmW transmit signal path, the transmit filter circuit formed by at least one switch, at least one capacitor, and a double-tuned transformer, the transmit filter circuit having at least two modes configured to selectively filter a spurious signal in at least a first communication band.Type: GrantFiled: September 7, 2021Date of Patent: February 20, 2024Assignee: QUALCOMM IncorporatedInventors: Kai Zhan, Chinmaya Mishra
-
Patent number: 11909369Abstract: A low-pass filter circuit is provided. The low-pass filter circuit includes a low-pass filter and a discharging circuit. The low-pass filter receives an input voltage signal through an input terminal of the low-pass filter circuit during a first period, performs a low-pass filter operation on the input voltage signal to generate a filtered voltage signal, and provides the filtered voltage signal to an output terminal of the low-pass filter circuit. The discharging circuit suppresses a leakage current flowing between the output terminal and a reference low voltage in response to the input voltage signal during the first period.Type: GrantFiled: March 9, 2022Date of Patent: February 20, 2024Assignee: GUTSCHSEMI LIMITEDInventor: Kuo-Wei Chang
-
Patent number: 11909370Abstract: An electronic device may include wireless circuitry having an LC filter. The LC filter may include first and second series inductors coupled between the input and output of the LC filter. An input capacitor can be coupled at the input of the LC filter, and an output capacitor can be coupled at the output of the LC filter. Feedforward capacitors can be cross-coupled with the first and second series inductors to at least partially or fully cancel out any parasitic capacitance associated with the first and second series inductors to mitigate any undesired self-resonant effects associated with the series inductors.Type: GrantFiled: June 2, 2022Date of Patent: February 20, 2024Assignee: Apple Inc.Inventor: Milad Darvishi
-
Patent number: 11909371Abstract: An EMI filter arrangement includes a noise source, an input filter connected to the input of the noise source, and an output filter connected to the output of the noise source, the noise source, input filter and output filter provided in an electrically conductive electronics box, and an input filter capacitor electrically connecting the input filter to the electrically conductive electronics box and an output filter capacitor electrically connecting the output filter to the electrically conductive electronics box; the arrangement characterised by further comprising an intermediate reference plane provided in the electrically conductive electronics box, and an intermediate capacitor provided in the electrically conductive electronics box electrically connected between the intermediate reference plane and the electrically conductive electronics box, the input filter capacitor and the output filter capacitor being electrically connected to the box via the intermediate reference plane and the intermediate capaciType: GrantFiled: August 18, 2022Date of Patent: February 20, 2024Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Grzegorz Popek, Stephen Minshull
-
Patent number: 11909372Abstract: A differential combiner circuit (200) comprises three ports each has two terminals (1a, 1b, 2a, 2b, 3a, 3b). The differential combiner circuit (200) further comprises a first sub-circuit comprising a first inductor (L1) connected between the first terminals (1a, 2a) of the first and second ports, and a first capacitor (C1) connected between the first terminals (2a, 3a) of the second and third ports; a second sub-circuit comprising a second inductor (L2) connected between the second terminals (1b, 2b) of the first and second ports, and a second capacitor (C2) connected between the second terminals (2b, 3b) of the second and third ports.Type: GrantFiled: February 14, 2019Date of Patent: February 20, 2024Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)Inventor: Henrik Sjöland
-
Patent number: 11909373Abstract: A bulk acoustic wave (BAW) resonator includes a substrate, a stack over the substrate and including a piezoelectric layer disposed between two electrode layers, and one or more edge frames. The one or more edge frames can be a raised metal frame extending parallel to a periphery of an active region of the stack and has one or more slanted cuts such that the edge frame does not form a closed loop and loss of acoustic energy in the active region through the one or more cuts is reduced, minimized or prevented. Alternatively or additionally, the one or more edge frames include a recessed edge frame in the form of a trench in the piezoelectric layer extending parallel to a boundary of the active region, and may further include a second edge frame formed on the first electrode and embedded in the piezoelectric layer.Type: GrantFiled: October 15, 2020Date of Patent: February 20, 2024Assignee: GLOBAL COMMUNICATION SEMICONDUCTORS, LLCInventors: Shing-Kuo Wang, Liping D. Hou, Kun-Mao Pan, Andy Chien-Hsiang Chen, Robert B. Stokes
-
Patent number: 11909374Abstract: Acoustic resonators are disclosed. An acoustic resonator includes a substrate having a surface and a single-crystal piezoelectric plate having front and back surfaces. The back surface is attached to the surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm spanning a cavity in the substrate. An interdigital transducer (IDT) is formed on the front surface of the piezoelectric plate. The IDT includes: a first busbar and a second busbar disposed on respective portions of the piezoelectric plate other than the diaphragm; a first set of elongate fingers extending from the first bus bar onto the diaphragm; and a second set of elongate fingers extending from the second bus bar onto the diaphragm, the second set of elongate fingers interleaved with the first set of elongate fingers.Type: GrantFiled: September 1, 2022Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Greg Dyer, Bryant Garcia, Doug Jachowski, Robert Hammond, Neal Fenzi, Ryo Wakabayashi
-
Patent number: 11909375Abstract: A resonance device is provided for reducing the influence on the resonant frequency of the resonance device of the electric charge borne by an insulating film of a frame. The resonance device includes a resonator including a vibration portion and a frame disposed in at least a part of a vicinity of the vibration portion. The frame includes a holding body and an insulating film, with the holding body holding the vibration portion to vibrate and the insulating film being formed above the holding body. A lower cover is provided having a recess forming at least a part of a space in which the vibration portion vibrates. An inner side surface of the insulating film is disposed at a first distance from an inner surface of a side wall defining the recess.Type: GrantFiled: March 9, 2021Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Keiichi Umeda, Naoto Yatani, Ryota Kawai, Yoshihisa Inoue
-
Patent number: 11909376Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.Type: GrantFiled: December 8, 2020Date of Patent: February 20, 2024Assignee: SITIME CORPORATIONInventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
-
Patent number: 11909377Abstract: Aspects of this disclosure relate to a surface acoustic wave filter with an acoustic velocity adjustment structure. The surface acoustic wave filter can include a first interdigital transducer electrode disposed on a piezoelectric layer, an acoustic reflector disposed on the piezoelectric layer, and a second interdigital transducer electrode disposed on the piezoelectric layer. The second interdigital transducer electrode is longitudinally coupled to the first interdigital transducer electrode and positioned between the first interdigital transducer electrode and the acoustic reflector. The acoustic velocity adjustment structure can be positioned over at least a gap between the first interdigital transducer electrode and the second interdigital transducer electrode.Type: GrantFiled: November 16, 2020Date of Patent: February 20, 2024Assignee: Skyworks Solutions, Inc.Inventors: Joshua James Caron, Rei Goto, Benjamin Paul Abbott, Hiroyuki Nakamura
-
Patent number: 11909378Abstract: Aspects of this disclosure relate to a surface acoustic wave device that includes a first reflector over a piezoelectric layer, a second reflector over the piezoelectric layer, and an interdigital transducer electrode structure over the piezoelectric layer and positioned between the first reflector and the second reflector. The surface acoustic wave device includes a velocity adjustment layer arranged to adjust acoustic velocity in a region of the surface acoustic wave device. The velocity adjustment layer can be a high speed layer or a low speed layer.Type: GrantFiled: November 16, 2020Date of Patent: February 20, 2024Assignee: Skyworks Solutions, Inc.Inventors: Joshua James Caron, Rei Goto, Benjamin Paul Abbott, Hiroyuki Nakamura
-
Patent number: 11909379Abstract: A MEMS device that includes a substrate including an element and a connection wiring electrically connected to the element, and a connection portion electrically connected to the connection wiring. The connection portion is formed of a eutectic alloy of a first metal and a second metal. A line width of the connection wiring is smaller than a width of the connection portion when a main surface of the substrate is viewed in a plan view.Type: GrantFiled: December 1, 2020Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Yoshihisa Inoue, Masakazu Fukumitsu, Yuichi Goto
-
Patent number: 11909380Abstract: An acoustic resonator and a method of manufacturing the same are provided. The acoustic resonator includes a resonating part including a first electrode, a second electrode, and a piezoelectric layer; and a plurality of seed layers disposed on one side of the resonating part.Type: GrantFiled: October 30, 2019Date of Patent: February 20, 2024Assignee: Samsung Electro-Mechanics Co., Ltd.Inventors: Ran Hee Shin, Tae Kyung Lee, Sung Han, Yun Sung Kang, Sung Sun Kim, Jin Suk Son, Jeong Suong Yang, Hwa Sun Lee, Eun Tae Park
-
Patent number: 11909381Abstract: An acoustic resonator device, filter devices, and methods of making the same. An acoustic resonator device includes a substrate having a surface and a single-crystal piezoelectric plate having front and back surfaces, where the back surface is attached to the surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm that spans a cavity in the substrate. The device further includes an interdigital transducer formed on the front surface of the piezoelectric plate, where interleaved fingers of the IDT disposed on the diaphragm are configured such that a radio frequency signal applied to the IDT excites a primary shear acoustic mode in the diaphragm. The interleaved fingers include a first layer adjacent the diaphragm and a second layer over the first layer, the second layer having a narrower width than the first layer.Type: GrantFiled: December 23, 2020Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Viktor Plesski, Patrick Turner, Robert Hammond, Bryant Garcia, Ventsislav Yantchev, Neal Fenzi, Julius Koskela
-
Patent number: 11909382Abstract: A multiplexer includes a common terminal, a first reception output terminal, a second reception output terminal, a first filter that is connected between the common terminal and the first reception output terminal, a second filter that is connected between the common terminal and the second reception output terminal and that has a passband different from that of the first filter, and an impedance matching circuit that is disposed between the common terminal and the second filter. The impedance matching circuit includes a serial arm resonator disposed in series on a path connecting the common terminal to the second filter.Type: GrantFiled: July 30, 2021Date of Patent: February 20, 2024Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Masakazu Tani
-
Patent number: 11909383Abstract: The invention relates to an electrical circuit (1) for transmitting a useful analogue signal, which has a signal transmission path (16) with an input path (2) and an output path (3) and at least one switch (6), with which the useful signal which is carried on the input path (2) can be connected through to the output path (3) or the signal transmission path (16) can be interrupted. According to the invention, a compensation circuit (4) which substantially compensates for a distortion of the useful analogue useful signal generated by the at least one switch (6) when it is switched off (OFF) is provided, wherein the compensation circuit (4) is connected to a control terminal (G) of the at least one switch (6) and comprises at least one non-linear capacitance.Type: GrantFiled: June 18, 2020Date of Patent: February 20, 2024Inventor: Thomas Meier
-
Patent number: 11909384Abstract: A protected direct-drive depletion-mode (D-mode) GaN semiconductor half-bridge power module is disclosed. Applications include high power inverter applications, such as 100 kW to 200 kW electric vehicle traction inverters, and other motor drives. The high-side switch is a normally-on D-mode GaN semiconductor power switch Q1 in series with a normally-off LV Si MOSFET power switch M1 and the low-side switch is a normally on D-mode GaN semiconductor power switch Q2. The gates of both Q1 and Q2 are directly driven. M1 in series with Q1 provides a high-side switch which is a normally-off device for start-up and fail-safe protection. M1 may also be used for current sensing and overcurrent protection. For example, a control circuit determines an operational mode of M1 responsive to a UVLO signal and a voltage sense signal indicative of an overcurrent event. Examples of single phase and three-phase half-bridge modules and driver circuits are described.Type: GrantFiled: May 11, 2022Date of Patent: February 20, 2024Inventor: Di Chen
-
Patent number: 11909385Abstract: A fast-switching power management circuit is provided. The fast-switching power management circuit is configured to generate an output voltage(s) based on an output voltage target that may change on a per-frame or per-symbol basis. In embodiments disclosed herein, the fast-switching power management circuit can be configured to adapt (increase or decrease) the output voltage(s) within a very short switching interval (e.g., less than one microsecond). As a result, when the fast-switching power management circuit is employed in a wireless communication apparatus to supply the output voltage(s) to a power amplifier circuit(s), the fast-switching power management circuit can quickly adapt the output voltage(s) to help improve operating efficiency and linearity of the power amplifier circuit(s).Type: GrantFiled: October 19, 2020Date of Patent: February 20, 2024Assignee: Qorvo US, Inc.Inventor: Nadim Khlat
-
Patent number: 11909386Abstract: A gate drive device drives a gate of each of two semiconductor switching elements constituting upper and lower arms of a half bridge circuit. The gate drive device detects a peak value of an element voltage that is a voltage of a main terminal of one of the two semiconductor switching elements, as one semiconductor switching element, or a change rate of the element voltage during a change period in which the element voltage changes. The gate drive device determines whether an energization to the one semiconductor switching element during the change period is a forward energization in which a current flows in a forward direction or a reverse energization in which the current flows in a reverse direction.Type: GrantFiled: August 30, 2022Date of Patent: February 20, 2024Assignee: DENSO CORPORATIONInventors: Hironori Akiyama, Tetsuya Dewa
-
Patent number: 11909387Abstract: A digital microphone or other sensor assembly includes a transducer and an electrical circuit including a slew-rate controlled output buffer configured to reduce propagation delay and maintain output rise and fall time independent of PVT variation and load capacitance. In some embodiments, the portions of the output buffer are selectably disabled to reduce power consumption without adversely substantially increasing propagation delay.Type: GrantFiled: March 10, 2022Date of Patent: February 20, 2024Assignee: KNOWLES ELECTRONICS, LLC.Inventors: Satya Sai Evani, Sudheer Gutta, Sreenath Pariyarath, Gururaj Ghorpade, Sruthi Panangavil
-
Patent number: 11909388Abstract: A terminal resistance circuit, a chip and a chip communication device are provided. The terminal resistance circuit can be used for a high-speed differential I/O pair and includes two resistance circuits and a control circuit. An end of the two resistance circuits connected in series is connected to a first interface and another end is connected to a second interface. A conductor wire connected between the two resistance circuits has a target node thereon. The two resistance circuits are symmetrically arranged relative to the target node. The control circuit is connected to the two resistance circuits individually and used to control the two resistance circuits each to be in a turn-off state during powering-on of the chip. An abnormal operation caused by a short circuit between two interfaces of a I/O pair during the powering-on of the chip is avoided and the working stability of the chip is improved.Type: GrantFiled: April 29, 2022Date of Patent: February 20, 2024Assignee: SHENZHEN PANGO MICROSYSTEMS CO., LTDInventors: Qianwen Zhang, Aimei Liang, Changqing Wen, Qiwei Wang
-
Patent number: 11909389Abstract: An input device includes a detection surface configured to be operated by an operation body, a first fixed electrode, a movable electrode, first and second terminals configured to be connected to an outside of the input device, and a direct-connection line electrically connecting the movable electrode to the second terminal via no capacitor. The movable electrode has a lower surface facing an upper surface of the first fixed electrode to be capacitively coupled to the first fixed electrode. The movable contact is displaceable to approach the first fixed electrode in response to a pressing of the detection surface by the operation body. The first terminal is configured to output, to the outside of the input device, a first electric signal containing a change in a capacitance between the first fixed electrode and the movable electrode.Type: GrantFiled: June 1, 2020Date of Patent: February 20, 2024Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Masaaki Yamabayashi, Yuta Saito, Kenichi Matsumoto, Ryo Nakae
-
Patent number: 11909390Abstract: A button structure has a base having a slot and a sensing element inserted into the slot. A pressure concentration element is fixedly connected by bonding to the sensing element and a key cap is mounted to the base. The key cap has a core member fixedly connected to a lower surface of a top plate of the key cap. The lower surface of the core member can be brought into contact with the pressure concentration element on application of a pressure to an upper surface of the top plate, such that the applied pressure is transmitted to the sensing element through the core member and the pressure concentration part. The sensing element is a piezoresistive film sensor.Type: GrantFiled: September 14, 2021Date of Patent: February 20, 2024Assignee: Peratech Holdco LimitedInventors: You Dawei, Li Zefeng, Cao Jin, Xu Feng
-
Patent number: 11909391Abstract: Asynchronous circuit elements are described. Asynchronous circuit elements include a consensus element (c-element), completion tree, and validity tree. The c-element is implemented using adjustable threshold based multi-input capacitive circuitries. The completion tree comprises a plurality of c-elements organized in a tree formation. The validity tree comprises OR gates followed by c-elements. The multi-input capacitive circuitries include capacitive structures that may comprise linear dielectric, paraelectric dielectric, or ferroelectric dielectric. The capacitors can be planar or non-planar. The capacitors may be stacked vertically to reduce footprint of the various asynchronous circuitries.Type: GrantFiled: January 14, 2022Date of Patent: February 20, 2024Assignee: KEPLER COMPUTING INC.Inventors: Amrita Mathuriya, Nabil Imam, Ikenna Odinaka, Rafael Rios, Rajeev Kumar Dokania, Sasikanth Manipatruni
-
Patent number: 11909392Abstract: Methods, systems, and apparatus for producing CCZ states and T states. In one aspect, a method for distilling a CCZ state includes preparing multiple target qubits, ancilla qubits and stabilizer qubits in a zero state, performing an X gate for each stabilizer qubit on multiple ancilla qubits or multiple ancilla qubits and one of the target qubits using the stabilizer qubit as a control, measuring the stabilizer qubits, performing, on each of the ancilla qubits, a Z1/4 gate and a Hadamard gate, measuring each of the ancilla qubits, performing, conditioned on each measured ancilla qubit state, a NOT operation on a selected stabilizer qubit, or a NOT operation on the selected stabilizer qubit and a Z gate on one or more respective target qubits, performing, on each target qubit and conditioned on a measured state of a respective stabilizer qubit, a Z gate on the target qubit, and performing an X gate on each of the target qubits.Type: GrantFiled: November 27, 2019Date of Patent: February 20, 2024Assignee: Google LLCInventors: Craig Gidney, Austin Greig Fowler
-
Patent number: 11909393Abstract: An input/output circuit including: a pull-up driving circuit including at least one internal node coupled to a pad, the pull-up driving circuit configured to pull up a voltage of the pad to a Tx power supply voltage; and a pull-down driving circuit configured to pull down the voltage of the pad to a ground voltage. The pull-up driving circuit is configured to set a voltage level of the at least one internal node to a voltage level of a power supply voltage on the basis of a fixed voltage, when a voltage difference between the Tx power supply voltage and the voltage of the pad is greater than the voltage level of the power supply voltage.Type: GrantFiled: June 6, 2022Date of Patent: February 20, 2024Assignee: SK hynix Inc.Inventor: Gyu Nam Kim