Slag Patents (Class 106/789)
  • Patent number: 8414700
    Abstract: Hydraulic cements, such as Portland cements and other cements that include substantial quantities of tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and/or tetracalcalcium alumino-ferrite (C4AF), are particle size optimized to have increased reactivity compared to cements of similar chemistry and/or decreased water demand compared to cements of similar fineness. Increasing hydraulic cement reactivity increases early strength development and release of reactive calcium hydroxide, both of which enhance SCM replacement and 1-28 day strengths compared to blends of conventional Portland cement and one or more SCMs, such as coal ash, slag or natural pozzolan. Decreasing the water demand can improve strength by decreasing the water-to-cement ratio for a given workability. The narrow PSD cements are well suited for making blended cements, including binary, ternary and quaternary blends.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 9, 2013
    Assignee: Roman Cement, LLC
    Inventors: John M. Guynn, Andrew S. Hansen
  • Patent number: 8394192
    Abstract: A lightweight structural concrete includes a hydraulic binder; effective water; a superplasticizer; and aggregates; the concrete having a density in the fresh state varying from 1.40 to a Dmax value calculated according to formula (I) Dmax=1.58+(a×AM) in which “a” represents a coefficient for which the value is equal to 1; “AM” represents the mass percentage of the amorphous materials contained in 1 m3 of fresh concrete; the concrete having a maximum fresh state density Dmax less than or equal to 1.85; the concrete having a Weffective/L ratio varying from 0.19 to 0.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: March 12, 2013
    Assignee: Lafarge
    Inventors: Sylvain Meille, Gilles Chanvillard, Arnaud Schwartzentruber, Emmanuel Bonnet
  • Publication number: 20130059099
    Abstract: The present invention relates to a cement-free alkali-activated binder. More particularly, the present invention relates to a cement-free alkali-activated binder having a novel combination ratio, which can improve the compressive strength of mortar and concrete in which the cement-free alkali-activated binder is used as a binding material instead of cement, and which can solve the low field applicability of mortar and concrete in terms of quick setting characteristics, fluidity loss, economic efficiency and the like, and to mortar or concrete comprising the same. The cement-free alkali-activated binder can improve field applicability by controlling the content and combination ratio of an alkali activator included in the cement-free alkali-activated binder, and can solve the problems of the toxicity of cement, the carbon dioxide (CO2) produced during the manufacturing of cement and the exhaustion of natural resources due to the production of cement.
    Type: Application
    Filed: January 13, 2011
    Publication date: March 7, 2013
    Applicant: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Jin Kyu Song, Keun Hyeok Yang
  • Patent number: 8377201
    Abstract: Hydraulic cements, such as Portland cements and other cements that include substantial quantities of tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and/or tetracalcalcium alumino-ferrite (C4AF), are particle size optimized to have increased reactivity compared to cements of similar chemistry and/or decreased water demand compared to cements of similar fineness. Increasing hydraulic cement reactivity increases early strength development and release of reactive calcium hydroxide, both of which enhance SCM replacement and 1-28 day strengths compared to blends of conventional Portland cement and one or more SCMs, such as coal ash, slag or natural pozzolan. Decreasing the water demand can improve strength by decreasing the water-to-cement ratio for a given workability. The narrow PSD cements are well suited for making blended cements, including binary, ternary and quaternary blends.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: February 19, 2013
    Assignee: Roman Cement, LLC
    Inventors: John M. Guynn, Andrew S. Hansen
  • Patent number: 8361219
    Abstract: The invention relates to an expanded concrete composed of binder-containing mixtures, preferably having binders composed of Portland cement as specified in DIN EN 197 or of mixtures of hydraulic, latent-hydraulic and/or pozzolanic binders, having binders, water with a fraction of 20-60% by mass based on the mass of the binder in the mixture, chemical gas-forming agent, preferably in the form of aluminum powder, at 0.05-0.25% by mass, based on the mass of the binder, for forming mostly air pores in the expanded concrete, wherein the gas-forming agent in the form of a powder forms a mixture of different particle sizes, concrete additives such as in particular microsilica and/or flyash with a fraction of 0.5-25% by mass, based on the mass of the binder, concrete admixtures of mostly liquefying character and at a fraction of 0.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 29, 2013
    Assignee: Universitaet Dortmund
    Inventors: Armin Just, Bernhard Middendorf, Juergen Neisecke
  • Publication number: 20130008353
    Abstract: A method of servicing a wellbore in a subterranean formation, comprising preparing a cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag, vitrified shale, calcium sulfate hemi-hydrate or combinations thereof, and placing the cement composition in the wellbore. A cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag, vitrified shale, calcium sulfate hemi-hydrate or combinations thereof. A cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Lance E. BROTHERS, Anthony PALMER
  • Publication number: 20130008352
    Abstract: Methods and compositions are disclosed that comprise cement kiln dust having a mean particle size that has been altered. An embodiment discloses a method of preparing cement kiln dust comprising: providing cement kiln dust having an original particle size; and altering the mean particle size of the cement kiln dust from the original size by grinding, separating, or a combination thereof. Another embodiment discloses a well treatment fluid comprising: cement kiln dust having a mean particle size that has been altered from its original size by grinding, separating, or a combination thereof; and water.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Craig W. Roddy, Jiten Chatterji, Chad Brenneis, Callie R. Jarratt
  • Patent number: 8337613
    Abstract: Systems, methods and processes teach by specific examples how the cost of sequestering carbon dioxide (CO2) can be totally offset and turned into profits during coal powered electricity generation from revenue and co-benefits. The process is provided whereby fly ash-carbon mixtures, or de-volatilized coal char, or anthracite coal culm is co-fired in an air-cooled, slagging combustor with limestone or similar slag fluxing materials converts the ash into cementitious slag with properties similar to ground granulated blast furnace slag.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 25, 2012
    Inventor: Bert Zauderer
  • Publication number: 20120318172
    Abstract: It is the object of the invention to provide a cement admixture, and a cement composition that can impart good enough rustproofness to reinforcing bars in hardened cement concrete, and can have resistance to penetration of chloride ions entering from the outside, prevent the hardened cement concrete from getting porous due to reduced leaching of Ca ions and have a self-recovery capability. The invention provides a cement admixture characterized by containing a calcium ferroaluminate compound comprising a CaO—Al2O3—Fe2O3 system, and having a Fe2O3 content of 0.5 to 15% by mass and a CaO.2Al2O3 structure with a CaO/Al2O3 molar ratio ranging from 0.15 to 0.7.
    Type: Application
    Filed: November 25, 2010
    Publication date: December 20, 2012
    Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHA
    Inventors: Taiichiro Mori, Kazuto Tabara, Kenji Yamamoto, Minoru Morioka, Takayuki Higuchi
  • Patent number: 8323399
    Abstract: A high early strength blended cement composition includes larger sized fly ash and/or natural pozzolan particles blended with smaller sized hydraulic cement particles containing tricalcium silicate and/or dicalcium silicate (e.g., Portland cement and/or ground granulated blast furnace slag). Excess calcium released from the hydraulic cement particles when mixed with water forms calcium hydroxide available for reaction with the fly ash and/or natural pozzolan. The fineness of the hydraulic cement particles is substantially greater than the fineness of the fly ash and/or natural pozzolan particles (e.g., about 1.25 to about 50 times greater). Reducing or eliminating coarse hydraulic cement particles that cannot fully hydrate but include unreacted cores reduces or eliminates wasted cement normally found in concrete.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 4, 2012
    Assignee: Roman Cement, LLC
    Inventors: John M. Guynn, Andrew S. Hansen
  • Patent number: 8323398
    Abstract: The disclosure concerns cost effective concrete formulations based on an alkali activated binder. The construction material of the concrete type, contains sand, fine aggregates, coarse aggregates, water and a binder comprising: from 55 to 80 wt. % of fly ash containing less than wt. 8% of CaO; from 15 to 40 wt. % of blast furnace slag; a chemical activator containing: from 0.8 to 4 wt. % of alkaline silicates; and from 1.5 to 9 wt. % of alkaline carbonates; wherein the chemical activator has an silica to alkali molar ratio from 0.1 to 0.55; and a booster comprising at least one strong base. The disclosure also concerns a method to produce such a concrete construction material.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: December 4, 2012
    Assignee: Cemex Research Group AG
    Inventors: Thierry Sperisen, Javier Vasquez-Favela, Hugo Bolio-Arceo
  • Publication number: 20120247766
    Abstract: The present disclosure relates to geothermal grout, methods of making geothermal grout, and methods of using geothermal grout. The present disclosure is further directed to an geothermal grout with relative ease of preparation and desirable thermal conductivity while maintaining good sealant properties.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Inventor: Raymond T. Hemmings
  • Publication number: 20120234208
    Abstract: A cementitious compostion for high density, low porosity sheet-form building materials having solid surfaces is comprised of cement, pozzolans, and a high percentage of fine and/or coarse glass aggregate.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 20, 2012
    Applicant: Polycor Vetrazzo, Inc.
    Inventor: Donald Martin McPherson
  • Patent number: 8257488
    Abstract: A cementitious composition capable of forming a high, early-phase strength cement may comprise construction grade cement and ground blast furnace slag, the ground blast furnace slag having a Blaine fineness less than about 250 m2/kg. The cementitious composition may comprise, for each 100% by weight, greater than about 50% by weight construction grade portland cement and less than about 50% by weight ground blast furnace slag, and the cementitious composition may have a Blaine fineness less than about 300 m2/kg. Methods of making and using such a cementitious composition to cement a structure are also described.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 4, 2012
    Assignee: Capitol Aggregates, Inc.
    Inventors: Jose Garcia, Louis U. Spellman
  • Patent number: 8252111
    Abstract: It is aimed at providing a heavy concrete, which does not require addition of a thickener such as methyl cellulose, which is less in segregation between a heavy aggregate and a cement paste, and which is high in flowability and excellent in construction ability. The present invention provides a heavy concrete comprising, at least, a cement, a heavy aggregate, and water, mixed with one another, characterized in that the heavy fine aggregate includes hot scarves brought about in a scarfing process of a steel slab surface. The present invention further provides the above-described heavy concrete characterized in that the heavy fine aggregate includes fine aggregate particles passing through a sieve having a nominal size of 0.15 mm, in an amount of 10% to 20% in mass percentage, and the heavy fine aggregate includes spherical particles each having a distortion irregularity of 3.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 28, 2012
    Assignee: Taiheiyo Cement Corporation
    Inventors: Yasuhide Higo, Minoru Yoshimoto, Takeshi Hamada, Eichi Manabe
  • Patent number: 8246739
    Abstract: A process for the preparation of a wet concrete composition, including mixing Portland clinker in the form of grains having a Dv97 from 10 to 30 ?m or having a Blaine specific surface greater than or equal to 5300 cm2/g; slag; calcium sulphate; complementary materials, having a Dv90 less than or equal to 200 ?m; from 1500 to 2200 kg/m3 of aggregates; a plasticizer; optionally an accelerator and/or an air-entraining agent and/or a thickening agent and/or a retarder and/or a clay-inerting agent; with 140 to 220 l/m3 of effective water, the total quantity of clinker in the wet concrete being less than or equal to 200 kg/m3.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 21, 2012
    Assignee: Lafarge
    Inventors: Arnaud Schwartzentruber, Emmanuel Garcia
  • Publication number: 20120199350
    Abstract: A method of servicing a wellbore in a subterranean formation, comprising preparing a cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag, vitrified shale, calcium sulfate hemi-hydrate or combinations thereof, and placing the cement composition in the wellbore. A cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag, vitrified shale, calcium sulfate hemi-hydrate or combinations thereof. A cement composition comprising water and a cementitious material, wherein the cementitious material further comprises blast furnace slag.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Lance E. BROTHERS, Anthony V. PALMER
  • Publication number: 20120196046
    Abstract: Process for the preparation of a sprayable hydraulic binder composition containing as main components water, aggregates, hydraulic binder, set accelerator, characterized in, that a calcium silicate hydrate (C—S—H) containing component is added before and/or at the spray nozzle.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 2, 2012
    Inventors: Luc Nicoleau, Montserrat Alfonso, Elena Kolomiets
  • Patent number: 8221541
    Abstract: Disclosed is a heavyweight concrete composition using slag byproducts, including: ground granulated blast furnace slag; slow-cooled electric-arc-furnace oxidizing slag or atomized steel slag used as a fine aggregate; a coarse aggregate; water; and a chemical admixture based on 100 parts by weight high-early-strength cement. Thus, the heavyweight concrete composition contains a large quantity of steel slag and blast-furnace slag that are byproducts in iron-making and steel-making processes, thereby remarkably reducing an amount of emission of carbon dioxide and maximizing the recycling of waste resources for preserving the natural environment. As a result, an eco-friendly heavyweight concrete product can be made.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 17, 2012
    Assignee: Korea Railroad Research Institute
    Inventors: Tae Hoon Koh, Seong Ho Han, Seon Keun Hwang, Tae Hwan Ko
  • Patent number: 8206504
    Abstract: In one example of an embodiment of the invention, a method for producing an aggregate is disclosed comprising mixing sewage sludge from a waste water treatment facility with a non-coal combustion ash silicoaluminous waste material, agglomerating the mixture to form an agglomerate, and pyroprocessing the agglomerate to form an aggregate. The waste material may comprise municipal solid waste incinerator bottom ash, incinerator fly ash, incinerator filter dusts, cement kiln dusts, waste glass, blast furnace slag, kiln dusts, and/or granite sawing residues, for example. The method may further comprise milling the waste material prior to mixing. Preferably, the milling is wet milling. Pyroprocessing of the agglomerate may take place in a rotary kiln. The resulting aggregate may be a lightweight or a normal weight, sintered or vitrified aggregate. Aggregates and methods for making aggregates of high and low calcium silicoaluminous materials are also disclosed.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 26, 2012
    Assignee: Alkemy, Ltd.
    Inventor: Sophia Bethani
  • Publication number: 20120156503
    Abstract: The present invention relates to concrete with necessary durability using seawater and sea sand. The seawater mixed concrete of the present invention is obtained by mixing a mixture including slag-containing cement and sea sand, with seawater. And by including a nitrite-based admixture and pozzolan, the diffusion coefficient of concrete after hardening can be reduced to restrain the external intrusion of harmful factors. Further, the concrete structure according to the present invention can include seawater mixed concrete and reinforcement for increasing tensile strength.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 21, 2012
    Applicant: OBAYASHI CORPORATION
    Inventors: Shigeru AOKI, Makoto KANAI, Nobufumi TAKEDA, Yoshikazu ISHIZEKI
  • Publication number: 20120152153
    Abstract: A geopolymer composite ultra high performance concrete (GUHPC), and methods of making the same, are provided herein, the GUHPC comprising: (a) a binder comprising one or more selected from the group consisting of reactive aluminosilicate and reactive alkali-earth aluminosilicate; (b) an alkali activator comprising an aqueous solution of metal hydroxide and metal silicate; and (c) one or more aggregate.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Inventors: Weiliang Gong, Werner Lutze, Ian Pegg
  • Publication number: 20120132111
    Abstract: A method for the production of an alkali activated hydraulic binder, with the binder comprising slag, natural aluminum silicates, and an alkali activator, and the binder being free of CaSO4. The slag is provided in amounts greater than or equal to 20% (w/w), and the natural aluminum silicates are different from furnace slag, and are provided in amounts from 5 to 75% (w/w). The alkali activator is provided in an amount which corresponds to a Na2O equivalent defined as (Na2O+0.658K2O) (ASTM C 150) between 0.7 and 4% (w/w). The method includes the step of heat treating a mixture of the slag, the natural aluminium silicates, and the alkali activator at temperatures between 40° C. and 50° C. for 4 to 6 hours.
    Type: Application
    Filed: December 7, 2011
    Publication date: May 31, 2012
    Applicant: Holcim Technology Ltd.
    Inventors: Suz-chung Ko, Peter Kruspan, Juraj Gebauer
  • Publication number: 20120097072
    Abstract: Cementitious compositions and processes for preparing and using the cementitious compositions are provided. The cementitious compositions are characterized by the property of a reduced or an attenuated water vapor emission from a cementitious mix and a concrete formed therefrom.
    Type: Application
    Filed: July 15, 2010
    Publication date: April 26, 2012
    Applicant: U. S. Concrete, Inc.
    Inventors: Raymond C. Turpin, JR., Ryan A. Henkensiefken
  • Publication number: 20120082839
    Abstract: Formed building materials comprising a sequestered CO2 are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the formed building materials.
    Type: Application
    Filed: October 31, 2011
    Publication date: April 5, 2012
    Inventors: Eric HA, Guillaume Calas, Peng Lu, Chris Camire, William Bourcier, Treavor Kendall
  • Publication number: 20120079962
    Abstract: A cementitious composition capable of forming a high, early-phase strength cement may comprise construction grade cement and ground blast furnace slag, the ground blast furnace slag having a Blaine fineness less than about 250 m2/kg. The cementitious composition may comprise, for each 100% by weight, greater than about 50% by weight construction grade portland cement and less than about 50% by weight ground blast furnace slag, and the cementitious composition may have a Blaine fineness less than about 300 m2/kg. Methods of making and using such a cementitious composition to cement a structure are also described.
    Type: Application
    Filed: November 14, 2011
    Publication date: April 5, 2012
    Inventors: Jose Garcia, Louis U. Spellman
  • Patent number: 8133317
    Abstract: A cement additive contains industrial waste and has the effect of inhibiting formation of monosulfate in a hardened cementitious material. The cement additive contains specifically calcium carbonate, gypsum and coal ash and/or blast-furnace slag powder. This enables efficient use of industrial waste, allows inhibiting monosulfate formation in the hardened cementitious material, and allows producing a hardened cementitious material having good durability (sulfate resistance).
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: March 13, 2012
    Assignees: Taiheiyo Cement Corporation, DC Co., Ltd.
    Inventors: Hiroshi Hirao, Kazuo Yamada, Kiyoshi Koibuchi, Nobukazu Nito
  • Patent number: 8124569
    Abstract: The invention discloses a cement slurry composition for cementing a well comprising: an hydraulic cement, water and a combination made of a cellulosic polymer and an acrylamido-methyl-propane sulfonate co- or ter-polymer, wherein the density of said cement slurry is above 1700 kg/m3.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: February 28, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Tariq Mehmood Khan, Bernard Piot, Siti Humairah Abd Rahman
  • Patent number: 8118931
    Abstract: The present invention relates to building material mixtures which contain slag sand and zinc salts which have from 0 to 8 carbon atoms in their structure. The invention furthermore relates to the use of zinc salts for preventing discolorations during the hardening of the building material mixtures.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 21, 2012
    Assignee: Construction Research & Technology GmbH
    Inventors: Florian Ellenrieder, Katja Voland, Uwe Gehrig, Samuele Beraldo, Joachim Riedmiller
  • Patent number: 8110039
    Abstract: A method of manufacturing a hydratable cementitious material, which includes: a) providing at least one waste material containing calcium, silica, magnesium, aluminium, and/or iron; b) thermally treating each waste material to a first temperature such that surface water vapour present is substantially removed; and c) blending the treated waste material such that the resultant blend has a reactive oxide chemical/physical composition in the following range, by weight of the blend: Calcium Oxide 7.0 to 76% Alumina 0.1 to 30% Iron Oxide 0.4 to 19% Silica Oxide 1 to 36% Magnesia 0.1 to 2%. The resultant blend from step c) may subsequently be mixed with Portland cement.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 7, 2012
    Assignee: Cenin Limited
    Inventor: Gary Hunt
  • Publication number: 20120010331
    Abstract: Concrete compositions including a binder, water, a fine aggregate, a coarse aggregate and an admixture are provided. The binder is formed with a blast-furnace slag composition including 100 mass parts of a mixture of 80-95 mass % of blast-furnace slag fine particles with fineness 3000-13000 cm2/g and 5-20 mass parts of gypsum for a total of 100 mass % and 0.5-1.5 mass parts or 5-45 mass parts of an alkaline stimulant. Such concrete compositions can maintain superior operability by reducing the discharged amount of carbon dioxide and the decrease with time in fluidity and air content of the prepared concrete compositions. They can also reduce the drying shrinkage of the obtained hardened objects and allow the obtained hardened objects to manifest necessary strength.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 12, 2012
    Applicant: TAKEMOTO YUSHI KABUSHIKI KAISHA
    Inventors: Toshio Yonezawa, Kenro Mitsui, Kazumasa Inoue, Yosaku Ikeo, Masahiro Wachi, Takashi Hasumi, Mitsuo Kinoshita, Kazuhide Saitou, Moe Kuroda, Shinji Tamaki
  • Patent number: 8092590
    Abstract: The invention relates to a mineral, hydraulic binder for producing concrete or mortars or cement suspensions, based on at least one cement. The cement comprises clinker phases such as, C3S, C2S, C3A, and C4AF, which on reaction with water form hydrate phases that cure to form hardened cement. The cement displays a delay phase after mixing with water of some hours, e.g. from 4 to 8 hours, during which time no appreciable curing reaction takes place. The binder further comprises at least one finely divided SiO2 component and at least one finely divided CaO component, which react with make-up water during the delay phase to form calcium silicate hydrate phases that cure as a result of a pozzolanic reaction and produce early strength.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: January 10, 2012
    Assignee: Dyckerhoff AG
    Inventors: Frank Parker, Josef Strunge, Thomas Deuse
  • Patent number: 8080105
    Abstract: Methods of manufacture and use of flowable materials are provided. The flowable fill materials include a cement-based fill material with a cement component and an aggregate component that are mixed with a chemical agent and the like in water. This provides the cement-based material in a flowable state that can be controllably set over time.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: December 20, 2011
    Assignee: VCNA Prairie IP, Inc.
    Inventors: Jeffrey Jerald Krozel, Gary Lee Matney
  • Patent number: 8075687
    Abstract: A hydraulic binder based on slag cement, the slag cement including 20 to 80 weight % relative to a total weight of slag cement, of a blast furnace slag or a mixture of blast furnace slags, relative to the total weight of the slag cement, the hydraulic binder including an acceleration additive that is a ternary system including at least one alkali metal hydroxide in an amount such that, during mixing with water of the hydraulic binder, a molar concentration of the alkali metal hydroxide in the water is from 0.05N to 0.60N, preferably from 0.20N to 0.40N; an alkali metal sulfate at a rate of from 0.2 to 3 weight % of the slag cement; and a source of calcium sulfate in such a proportion that the content of calcium sulfate (CaSO4), relative to the weight of the slag cement, is from 2 to 7%.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: December 13, 2011
    Assignee: LaFarge
    Inventor: Michel Testud
  • Publication number: 20110287198
    Abstract: The present invention relates to an alkali-activated binder which can be used as a binder for replacing cement, and more particularly, to an alkali-activated binder, and to mortar, concrete, concrete products, and wet loess paving material comprising the binder, in which inorganic sodium-free alkaline materials are contained to reduce the total amount of Na2O and K2O in concrete, thus improving the workability and the strength stability and inhibiting the alkali-aggregate reaction.
    Type: Application
    Filed: January 29, 2010
    Publication date: November 24, 2011
    Applicant: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Jin Kyu Song, Keun Hyeok Yang
  • Patent number: 8056631
    Abstract: A cementitious composition capable of forming a high, early-phase strength cement may comprise construction grade cement and ground blast furnace slag, the ground blast furnace slag having a Blaine fineness less than about 250 m2/kg. The cementitious composition may comprise, for each 100% by weight, greater than about 50% by weight construction grade portland cement and less than about 50% by weight ground blast furnace slag, and the cementitious composition may have a Blaine fineness less than about 300 m2/kg. Methods of making and using such a cementitious composition to cement a structure are also described.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 15, 2011
    Assignee: Capitol Aggregates, Ltd.
    Inventors: Jose Garcia, Louis U. Spellman
  • Publication number: 20110271876
    Abstract: The present invention relates to geopolymer compositions, methods of producing the compositions, and uses thereof. The geopolymer compositions broadly are comprised of a geopolymer binder and an aggregate and, once cured, can exhibit compressive strengths in excess of that of Portland cement-based concrete formulations. The geopolymer composition of the present invention adheres to most surfaces and can b used in the formation of a mortarless building block, floor screed, bench, building block brick, support column or pre-molded column, beam, paving stone, tiles, stone accouterment for a garden, countertop, bathtub, sink, a geopolymer slab, a structural geopolymer composition, a reinforced geopolymer composition, a steel reinforced geopolymer composition, or as a substitute for structural concrete in foundations, beams, columns, or slab with the addition as necessary of steel reinforcement.
    Type: Application
    Filed: January 8, 2010
    Publication date: November 10, 2011
    Inventors: Stephen Alter, Michael Wright
  • Patent number: 8048219
    Abstract: A method of placing a concrete compositions including a) combining 3-40 volume percent cement, 5-50 volume percent fine aggregate, 5-50 volume percent coarse aggregate, and 10-22 volume percent water; b) adding 1.5-40 volume percent of prepuff particles to form a concrete composition; and c) pumping the concrete composition to a point higher in elevation than the delivery point of the concrete to place the concrete. The concrete composition contains less than 30 volume percent of other light weighting aggregates and the prepuff particles have an average particle diameter of from 0.2 mm to 8 mm, a bulk density of from 0.02 g/cc to 0.64 g/cc, an aspect ratio of from 1 to 3. The slump value of the placed concrete measured according to ASTM C 143 is greater than 1 inch and the concrete has a density of from about 40 to about 135 lb./ft3.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: November 1, 2011
    Assignee: NOVA Chemicals Inc.
    Inventors: Daniel Woolfsmith, Michael T. Williams, Rick Hughes, Michael R. Kelley, John K. Madish, Kristen Van Buskirk, Tricia Guevara Ladely
  • Patent number: 8038791
    Abstract: A cement product is disclosed. The cement product includes clinker defined by a feedstock material and a ladle metallurgical facility slag material derived from a ladle metallurgical facility steel production system. A system and method for manufacturing clinker is also disclosed.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: October 18, 2011
    Assignee: Edw. C. Levy Co.
    Inventor: Ronald Robert Piniecki
  • Patent number: 8038789
    Abstract: A process for making a pervious concrete comprising a geopolymerized pozzolanic ash. Generally, the process includes mixing a solid aggregate and a geopolymerized pozzolanic ash binder together to form a pervious concrete mixture. Some examples of suitable aggregates comprise recycled carpet, recycled cement, and aggregates of coal-combustion byproducts. The geopolymerized pozzolanic ash binder is made by combining a pozzolanic ash, such as fly ash, with a sufficient amount of an alkaline activator and water to initiate a geopolymerization reaction. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof. In some aspects, the final concrete forms a solid mass in the form of pavement or a pre-cast concrete shape. The solid mass of concrete may have a void content of between about 5% and about 35%.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: October 18, 2011
    Assignee: Ceramatec, Inc.
    Inventor: Chett Boxley
  • Patent number: 8029619
    Abstract: A grouting material which contains a fine particle material having a Blaine specific surface area of 5000 cm2/g or more, containing 30 to 60% by mass of cement clinker, 40 to 70 % by mass of and blast-furnace slag and 0.5 to 3 parts by mass of gypsum in terms of SO3 based on 100 parts by mass of the total amount of cement clinker and blast-furnace slag, and further contains (i) 4 to 8 parts by mass of calcium-aluminate-based rapid-hardening admixture, (ii) 0.05 to 0.2 parts by mass of setting retarder and (iii) 0.5 to 1.7 parts by mass of high-performance water-reducing agent, based on 100 parts by mass of the fine particle material.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: October 4, 2011
    Assignee: Nittetsu Cement Co., Ltd.
    Inventor: Takahiro Sato
  • Publication number: 20110162559
    Abstract: Methods of manufacture and use of flowable materials are provided. The flowable fill materials include a cement-based fill material with a cement component and an aggregate component that are mixed with a chemical agent and the like in water. This provides the cement-based material in a flowable state that can be controllably set over time.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: VCNA PRAIRIE IP, INC.
    Inventors: Jeffrey Jerald Krozel, Gary Lee Matney
  • Patent number: 7964538
    Abstract: A synthetic glass family in the quaternary phase field of CaO—SiO2-Al2O3-MgO (CSAM) with hydraulic and pozzolanic properties for use in differing applications in the gas and oil well cementing area. A method of making a mud-to-cement (MTC) slurry and a method for treating oil and gas wells with the MTC slurry containing a homogenous amorphous synthetic glass made from a mixture of inorganic materials selected from the group consisting of CSAM, wherein the cementing glasses with the mixture of inorganic materials are in a 100% amorphous phase with a degree of crystallization of zero.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: June 21, 2011
    Assignee: Intevep, S.A.
    Inventors: Yibran Perera, Virginia Buccellato, George Quercia, Aiskely Blanco
  • Patent number: 7883576
    Abstract: An inorganic binder composition has a first constituent which is a poly(sialate) or a poly(sialate-siloxo) admixed with a second constituent which has one or more of: fly ash F, fly ash C, fumed silica, Al2O3, pozzolan, ground slag, nepheline syenite, anhydrous aluminum silicate, hydrous aluminum silicate, hydrous sodium hydroxide, silicic acid, potassium salt, and sodium salt. The binder is used to recycle and reuse revert materials from metal smelting operations.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 8, 2011
    Inventor: Douglas C Comrie
  • Publication number: 20110028607
    Abstract: Methods and compositions that include a method of cementing comprising providing a cement composition comprising water, a hydraulic cement, and an additive comprising at least one additive selected from the group consisting of a stevia retarder and inulin; placing the cement composition in a subterranean formation; and permitting the cement composition to set in the formation.
    Type: Application
    Filed: October 8, 2010
    Publication date: February 3, 2011
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ronnie G. Morgan, William J. Caveny, Rickey L. Morgan
  • Publication number: 20110015306
    Abstract: Cementitious compositions and processes for preparing and using the cementitious compositions are provided. The cementitious compositions are characterized by the property of a reduced or an attenuated water vapor emission of a hardened concrete formed therefrom.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Inventor: Raymond C. Turpin, JR.
  • Patent number: 7811379
    Abstract: The disclosed invention provides an improved method that utilizes a liquid ladle slag in combination with a crushed material, such as a refractory brick, and alumina ladle brick or an aluminum dross, to manufacture a calcium aluminate product that can be used in the steel refining process.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 12, 2010
    Assignee: Harsco Corporation
    Inventors: Bruce James Barker, William Parker Breedlove, Gene Anthony Iannazzo
  • Patent number: 7790225
    Abstract: Coatings and methods are provided. An embodiment of the coating includes microcapsules that contain at least one of a corrosion inhibitor, a film-forming compound, and an indicator. The microcapsules are dispersed in a coating vehicle. A shell of each microcapsule breaks down in the presence of an alkaline condition, resulting from corrosion.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: September 7, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Luz M. Calle, Wenyan Li
  • Publication number: 20100206198
    Abstract: An industrial waste byproduct from a titanium metal or a titanium dioxide production process can be utilized as a partial cement replacement. In some embodiments, the byproduct can comprise a byproduct from the production of titanium dioxide pigment from a sulphate process or from a chloride process. The cement can be used to make concrete and other cementitious material products for structural and non-structural uses, for example, grout, mortar, gunite, stucco, masonry, decorative stonework, bricks, blocks, roof tiles, floor tiles, cobblestones, pavers, combinations thereof, and the like.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 19, 2010
    Applicant: THE NATIONAL TITANIUM DIOXIDE CO. LTD. (CRISTAL)
    Inventors: Tarek H. ALMUSALLAM, Mohammad Iqbal KHAN, Yousef Saleh AL-ZEGHAYER, Waheed Atia AL-MASRY, Fadi Mohamed TRABZUNI
  • Publication number: 20100180538
    Abstract: A cementitious composition capable of forming a high, early-phase strength cement may comprise construction grade cement and ground blast furnace slag, the ground blast furnace slag having a Blaine fineness less than about 250 m2/kg. The cementitious composition may comprise, for each 100% by weight, greater than about 50% by weight construction grade portland cement and less than about 50% by weight ground blast furnace slag, and the cementitious composition may have a Blaine fineness less than about 300 m2/kg. Methods of making and using such a cementitious composition to cement a structure are also described.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 22, 2010
    Inventors: Jose Garcia, Louis U. Spellman