Elemental Metal Is Ag Patents (Class 106/1.19)
  • Patent number: 11787730
    Abstract: A glass powder is a glass powder comprising vanadium-tellurium-silver, which has a softening temperature of 230-330° C. and a median particle size of 1-2 ?m; when the glass powder is applied to the silver paste, the requirement that the silver paste is sintered at the temperature of 230-400° C. can be met, and a firm three-dimensional network structure can be formed in the glass system after the silver paste is sintered, and the welding tension of a front silver electrode can be improved; the addition of other metal elements to the glass powder can enable the network structure of the glass powder to be more compact and complete and ensure the stability of the glass powder; the prepared silver paste can be sintered at a temperature of 230-400° C.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 17, 2023
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventors: Ping Mao, Xin Zhao, Jinhua Zheng
  • Patent number: 10287442
    Abstract: Electrically conductive polymeric compositions adapted for use in forming electronic devices are disclosed. The compositions are thermally curable at temperatures less than about 250° C. Compositions are provided which may be solvent-free and so can be used in processing or manufacturing operations without solvent recovery concerns. Core-shell conductive particles provide the conductivity of the compositions and devices contemplated herein.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 14, 2019
    Assignee: HERAEUS PRECIOUS METALS NORTH AMERICA CONSHOHOCKEN LLC
    Inventors: Hong Jiang, Aziz S. Shaikh
  • Patent number: 9730321
    Abstract: Compositions and methods for silver plating onto metal surfaces such as PWBs in electronics manufacture to produce a silver plating which is greater than 80 atomic % silver, tarnish resistant, and has good solderability.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 8, 2017
    Inventors: Yung-Herng Yau, Thomas B. Richardson, Joseph A. Abys, Karl F. Wengenroth, Anthony Fiore, Chen Xu, Chonglun Fan, John Fudala
  • Patent number: 9006296
    Abstract: According to the present invention, a metal nanoparticle dispersion suitable to multiple layered coating by jetting in the form of fine droplets is prepared by dispersing metal nanoparticles having an average particle size of 1 to 100 nm in a dispersion solvent having a boiling point of 80° C. or higher in such a manner that the volume percentage of the dispersion solvent is selected in the range of 55 to 80% by volume and the fluid viscosity (20° C.) of the dispersion is chosen in the range of 2 mPa·s to 30 mPa·s, and then when the dispersion is discharged in the form of fine droplets by inkjet method or the like, the dispersion is concentrated by evaporation of the dispersion solvent in the droplets in the course of flight, coming to be a viscous dispersion which can be applicable to multi-layered coating.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 14, 2015
    Assignees: Harima Chemicals, Inc., SIJ Technology, Inc., National Institute of Advanced Industrial Science and Technology
    Inventors: Daisuke Itoh, Akihito Izumitani, Noriaki Hata, Yorishige Matsuba, Kazuhiro Murata, Hiroshi Yokoyama
  • Patent number: 8986434
    Abstract: Compositions and methods for silver plating onto metal surfaces such as PWBs in electronics manufacture to produce a silver plating which is greater than 80 atomic % silver, tarnish resistant, and has good solderability.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: March 24, 2015
    Assignee: Enthone Inc.
    Inventors: Yung-Herng Yau, Thomas B. Richardson, Joseph A. Abys, Karl F. Wengenroth, Anthony Fiore, Chen Xu, Chonglun Fan, John Fudala
  • Patent number: 8961669
    Abstract: Stable zero-valent metal compositions and methods of making and using these compositions are provided. Such compositions are useful as catalysts for subsequent metallization of non-conductive substrates, and are particularly useful in the manufacture of electronic devices.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: February 24, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Feng Liu, Maria Anna Rzeznik
  • Publication number: 20140287165
    Abstract: The present disclosure is related to a cladding composition. The cladding composition may include cladding powder particles and flux particles. The flux particles may have an average particle size of less than about 40 ?m, and more than about 50% of the flux particles may adhere to the surfaces of the cladding powder particles.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 25, 2014
    Applicant: Caterpillar Inc.
    Inventors: Daniel Thomas Cavanaugh, Daniel Joseph Sordelet, Justin Curtis Embrey
  • Patent number: 8815126
    Abstract: Disclosed is a method of screen printing an electrically conductive feature on a substrate, the electrically conductive feature including metallic anisotropic nanostructures, and a coating solution therefore.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 26, 2014
    Assignee: Cambrios Technologies Corporation
    Inventor: Adrian Winoto
  • Patent number: 8766089
    Abstract: A semiconductor substrate having an electrode formed thereon, the electrode including at least silver and glass frit, the electrode including: a multi-layered structure with a first electrode layer joined directly to the semiconductor substrate, and an upper electrode layer formed of at least one layer and disposed on the first electrode layer. The upper electrode layer is formed by firing a conductive paste having a total silver content of 75 wt % or more and 95 wt % or less, the content of silver particles having an average particle diameter of 4 ?m or greater and 8 ?m or smaller with respect to the total silver content in the upper electrode layer being higher than that in the first electrode layer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 1, 2014
    Assignees: Shin-Etsu Handotai Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Ishikawa, Satoyuki Ojima, Hiroyuki Ohtsuka, Takenori Watabe, Shigenori Saisu, Toyohiro Ueguri
  • Patent number: 8679242
    Abstract: The present invention relates to a silver complex obtained by reacting at least one silver compound represented by the formula 2 below with at least one ammonium carbamate compound or ammonium carbonate compound represented by the formula 3, 4 or 5 below:
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 25, 2014
    Assignee: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Myoung-Seon Gong, Yi-Sup Han, Jeong-Bin Park, Dong-Hun Nam, Seong-Yong Uhm, Young-Kwan Seo
  • Patent number: 8632628
    Abstract: One aspect of the present invention is a deposition solution to deposit metals and metal alloys such as for fabrication of electronic devices. According to one embodiment, the deposition solution comprises metal ions and a pH adjustor. The pH adjustor comprises a functional group having a general formula (R1R2N)(R3R4N)C?N—R5 where: N is nitrogen; C is carbon; and R1, R2, R3, R4, and R5 are the same or different and represent hydrogen, alkyl group, aryl group, or alkylaryl group. Another aspect of the presented invention is a method of preparing deposition solutions. Still another aspect of the present invention is a method of fabricating electronic devices.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Lam Research Corporation
    Inventor: Artur Kolics
  • Patent number: 8623764
    Abstract: Compositions and methods for forming metal films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing at least one metal precursor comprising at least one ligand, an excess amount of neutral labile ligands, a supercritical solvent, and optionally at least one source of B, C, N, Si, P, and mixtures thereof; exposing the composition to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; disassociating the at least one ligand from the metal precursor; and forming the metal film while minimizing formation of metal oxides.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 7, 2014
    Assignee: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 8617301
    Abstract: Compositions and methods for depositing elemental metal M(0) films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing a metal precursor, an excess amount of neutral labile ligands, and a supercritical solvent; exposing the metal precursor to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; reducing the metal precursor to the elemental metal M(0) by using the reducing agent and/or the thermal energy; and depositing the elemental metal M(0) film while minimizing formation of metal oxides.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Publication number: 20130344235
    Abstract: This invention discloses compositions and methods that afford sustainable deposition of electroless copper coatings, using aqueous hypophosphite compositions as opposed to formaldehyde (FA) The invention thus obviates the use of nefarious FA, a suspected carcinogen, presently the predominant reducer for plating electroless copper. The patent enables to plate “heavy” copper thicknesses currently unobtainable by the prior art teachings of electroless copper processes, that are based on hypophosphite reducers. The process and compositions of this patent are especially attractive for horizontal plating machines, currently using (FA) compositios. It is also beneficial for plating electroless copper on aluminum or zinc diecastings The patent further envisions electroless plating of silver in a cyanide-free composition.
    Type: Application
    Filed: June 9, 2013
    Publication date: December 26, 2013
    Inventor: John J. Grunwald
  • Patent number: 8591637
    Abstract: Stable zero-valent metal compositions and methods of making and using these compositions are provided. Such compositions are useful as catalysts for subsequent metallization of non-conductive substrates, and are particularly useful in the manufacture of electronic devices.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 26, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Maria Anna Rzeznik, Feng Liu
  • Patent number: 8591636
    Abstract: Stable zero-valent metal compositions and methods of making and using these compositions are provided. Such compositions are useful as catalysts for subsequent metallization of non-conductive substrates, and are particularly useful in the manufacture of electronic devices.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 26, 2013
    Assignee: Rohm and Haas Electronics Materials LLC
    Inventors: Feng Liu, Maria Anna Rzeznik
  • Publication number: 20130180768
    Abstract: Compositions and methods for silver plating onto metal surfaces such as PWBs in electronics manufacture to produce a silver plating which is greater than 80 atomic % silver, tarnish resistant, and has good solderability.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 18, 2013
    Applicant: ENTHONE INC.
    Inventor: ENTHONE INC.
  • Patent number: 8394297
    Abstract: The present invention is directed to a thick film conductive composition comprising: (a) electrically conductive silver powder; (b) Zn-containing additive wherein the particle size of said zinc-containing additive is in the range of 7 nanometers to less than 100 nanometers; (c) glass frit wherein said glass frit has a softening point in the range of 300 to 600° C.; dispersed in (d) organic medium. The present invention is further directed to a semiconductor device and a method of manufacturing a semiconductor device from a structural element composed of a semiconductor having a p-n junction and an insulating film formed on a main surface of the semiconductor comprising the steps of (a) applying onto said insulating film the thick film composition as describe above; and (b) firing said semiconductor, insulating film and thick film composition to form an electrode.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: March 12, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Yueli Wang, Richard John Sheffield Young, Alan Frederick Carroll, Kenneth Warren Hang
  • Patent number: 8319096
    Abstract: The present invention is directed to a semiconductor substrate having at least an electrode formed thereon, in which the electrode has a multilayer structure including two or more layers, of the multilayer structure, at least a first electrode layer directly bonded to the semiconductor substrate contains at least silver and a glass frit, and contains, as an additive, at least one of oxides of Ti, Bi, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Si, Al, Ge, Sn, Pb, and Zn, and, of an electrode layer formed on the first electrode layer, at least an uppermost electrode layer to be bonded to a wire contains at least silver and a glass frit and does not contain the additive. This makes it possible to form, on a semiconductor substrate, an electrode adhered to the semiconductor substrate with sufficient adhesive strength and adhered to a wire via solder with sufficient adhesive strength by lowering both contact resistance and interconnect resistance.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: November 27, 2012
    Assignees: Shin-Etsu Handotai Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Ishikawa, Hiroyuki Ohtsuka, Takenori Watabe, Satoyuki Ojima, Toyohiro Ueguri
  • Patent number: 8313673
    Abstract: The present invention is directed to a thick film conductive composition comprising: (a) electrically conductive silver powder; (b) Mn-containing additive; (c) glass frit wherein said glass frit has a softening point in the range of 300 to 600° C.; dispersed in (d) organic medium. The present invention is further directed to a semiconductor device and a method of manufacturing a semiconductor device from a structural element composed of a semiconductor having a p-n junction and an insulating film formed on a main surface of the semiconductor comprising the steps of (a) applying onto said insulating film the thick film composition as describe above; and (b) firing said semiconductor, insulating film and thick film composition to form an electrode.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 20, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Yueli Y. Wang, Alan Frederrick Carroll, Kenneth Warren Hang, Richard John Sheffield Young
  • Patent number: 8282860
    Abstract: The present invention relates to a process for preparation of silver nanoparticles and the compositions of silver ink containing the same. The present invention can prepare the silver nanoparticles with various shapes through a simple preparation process, improve the selectivity of the size of the silver nanoparticles, fire the silver nanoparticles even at a low temperature of 150° C. or less during a short time, provide the ink compositions capable of forming the coating or the fine pattern showing the high conductivity, and provide the ink compositions capable of being applied to the reflective film material, the electromagnetic wave shield, and the antimicrobial agent, etc.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: October 9, 2012
    Assignee: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Byung Hun Kim, Su Han Kim, Myung Bong Yoo, Nam Boo Cho, Yi Sup Han
  • Patent number: 8253011
    Abstract: The present invention is directed to a semiconductor substrate having an electrode formed thereon, the electrode including at least silver and glass frit, the electrode including: a multi-layered structure constituted of a first electrode layer joined directly to the semiconductor substrate, and an upper electrode layer formed of at least one layer and disposed on the first electrode layer; wherein the upper electrode layer is formed by firing a conductive paste having a total silver content of 75 wt % or more and 95 wt % or less, the content of silver particles having an average particle diameter of 4 ?m or greater and 8 ?m or smaller with respect to the total silver content in the upper electrode layer being higher than that in the first electrode layer. As a consequence, it is possible to form the electrode, which has the high aspect ratio and hardly suffers an inconvenience such as a break, on the semiconductor substrate by a simple method.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 28, 2012
    Assignees: Shin-Etsu Handotai Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Ishikawa, Satoyuki Ojima, Hiroyuki Ohtsuka, Takenori Watabe, Shigenori Saisu, Toyohiro Ueguri
  • Patent number: 8226755
    Abstract: The present invention relates to a silver complex obtained by reacting at least one silver compound represented by the formula 2 below with at least one ammonium carbamate compound or ammonium carbonate compound represented by the formula 3, 4 or 5 below:
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: July 24, 2012
    Assignee: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Myoung-Seon Gong, Yi-Sup Han, Jeong-Bin Park, Dong-Hun Nam, Seong-Yong Uhm, Young-Kwan Seo
  • Patent number: 8163073
    Abstract: An alkalescent chemical silver electroless plating solution, which comprises: 0.01˜20 g/L silver ion or silver complex ion, 0.1˜150 g/L amine complexing agent, 0.1˜150 g/L amino acids complexing agent, and 0.1˜150 g/L polyhydroxy acids complexing agent. The alkalescent chemical silver plating solution provided by the present invention is able to overcome problems existing in acidic chemical silver plating processes commonly used at present. These problems include gnawing and corrosion of copper wires, lateral corrosion and difficulty of plating silver in blind holes, presence of solder ball voids and low strength of soldering. The silver layer plated by said silver plating solution possesses characteristics of high corrosion resistance, low contact resistance, no electromigration, high welding strength, and avoidance of bubbles produced in the solder when the plating pieces are being welded.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 24, 2012
    Assignee: Chartermate International Limited
    Inventors: Kin Kwok Daniel Chan, Wing Hong Lai, Jing Li Fang
  • Patent number: 8066912
    Abstract: A conductive pattern forming ink for forming a conductive pattern on a substrate by a droplet discharge method, includes: metal particles; an aqueous dispersion medium in which the metal particles are dispersed; sugar alcohol derived from a disaccharide; and a polyglycerol compound having a polyglycerol skeleton. H shown in the following formula (I) is 0.10 to 0.80.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 29, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Naoyuki Toyoda
  • Publication number: 20110279991
    Abstract: A process used during manufacture of printed circuit boards comprises protecting metal pads and/or through-holes to provide a tarnish-resistant and solderable coating. In the method, the pads and/or through-holes are bright-etched, metal plated, preferably by an immersion process, and treated with a tarnish inhibitor. The tarnish inhibitor may be incorporated into the immersion plating bath. The metal plating is usually with silver or bismuth and the pads and/or through-holes comprise copper.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 17, 2011
    Applicant: ENTHONE INC.
    Inventors: Andrew McIntosh Soutar, Peter Thomas McGrath
  • Patent number: 7972538
    Abstract: A conductive pattern formation ink capable of producing a conductive pattern with reduced likelihood of generation of cracks, a conductive pattern which is small in the number of cracks generated, low in specific resistance and superior in high-frequency characteristics, and a wiring substrate provided with the conductive pattern which is small in the number of cracks generated, low in specific resistance and superior in high-frequency characteristics are provided. The conductive pattern formation ink is used for forming a conductive pattern on a base member by patterning and comprised of a dispersion solution. The dispersion solution includes a solvent, metal particles dispersed in the solvent, and an anti-cracking agent contained in the solvent, wherein the anti-cracking agent is contained for preventing generation of cracks in the conductive pattern during desolvation of the solvent.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: July 5, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Naoyuki Toyoda, Toshiyuki Kobayashi, Sachiko Endo
  • Publication number: 20110151268
    Abstract: A material is provided containing a metal and a lactic acid condensate, wherein the metal is selected from the group of copper, silver, and gold. An electronic component having a surface made of metal, ceramic, or oxide may be coated with the material. A method for the production of metallic surfaces on an electronic component is also provided.
    Type: Application
    Filed: August 19, 2009
    Publication date: June 23, 2011
    Applicant: W.C. HERAEUS GMBH
    Inventors: Wolfgang Schmitt, Michael Schaefer, Ferdinand Bartels
  • Patent number: 7906045
    Abstract: The present invention is directed to a thick film conductive composition comprising: (a) electrically conductive silver powder; (b) Zn-containing additive wherein the particle size of said zinc-containing additive is in the range of 7 nanometers to less than 100 nanometers; (c) glass frit wherein said glass frit has a softening point in the range of 300 to 600° C.; dispersed in (d) organic medium. The present invention is further directed to a semiconductor device and a method of manufacturing a semiconductor device from a structural element composed of a semiconductor having a p-n junction and an insulating film formed on a main surface of the semiconductor comprising the steps of (a) applying onto said insulating film the thick film composition as describe above; and (b) firing said semiconductor, insulating film and thick film composition to form an electrode.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 15, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Yueli L. Wang, Alan Frederick Carroll, Kenneth Warren Hang, Richard John Sheffield Young
  • Publication number: 20110042447
    Abstract: A cold formation method of composite silver nanoparticles has been established. Thus, provided are composite silver nanoparticles comprising a silver core, which is made up of aggregated silver atoms and has an average particle diameter of from 1 to 20 nm, and an organic coating layer formed thereon which comprises at least one member selected from an alcohol molecule derivative having 1 to 12 carbon atoms, an alcohol molecule residue or an alcohol molecule; a composite silver nanopaste which contains at least the composite silver nanoparticles and a solvent and/or a viscosity grant agent added thereto; a method of producing the same; an apparatus for producing the same; a method of bonding the same; and a method of patterning the same.
    Type: Application
    Filed: December 25, 2008
    Publication date: February 24, 2011
    Inventor: Teruo Komatsu
  • Publication number: 20110012068
    Abstract: A process for producing a fine silver particle colloidal dispersion which can simply form conductive silver layers and antimicrobial coatings by screen printing or the like. The process is characterized by having a reaction step of allowing an aqueous silver nitrate solution to react with a mixed solution of an aqueous iron(II) sulfate solution and an aqueous sodium citrate solution to form an agglomerate of fine silver particles, a filtration step of filtering the resultant agglomerate of fine silver particles to obtain a cake of the agglomerate of fine silver particles, a dispersion step of adding pure water to the cake to obtain a first fine silver particle colloidal dispersion of a water system in which dispersion the fine silver particles have been dispersed in the pure water, and a concentration and washing step of concentrating and washing the first fine silver particle colloidal dispersion of a water system.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji Kato, Masaya Yukinobu
  • Patent number: 7857998
    Abstract: Disclosed are thick film silver compositions comprised of silver flake and organic medium useful in radio frequency identification devices (RFID). The invention is further directed to method(s) of antenna formation using RFID circuits or other circuits using polymer thick film (PTF).
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 28, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jay Robert Dorfman
  • Patent number: 7786011
    Abstract: Compositions and methods for forming metal films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing at least one metal precursor comprising at least one ligand, an excess amount of neutral labile ligands, a supercritical solvent, and optionally at least one source of B, C, N, Si, P, and mixtures thereof; exposing the composition to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; disassociating the at least one ligand from the metal precursor; and forming the metal film while minimizing formation of metal oxides.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 31, 2010
    Assignee: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 7754106
    Abstract: A release agent is flash evaporated and deposited onto a support substrate under conventional vapor-deposition conditions and a conductive metal oxide, such as ITO, is subsequently sputtered or deposited by reactive electron beam onto the resulting release layer in the same process chamber to form a very thin film of conductive material. The resulting multilayer product is separated from the support substrate, crushed to brake up the metal-oxide film into flakes, and heated or mixed in a solvent to separate the soluble release layer from the metallic flakes. Thus, by judiciously controlling the deposition of the ITO on the release layer, transparent flakes may be obtained with the desired optical and physical characteristics.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: July 13, 2010
    Assignee: Sigma Laboratories of Arizona, LLC
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Publication number: 20100116168
    Abstract: An alkalescent chemical silver electroless plating solution, which comprises: 0.01˜20 g/L silver ion or silver complex ion, 0.1˜150 g/L amine complexing agent, 0.1˜150 g/L amino acids complexing agent, and 0.1˜150 g/L polyhydroxy acids complexing agent. The alkalescent chemical silver plating solution provided by the present invention is able to overcome problems existing in acidic chemical silver plating processes commonly used at present. These problems include gnawing and corrosion of copper wires, lateral corrosion and difficulty of plating silver in blind holes, presence of solder ball voids and low strength of soldering. The silver layer plated by said silver plating solution possesses characteristics of high corrosion resistance, low contact resistance, no electromigration, high welding strength, and avoidance of bubbles produced in the solder when the plating pieces are being welded.
    Type: Application
    Filed: December 8, 2006
    Publication date: May 13, 2010
    Inventors: Kin Kwok Daniel Chan, Wing Hong Lai, Jing Li Fang
  • Patent number: 7705236
    Abstract: The present invention is an electrode material comprising at least, a silver powder, a glass frit, and an organic vehicle, wherein a rate of Ag content of the electrode material is 75 wt % to 95 wt %, and a ratio of contents of Ag grains having an average grain diameter of 0.5 ?m to 3 ?m and Ag grains having an average grain diameter of 4 ?m to 8 ?m in the electrode material is (the Ag grains having an average grain diameter of 0.5 ?m to 3 ?m):(the Ag grains having an average grain diameter of 4 ?m to 8 ?m)=20-80 wt %:80-20 wt %, and a solar cell comprising an electrode formed by using the electrode material. Thereby, an electrode material that can be stably filled in an electrode groove formed on a semiconductor device and that an electrode with narrow line width and small resistance loss can be easily formed by, and a solar cell with high power having an electrode formed by using the electrode material are provided.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: April 27, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Ishikawa, Satoyuki Ojima, Hiroyuki Ohtsuka, Haruhiko Kano, Masanobu Yano
  • Publication number: 20100009071
    Abstract: A bimodal metal nanoparticle composition includes first metal nanoparticles having an average diameter of from about 50 nm to about 1000 nm, and second stabilized metal nanoparticles having an average diameter of from about 0.5 nm to about 20 nm, the second stabilized metal nanoparticles including metal cores having a stabilizer attached to the surfaces thereof, wherein the stabilizer is a substituted dithiocarbonate.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: XEROX CORPORATION
    Inventors: Naveen CHOPRA, Yuning LI, Peter M. KAZMAIER
  • Publication number: 20090186240
    Abstract: The present invention relates to a chemical nickel bath containing precious metal ions, a process for preparing a chemically deposited nickel coat containing a precious metal, the thus produced nickel coat, and the use thereof.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 23, 2009
    Applicant: NANOGATE AG
    Inventors: Jürgen Sander, Wolfgang Ludt
  • Patent number: 7560052
    Abstract: The present invention provides an aqueous ink containing ?3% silver particles having much improved adhesion. It has been found that the adhesion can be improved by adding an aqueous cationic dispersion of a styrene/acrylate copolymer, PEI (polyethyleneimine), or arabinogalactan as an additive to the ink. The advantage of using one of these materials to improve the adhesion of the silver ink is the stability of the ink is maintained and the resistivity goal is met when printed onto the specified media. In other words, this invention provides a silver ink with great adhesion properties while still able to meet the <0.1 ?/square resistivity requirement and remain stable for up to 4 weeks at 60° C. at accelerated oven aging conditions.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: July 14, 2009
    Assignee: Lexmark International, Inc.
    Inventors: Billie Jo Enciu, Elaine Yeap Money
  • Publication number: 20090075102
    Abstract: Electrochemically deposited indium composites are disclosed. The indium composites include indium metal or an alloy of indium with one or more ceramic materials. The indium composites have high bulk thermal conductivities. Articles containing the indium composites also are disclosed.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 19, 2009
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Nathaniel E. Brese, Edit Szocs, Felix J. Schwager, Michael P. Toben, Martin W. Bayes
  • Publication number: 20080308001
    Abstract: A metallic colloidal solution (a) includes a water-based dispersion medium that is easy in handling with regard to safety and environment and metallic particles having a uniform particle diameter and being excellent in properties such as conductivity and (b) has properties suitable for various printing methods and ink-applying methods. In addition, an inkjet-use metallic ink incorporating the metallic colloidal solution has properties suitable for the inkjet printing method. The metallic particles are deposited by reducing metallic ions in water and have a primary-particle diameter of at most 200 nm. The dispersion medium is made of a mixed solvent of water and a water-soluble organic solvent. The metallic particles are dispersed in the dispersion medium under the presence of a dispersant having a molecular weight of 200 to 30,000.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 18, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Issei OKADA, Kohei SHIMODA
  • Publication number: 20080268138
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 30, 2008
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Publication number: 20080206474
    Abstract: Disclosed is a method of plating a substrate with a metal using an autocatalytic electroless plating bath wherein the bath is operated above its cloud point temperature such that at least two phases are present in the bath. An autocatalytic electroless plating bath for coating silver metal is also described. A method for autocatalytic plating of silver metal directly onto a silicon surface without the need for an intervening layer of metal is also disclosed. The deposits of silver obtained are uniform, non-porous and have electrical properties. The technique can be applied for different processes and bath formulations i.e. different metals, complexing agents and reducing agents.
    Type: Application
    Filed: December 13, 2005
    Publication date: August 28, 2008
    Applicant: POLYMER KOMPOSITER I GOTEBORG AB
    Inventor: Anders Remgard
  • Publication number: 20080194103
    Abstract: Compositions and methods for forming metal films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing at least one metal precursor comprising at least one ligand, an excess amount of neutral labile ligands, a supercritical solvent, and optionally at least one source of B, C, N, Si, P, and mixtures thereof; exposing the composition to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; disassociating the at least one ligand from the metal precursor; and forming the metal film while minimizing formation of metal oxides.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 14, 2008
    Applicant: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 7410650
    Abstract: A method of fabricating nano-silver fibers is provided. An organic solution of a dispersant is prepared. Then, a silver salt and a reductant are added into the organic solution. The organic solution is stirred to let the silver salt and the reductant react to form silver nanoparticles dispersed in the organic solution uniformly. Next, a spinnable polymer resin is dissolved in the organic solution to form a spinning solution. A wet spinning method is performed to let the spinning solution form nano-silver fibers.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 12, 2008
    Assignee: Taiwan Textile Research Institute
    Inventor: Jia-Peng Lin
  • Publication number: 20080131735
    Abstract: The various embodiments of the present invention generally relate to the deposition of a seedlayer for a magnetic recording medium used for perpendicular magnetic recording (PMR) applications, where the seedlayer provides for grain size refinement and reduced lattice mis-fit for a subsequently deposited underlayer or granular magnetic layer, and where the seedlayer is deposited using a nickel (Ni) alloy based sputter target. The nickel (Ni) alloy can be binary (Ni—X; Ni—Y) or ternary (Ni—X—Y). In addition, the binary (Ni—X; Ni—Y) or ternary (Ni—X—Y) nickel (Ni) based alloys can be further alloyed with metal oxides, thus forming seedlayer thin films with a granular microstructure containing metallic grains, surrounded by an oxygen rich grain boundary. The nickel-based alloys (with or without metal oxides) of the various exemplary embodiments can be made by powder metallurgical technique or by melt-casting techniques, with or without thermo-mechanical working.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Applicant: Heraeus Incorporated
    Inventors: Anirban Das, Steven Roger Kennedy, Michael Gene Racine
  • Patent number: 7276185
    Abstract: A conductor composition being able to easily secure the conductivity at the same level as an Ag bulk at low temperature process, a mounting substrate utilizing the conductor composition and a mounting structure utilizing the conductor composition are provided. In a mounting structure, wherein one or more electrodes (11) of a mounting substrate (10) and one or more surface mounting components (20) are connected through a conductor composition (30), and one or more surface wirings (14) of the mounting substrate (10), one or more inner-layer wirings (13) and one or more via conductors (12) are formed with the conductor composition, the conductor composition contains conductive particles with electrical conductivity, and the conductive particles are composed of low crystallized Ag fillers with the crystal size of 10 nm or less.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: October 2, 2007
    Assignee: DENSO CORPORATION
    Inventors: Masashi Totokawa, Yuji Ootani, Hirokazu Imai, Akira Shintai
  • Patent number: 7211205
    Abstract: Conductive ink compositions which can be cured to highly conductive metal traces by means of “chemical welding” include adhesion promoting additives for providing improved adhesion of the compositions to various substrates.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: May 1, 2007
    Assignee: Parelec, Inc.
    Inventors: Brian F. Conaghan, Gregory A. Jablonski, Paul H. Kydd, Isabel Mendoza, David L. Richard
  • Patent number: 7166152
    Abstract: A pretreatment solution for providing a catalyst for electroless plating and a pretreatment method using the solution are provided. The pretreatment solution comprises a silver colloidal solution containing, as essential components, at least the following components (I), (II) and (III): (I) silver colloidal particles, (II) one or more ions selected from an ion of a metal having an electric potential which can reduce a silver ion to metal silver in the solution and an ion oxidized at the time of reduction of the silver ion, and (III) one or more ions selected from a hydroxycarboxylate ion, a condensed phosphate ion and an amine carboxylate ion, the silver colloidal particles (I) being produced by the ion of the metal (II) having an electric potential which can reduce a silver ion to metal silver. When an object to be plated is pretreated by use of the pretreatment solution, provision of an effective catalyst for electroless plating is achieved.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 23, 2007
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Keigo Obata, Masakazu Yoshimoto, Kim Dong Hyun, Shingo Kitamura, Seiichiro Nakao, Hidenori Tsuji, Hidemi Nawafune
  • Patent number: 7161117
    Abstract: A window glass for vehicles equipped with a conductor, which comprises a glass plate, a patterned conductor layer formed on the glass plate, and a covering layer formed to cover the conductor layer, wherein the covering layer comprises a fired product obtained by firing a composition containing a crystalline glass powder and a reducing agent capable of reducing silver ions.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 9, 2007
    Assignee: Asahi Glass Company, Limited
    Inventors: Toshio Minowa, Hiroyuki Hayakawa, Shuji Taguchi