Using Temperature Gradient (e.g., Moving Zone Recrystallization) Patents (Class 117/10)
-
Patent number: 12198975Abstract: A semiconductor on insulator type structure, which may be used for a front side type imager, successively comprises, from its rear side to its front side, a semiconductor support substrate, an electrically insulating layer and an active layer comprising a monocrystalline semiconductor material. The active layer is made of a semiconductor material having a state of mechanical stress with respect to the support substrate, and the support substrate comprises, on its rear side, a silicon oxide layer, the thickness of the oxide layer being chosen to compensate bow induced by the mechanical stress between the active layer and the support substrate during cooling of the structure after the formation by epitaxy of at least a part of the active layer on the support substrate.Type: GrantFiled: August 2, 2021Date of Patent: January 14, 2025Assignee: SoitecInventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot
-
Patent number: 12188150Abstract: A method for clonal-growth of a single-crystal metal, including: using copper as an example, placing an existing small-sized single-crystal copper foil with a plane of any index on a copper foil that needs to be single-crystallized, and performing annealing to obtain, by cloning, a large-area (in meters) single-crystal copper foil with the same surface index as that of the parent facet. The method solves the difficult problem of large-area single-crystal copper foil preparation. By performing annealing, a parent single-crystal copper foil with a very small size (˜0.25 cm2) can be cloned to produce a large-area (˜700 cm2) single-crystal copper foil, which is an increase in area of about 3000 times.Type: GrantFiled: June 4, 2019Date of Patent: January 7, 2025Assignee: PEKING UNIVERSITYInventors: Kaihui Liu, Zhibin Zhang, Muhong Wu, Dapeng Yu, Enge Wang
-
Patent number: 11618717Abstract: The invention relates to a lead-free piezoceramic material based on bismuth sodium titanate (BST) having the following parent composition: x(Bi0.5Na0.5)TiO3-yBaTiO3-zSrTiO3 where x+y+z=1 and 0<x<1, 0<y<1, 0?z?0.07 or x(Bi0.5Na0.5)TiO3-yBaTiO3-zCaTiO3 where x+y+z=1 and 0<x<1, 0<y<1, 0<z?0.05 or x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-zBaTiO3 where x+y+z=1 and 0<x<1, 0<y<1, 0?z<1, characterized by addition of a phosphorus-containing material in a quantity that gives a phosphorus concentration of from 100 to 2000 ppm in the piezoceramic material.Type: GrantFiled: January 14, 2019Date of Patent: April 4, 2023Assignee: PI CERAMIC GMBHInventors: Eberhard Hennig, Antje Kynast, Michael Töpfer, Michael Hofmann
-
Patent number: 11532476Abstract: A laser crystallizing apparatus includes a first light source unit configured to emit a first input light having a linearly polarized laser beam shape. A second light source unit is configured to emit a second input light having a linearly polarized laser beam shape. A polarization optical system is configured to rotate the first input light and/or the second input light at a predetermined rotation angle. An optical system is configured to convert the first input light and the second input light, which pass through the polarization optical system, into an output light. A target substrate is seated on a stage and output light is directed onto the target substrate. A monitoring unit is configured to receive the first input light or the second input light from the polarization optical system and measure a laser beam quality thereof.Type: GrantFiled: April 20, 2021Date of Patent: December 20, 2022Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Akifumi Sangu, Gyoowan Han, Jekil Ryu, Kyungjae Lee
-
Patent number: 11004938Abstract: A semiconductor substrate structure includes: a substrate; and an epitaxial growth layer bonded to the substrate, wherein the substrate and the epitaxial growth layer are bonded by a room-temperature bonding or a diffusion bonding.Type: GrantFiled: May 29, 2019Date of Patent: May 11, 2021Assignee: ROHM CO., LTD.Inventors: Takuji Maekawa, Mitsuru Morimoto, Makoto Takamura
-
Patent number: 9970126Abstract: Herein is provided a growth structure for forming a free-standing layer of crystalline material having at least one crystallographic symmetry. The growth structure includes a host substrate and a separation layer disposed on the host substrate for growth of a layer of the crystalline material thereon. The separation layer has a separation layer thickness, and is mechanically weaker than the host substrate and the crystalline material. An array of apertures is in the separation layer, each aperture extending through the separation layer thickness.Type: GrantFiled: February 20, 2014Date of Patent: May 15, 2018Assignee: Massachusetts Institute of TechnologyInventor: Richard J. Molnar
-
Patent number: 9941371Abstract: A complementary metal-oxide semiconductor (CMOS) device and a method of fabricating a CMOS device are described. The method includes forming an interfacial layer in a trench on a substrate in both a p-channel field effect transistor (pFET) area of the CMOS device and an n-channel FET (nFET) area of the CMOS device, depositing a high-k dielectric on the interfacial layer in both the pFET area and the nFET area, selectively forming a first metal layer on the high-k dielectric in only the pFET area, and depositing a second metal layer on the first metal layer in the pFET area and on the high-k dielectric in the nFET area. The method also includes performing an anneal that increases a thickness of the interfacial layer in only the pFET area.Type: GrantFiled: August 1, 2016Date of Patent: April 10, 2018Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Takashi Ando, Hemanth Jagannathan, Barry P. Linder
-
Patent number: 9768056Abstract: A method of preparing a single crystal semiconductor handle wafer in the manufacture of a silicon-on-insulator device is provided. The method comprises forming a multilayer of passivated semiconductors layers on a dielectric layer of a high resistivity single crystal semiconductor handle wafer. The method additionally comprises forming a semiconductor oxide layer on the multilayer of passivated semiconductor layers. The multilayer of passivated semiconductor layers comprise materials suitable for use as charge trapping layers between a high resistivity substrate and a buried oxide layer in a semiconductor on insulator structure.Type: GrantFiled: October 27, 2014Date of Patent: September 19, 2017Assignee: SunEdison Semiconductor Limited (UEN201334164H)Inventors: Igor Peidous, Illaria Katia Marianna Pellicano
-
Patent number: 9691619Abstract: A laser annealing device of the present invention includes a stage on which a heating object is placed, a first laser element which emits first continuous laser light, a first optical system which leads the first continuous laser light to the heating object to form a first application region on the heating object, a second laser element which emits second continuous laser light having a wavelength shorter than that of the first continuous laser light, a second optical system which leads the second continuous laser light to the heating object to form a second application region on the heating object, and a system controller which executes scanning with the first application region and the second application region so that each portion of the heating object is scanned with at least part of the first application region before being scanned with the second application region.Type: GrantFiled: March 7, 2013Date of Patent: June 27, 2017Assignee: Mitsubishi Electric CorporationInventors: Kazunori Kanada, Tadaharu Minato, Yusuke Kawase
-
Laser crystallization system, laser crystallization method, and method of fabricating display device
Patent number: 9508932Abstract: A laser crystallization system, including an output unit configured to generate output laser light, an optical unit configured to split the output laser light into a first laser light and a second laser light, and to process the first laser light to have a crystallization energy density, a moving unit configured to move a target object to be irradiated with the first laser light and the second laser light, a detection unit configured to detect surface information of the target object utilizing the second laser light, and an input unit configured to receive the detected surface information and to transmit a control signal to the output unit and the moving unit, wherein the laser crystallization system is configured to detect the surface information of the target object and to crystallize the target object utilizing only the output laser light.Type: GrantFiled: March 13, 2015Date of Patent: November 29, 2016Assignee: Samsung Display Co., Ltd.Inventors: Sang Hyun Jeon, Eun Jeong Cho -
Patent number: 9496183Abstract: A complementary metal-oxide semiconductor (CMOS) device and a method of fabricating a CMOS device are described. The method includes forming an interfacial layer in a trench on a substrate in both a p-channel field effect transistor (pFET) area of the CMOS device and an n-channel FET (nFET) area of the CMOS device, depositing a high-k dielectric on the interfacial layer in both the pFET area and the nFET area, selectively forming a first metal layer on the high-k dielectric in only the pFET area, and depositing a second metal layer on the first metal layer in the pFET area and on the high-k dielectric in the nFET area. The method also includes performing an anneal that increases a thickness of the interfacial layer in only the pFET area.Type: GrantFiled: May 7, 2015Date of Patent: November 15, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Takashi Ando, Hemanth Jagannathan, Barry P. Linder
-
Patent number: 8871022Abstract: The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.Type: GrantFiled: October 14, 2013Date of Patent: October 28, 2014Assignee: The Trustees of Columbia University in the City of New YorkInventor: James S. Im
-
Patent number: 8715412Abstract: Systems for processing thin films having variable thickness are provided. A crystalline film includes a first crystalline region having a first film thickness and a first crystalline grain structure; and a second crystalline region having a second film thickness and a second crystalline grain structure. The first film thickness is greater than the second film thickness and the first and second film thicknesses are selected to provide a crystalline region having the degree and orientation of crystallization that is desired for a device component.Type: GrantFiled: January 14, 2013Date of Patent: May 6, 2014Assignee: The Trustees of Columbia University in the City of New YorkInventor: James S. Im
-
Patent number: 8696808Abstract: Each region, which should be left on a substrate after patterning, of a semiconductor film is grasped in accordance with a mask. Then, each region to be scanned with laser light is determined so that at least the region to be obtained through the patterning is crystallized, and a beam spot is made to hit the region to be scanned, thereby partially crystallizing the semiconductor film. Each portion with low output energy of the beam spot is shielded by a slit. In the present invention, the laser light is not scanned and irradiated onto the entire surface of the semiconductor film but is scanned such that at least each indispensable portion is crystallized to a minimum. With the construction described above, it becomes possible to save time taken to irradiate the laser light onto each portion to be removed through the patterning after the crystallization of the semiconductor film.Type: GrantFiled: September 5, 2006Date of Patent: April 15, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Satoshi Murakami, Mai Akiba
-
Patent number: 8557040Abstract: The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.Type: GrantFiled: November 21, 2008Date of Patent: October 15, 2013Assignee: The Trustees of Columbia University in the City of New YorkInventor: James S. Im
-
Publication number: 20130186455Abstract: A method for forming single crystal or large-crystal-grain thin-film layers deposits a thin-film amorphous, nanocrystalline, microcrystalline, or polycrystalline layer, and laser-heats a seed spot having size on the order of a critical nucleation size of the thin-film layer. The single-crystal seed spot is extended into a single-crystal seed line by laser-heating one or more crystallization zones adjacent to the seed spot and drawing the zone across the thin-film layer. The single-crystal seed line is extended across the thin-film material layer into a single-crystal layer by laser-heating an adjacent linear crystallization zone and drawing the crystallization zone across the thin-film layer. Photovoltaic cells may be formed in or on the single-crystal layer. Tandem photovoltaic devices may be formed using one or several iterations of the method. The method may also be used to form single-crystal semiconductor thin-film transistors, such as for display devices, or to form single-crystal superconductor layers.Type: ApplicationFiled: February 21, 2012Publication date: July 25, 2013Inventors: Jifeng Liu, Xiaoxin Wang
-
Patent number: 8367301Abstract: A mask for crystallizing silicon includes a first, a second, and a third pattern part arranged in a longitudinal direction, each of the first, second, and third pattern parts including a plurality of unit blocks for transmitting and blocking a portion of light. At least two of the first, second and third pattern parts have a corresponding pattern to each other. Advantageously, scans using the aforementioned mask effectively remove a boundary on the silicon formed by the difference in the amount of laser beam irradiation received by the silicon, thereby improving electronic characteristics of the silicon.Type: GrantFiled: September 8, 2010Date of Patent: February 5, 2013Assignee: Samsung Display Co., Ltd.Inventors: Hyun-Dae Kim, Han-Na Jo
-
Patent number: 8328937Abstract: A seed crystal axis used in a solution growth of single crystal production system is provided to prevent formation of polycrystals and grow a single crystal with a high growth rate. The seed crystal axis includes a seed crystal bonded to a seed crystal support member between which is interposed a laminated carbon sheet having a high thermal conductivity in a direction perpendicular to a solution surface of a solvent. The laminated carbon sheet includes a plurality of carbon thin films laminated with an adhesive or a plurality of pieces with differing lamination directions arranged in a lattice. Alternatively, a wound carbon sheet including a carbon strip wound concentrically from the center or a wound carbon sheet including a plurality of carbon strips with differing thicknesses which are wound and laminated from the center may be provided.Type: GrantFiled: July 21, 2009Date of Patent: December 11, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Hidemitsu Sakamoto, Yasuyuki Fujiwara
-
Patent number: 8119546Abstract: An array substrate includes a base substrate, a switching element, and a pixel electrode. The switching element is on the base substrate. The switching element includes a poly silicon pattern having at least one block. Grains are formed in each of the at least one block that are extended in a plurality of directions. The pixel electrode is electrically connected to the switching element. Therefore, current mobility and design margin of the switching element are improved.Type: GrantFiled: April 28, 2008Date of Patent: February 21, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Soong-Yong Joo, Myung-Koo Kang
-
Patent number: 8016941Abstract: A method and apparatus for crystallizing a semiconductor that includes a first layer having a first crystal lattice orientation and a second layer having a second crystal lattice orientation, comprising amorphizing at least a portion of the second layer, applying a stress to the second layer and heating the second layer above a recrystallization temperature.Type: GrantFiled: February 5, 2007Date of Patent: September 13, 2011Assignees: Infineon Technologies AG, Samsung Electronics Co., Ltd.Inventors: Matthias Hierlemann, Ja-Hum Ku
-
Patent number: 8002893Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.Type: GrantFiled: December 23, 2008Date of Patent: August 23, 2011Assignee: Komatsu Denshi Kinzoku Kabushiki KaishaInventors: Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden
-
Patent number: 7919366Abstract: A laser crystallization method in which an amorphous silicon thin film 2 formed on a substrate 1 is irradiated with a laser beam, the method including the steps of providing the amorphous silicon thin film 2 with an absorbent to form an absorbent layer 3 on the desired specific local areas of the amorphous silicon thin film 2 and laser annealing for crystallizing the specific local areas of the amorphous silicon thin film 2 by irradiating the amorphous silicon thin film 2 including the specific local areas with a semiconductor laser beam L having a specific wavelength absorbable by the absorbent layer 3 and unabsorbable by the amorphous silicon thin film 2 for heating the absorbent layer 3.Type: GrantFiled: October 9, 2009Date of Patent: April 5, 2011Assignees: Osaka University, The Japan Steel Works, Ltd.Inventors: Takahisa Jitsuno, Keiu Tokumura, Ryotaro Togashi, Toshio Inami, Hideaki Kusama, Tatsumi Goto
-
Patent number: 7713848Abstract: The invention relates to a method for re-crystallization of layer structures by means of zone melting, in which, as a result of convenient arrangement of a plurality of heat sources, a significant acceleration of the zone melting method can be achieved. The method is based on the fact that a continuous recrystallisation of the layer is ensured as a result of overlaps being produced. According to the invention, a device is likewise provided with which the method according to the invention can be achieved. The method according to the invention is used in particular in the production of crystalline silicon thin layer solar cells or for example in SOI technology. However the application likewise relates also in general to the processing of metals, plastic materials or adhesives and here in particular to the production of thin layers.Type: GrantFiled: September 4, 2006Date of Patent: May 11, 2010Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Inventors: Stefan Reber, Achim Eyer, Fridolin Haas
-
Patent number: 7666767Abstract: A mask for sequential lateral solidification (SLS) process with at least one transparency region is provided. The transparent region is defined by two lengthwise edges, a front edge, and a rear edge. The two lengthwise edges also define a quadrilateral. The front edge is located outside the quadrilateral, and the rear edge is located inside the quadrilateral.Type: GrantFiled: July 31, 2006Date of Patent: February 23, 2010Assignee: AU Optronics Corp.Inventor: Ming-Wei Sun
-
Patent number: 7569462Abstract: The present invention provides a method of recrystallizing a silicon sheet, and in particular recrystallizing a small grained silicon sheet to improve material properties such as grain size and orientation. According to one aspect, the method includes using rapid thermal processing (RTP) to melt and recrystallize one or more entire silicon sheet(s) in one heating sequence. According to another aspect, the method includes directionally controlling a temperature drop across the thickness of the sheet so as to facilitate the production of a small number of nuclei in the melted material and their growth into large grains. According to a further aspect, the invention includes a re-crystallization chamber in an overall process flow that enables high-throughput processing of silicon sheets having desired properties for applications such as photovoltaic modules.Type: GrantFiled: December 13, 2006Date of Patent: August 4, 2009Assignee: Applied Materials, Inc.Inventors: Virendra V. Rana, Robert Z. Bachrach
-
Publication number: 20090014840Abstract: The invention is a method for the production of a silicon foil with a targeted charge carrier transport to the p-n transition by means of an integral electric field (‘drift field’). By varying the crystal growth speed and introducing a doping substance into the fluid silicon beforehand, a crystallization process can be carried out in such a way that a gradient over the foil thickness is produced in the doping profile in the silicon. This gradient of the doping profile gives rise to an electric field. With the aid of various foil casting techniques foils that are suitable for the production of solar cells can thus be produced in a relatively simple manner.Type: ApplicationFiled: June 10, 2005Publication date: January 15, 2009Applicant: RGS DEVELOPMENT B.V.Inventor: Axel Georg Schonecker
-
Patent number: 7396712Abstract: A thin film processing method for processing the thin film by irradiating an optical beam to the thin film. A unit of the irradiation of the optical beam includes a first and a second optical pulse irradiation to the thin film, and the unit of the irradiation is carried out repeatedly to process the thin film. The first and the second optical pulse have pulse waveforms different from each other. Preferably, a unit of the irradiation of the optical beam includes the a first optical pulse irradiated to the thin film and a second optical pulse irradiated to the thin film starting substantially simultaneous with the first optical pulse irradiation. In this case, the relationship between the first and the second optical pulse satisfies (the pulse width of the first optical pulse)<(the optical pulse of the second optical pulse) and (the irradiation intensity of the first optical pulse)?(the irradiation intensity of the second optical pulse).Type: GrantFiled: April 10, 2006Date of Patent: July 8, 2008Assignees: NEC Corporation, Sumitomo Heavy Industries, LtdInventors: Hiroshi Tanabe, Akihiko Taneda
-
Patent number: 7393409Abstract: The method provides CaF2 single crystals with low scattering, small refractive index differences and few small angle grain boundaries, which can be tempered at elevated temperatures. In the method a CaF2 starting material is heat-treated for at least five hours at temperatures between 1000° C. and 1250° C. and then sublimed at a sublimation temperature of at least 1100° C. in a vacuum of at most 5*10?4 mbar to form a vapor. The vapor is condensed at a condensation temperature of at least 500° C., which is at least 20° C. below the sublimitation temperature, to form a condensate. Then a melt formed from the condensate is cooled in a controlled manner to obtain the single crystal, which is subsequently tempered. The method is preferably performed with a CaF2 starting material including waste material and cuttings from previously used melts.Type: GrantFiled: February 22, 2005Date of Patent: July 1, 2008Assignee: Schott AGInventors: Lars Ortmann, Joerg Kandler, Andreas Menzel, Matthias Mueller, Lutz Parthier, Gordon Von der Goenna
-
Patent number: 7357963Abstract: A sequential lateral solidification apparatus includes a laser generator for generating and emitting a laser beam; an X-Y stage movable in two orthogonal axial directions; and a mask arranged between the laser generator and the X-Y stage. The mask has a plurality of slits through which the laser beam passes. An objective lens for scaling down the laser beam is arranged between the mask and the X-Y stage. A mask stage is connected to the mask for controlling minute movement of the mask for crystallizing amorphous silicon in one block.Type: GrantFiled: December 26, 2001Date of Patent: April 15, 2008Assignee: LG.Philips LCD Co., Ltd.Inventor: Yun-Ho Jung
-
Patent number: 7300516Abstract: When a laser beam is radiated on a semiconductor film under appropriate conditions, the semiconductor film can be crystallized into single crystal-like grains connected in a scanning direction of the laser beam (laser annealing). The most efficient laser annealing condition is studied. When a length of one side of a rectangular substrate on which a semiconductor film is formed is b, a scanning speed is V, and acceleration necessary to attain the scanning speed V of the laser beam relative to the substrate is g, and when V=(gb/5.477)1/2 is satisfied, a time necessary for the laser annealing is made shortest. The acceleration g is made constant, however, when it is a function of time, a time-averaged value thereof can be used in place of the constant.Type: GrantFiled: October 13, 2004Date of Patent: November 27, 2007Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Koichiro Tanaka
-
Patent number: 7214574Abstract: To provide a method and a device for subjecting a film to be treated to a heating treatment effectively by a lamp annealing process, ultraviolet light is irradiated from the upper face side of a substrate where the film to be treated is formed and infrared light is irradiated from the lower face side by which the lamp annealing process is carried out. According to such a constitution, the efficiency of exciting the film to be treated is significantly promoted since electron excitation effect by the ultraviolet light irradiation is added to vibrational excitation effect by the infrared light irradiation and strain energy caused in the film to be treated by the lamp annealing process is removed or reduced by a furnace annealing process.Type: GrantFiled: May 7, 2002Date of Patent: May 8, 2007Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hisashi Ohtani
-
Patent number: 7205184Abstract: A method of crystallizing a silicon film by which it is possible to obtain a polycrystalline silicon thin film having a uniform crystal structure and a good quality, and a method of manufacturing a thin film transistor-liquid crystal display (TFT-LCD) using the same. In the method of crystallizing the silicon film, an amorphous silicon film is formed on a substrate and a reflective film pattern is formed on the amorphous silicon film. The silicon film is crystallized by irradiating a laser onto the amorphous silicon film. The reflective film pattern is formed to expose the channel of the thin film transistor in the amorphous silicon film.Type: GrantFiled: October 14, 1998Date of Patent: April 17, 2007Assignee: Samsung Electronics Co., Ltd.Inventor: Heon-je Kim
-
Patent number: 7078246Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.Type: GrantFiled: April 5, 2004Date of Patent: July 18, 2006Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
-
Patent number: 7067006Abstract: A method of forming a single crystalline structure having a substantially linear response at least over the wave lengths of 1,200 to 1,700 nanometers, the resulting structure and its use as an optical media or a barrier coating. Thus, maximum obtainable optical transmission with zero attenuation is provided. There is no intrinsic material absorption.Type: GrantFiled: October 5, 2002Date of Patent: June 27, 2006Assignee: CZT Inc.Inventor: Susana Curatolo
-
Patent number: 7041580Abstract: A laser-annealing method includes the steps of a first step of cleaning a non-monocrystal silicon film formed on a substrate, and a second step of laser-annealing the non-monocrystal silicon film in an atmosphere containing oxygen therein, wherein the first and second steps are conducted continuously without being exposed to the air. Also, a laser-annealing device includes a cleaning chamber, and a laser irradiation chamber, wherein a substrate to be processed is transported between the cleaning chamber and the laser irradiation chamber without being exposed to the air.Type: GrantFiled: December 18, 2001Date of Patent: May 9, 2006Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Naoto Kusumoto, Toru Takayama, Masato Yonezawa
-
Patent number: 6860938Abstract: The present invention provides a method by which an oxide material having excellent thermoelectric conversion performance can be produced by a simple process. Specifically, the present invention provides a method for producing a composite oxide single crystal in which a mixture of raw substances including a Bi-containing substance, a Sr-containing substance, a Ca-containing substance, a Co-containing substance and a Te-containing substance, or a mixture of raw substances also including a Pb-containing substance in addition to the above-mentioned substances, is heated in an oxygen-containing atmosphere at a temperature below the melting point of any of the raw substances. The composite oxide single crystal produced by the method of the present invention is a ribbon-shaped fibrous single crystal that is about 10 to 10,000 ?m long, about 20 to 200 ?m wide, and about 1 to 5 ?m thick.Type: GrantFiled: May 27, 2002Date of Patent: March 1, 2005Assignee: National Institute of Advanced TechnologyInventors: Ryoji Funahashi, Ichiro Matsubara, Masahiro Shikano
-
Patent number: 6830616Abstract: The nickel element is provided selectively, i.e., adjacent to part of the surface of an amorphous silicon film in a long and narrow opening. The amorphous silicon film is irradiated with linear infrared light beams emitted from respective linear infrared lamps while scanned with the linear beams perpendicularly to the longitudinal direction of the opening. The longitudinal direction of the linear beams are set coincident with that of the opening. The infrared light beams are absorbed by the silicon film mainly as thermal energy, whereby a negative temperature gradient is formed in the silicon film. The temperature gradient moves as the lamps are moved for the scanning. The direction of the negative temperature gradient is set coincident with the lamp movement direction and an intended crystal growth direction, which enables crystal growth to proceed parallel with a substrate uniformly over a long distance.Type: GrantFiled: June 15, 2000Date of Patent: December 14, 2004Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Hisashi Ohtani
-
Patent number: 6818059Abstract: The present invention is related to a method of crystallizing an amorphous silicon layer and a crystallizing apparatus thereof which crystallize an amorphous silicon layer using plasma. The present invention includes the steps of depositing an inducing substance for silicon crystallization on an amorphous silicon layer by plasma exposure, and carrying out annealing on the amorphous silicon layer to the amorphous silicon layer. The present invention includes a chamber having an inner space, a substrate support in the chamber wherein the substrate support supports a substrate, a plasma generating means in the chamber wherein the plasma generating means produces plasma inside the chamber, and a heater at the substrate support wherein the heater supplies the substrate with heat.Type: GrantFiled: July 9, 1999Date of Patent: November 16, 2004Assignees: LG. Philips LCD Co., Ltd.Inventors: Jin Jang, Soo-Young Yoon, Jae-Young Oh, Woo-Sung Shon, Seong-Jin Park
-
Patent number: 6758898Abstract: The invention relates to a method for growing single crystals of barium titanate [BaTiO3] and barium titanate solid solutions [(BaxM1−x)(TiyN1−y)O3]. This invention is directed to a method for growing single crystals of barium titanate or barium titanate solid solutions showing the primary and secondary abnormal grain growths with increasing temperature higher than the liquid formation temperature, characterized by comprising the step for a few secondary abnormal grains to continue to grow at a temperature slightly below the critical temperature where the secondary abnormal grain growth starts to occur. The method for growing single crystals of barium titanate or barium titanate solid solutions according to this invention has the advantage of providing an effective low cost in manufacturing process for single crystals by using a conventional heat-treatment process without the need of special equipment.Type: GrantFiled: June 7, 2002Date of Patent: July 6, 2004Assignee: Ceracomp Co. Ltd.Inventors: Ho-Yong Lee, Jao-Suk Kim, Jong-Bong Lee, Tae-Moo Hur, Doe-Yeon Kim, Nong-Moon Hwang, Byoung-Ki Lee, Sung-Yoon Chung, Suk-Joong L. Kang
-
Patent number: 6716283Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.Type: GrantFiled: January 4, 2002Date of Patent: April 6, 2004Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
-
Patent number: 6544331Abstract: A crystal oscillator and method for manufacturing same including excitation electrode portions formed upon a crystal substrate and thus forming an excitation portion of the area defined between the electrode portions. Axis inversion portions possess an electrical axis (−X) opposite to the electrical axis (X) of the excitation portion, these axis inversion portions being formed within the crystal substrate at a position other than that of the excitation portion. A stable resonance frequency and filter frequency can be obtained even under conditions of ambient temperature fluctuation, by means of a relatively simple temperature compensation circuit, wherein handling is easy and no complicated adjustment is necessary, and low costs can be realized.Type: GrantFiled: May 18, 1999Date of Patent: April 8, 2003Assignee: Mitsubishi Materials CorporationInventor: Takehiko Uno
-
Patent number: 6482259Abstract: The invention relates to a method for growing single crystals of barium titanate [BaTiO3] and barium titanate solid solutions [(BaxM1-x)(TiyN1-y)O3]. This invention is directed to a method for growing single crystals of barium titanate or barium titanate solid solutions showing the primary and secondary abnormal grain growths with increasing temperature higher than the liquid formation temperature, characterized by comprising the step for a few secondary abnormal grains to continue to grow at a temperature slightly below the critical temperature where the secondary abnormal grain growth starts to occur. The method for growing single crystals of barium titanate or barium titanate solid solutions according to this invention has an advantage to provide an effective low cost in manufacturing process for single crystals by using usual heat-treatment process without special equipments.Type: GrantFiled: February 20, 2001Date of Patent: November 19, 2002Assignee: Ceracomp Co., Ltd.Inventors: Ho-Yong Lee, Jae-Suk Kim, Jong-Hong Lee, Tae-Moo Hur, Doe-Yeon Kim, Nong-Moon Hwang, Byoung-Ki Lee, Sung-Yoon Chung, Suk-Joong L. Kang
-
Patent number: 6458200Abstract: A process for fabricating thin film transistors is disclosed, which comprises a two-step laser annealing process as follows: crystallizing the channel portion by irradiating the channel portion with an irradiation beam; and modifying the electric properties of the source and the drain by irradiating the source and the drain with an irradiation beam in a step independent to the first step of crystallizing the channel portion.Type: GrantFiled: July 12, 1993Date of Patent: October 1, 2002Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Hongyong Zhang
-
Patent number: 6423585Abstract: To provide a method and a device for subjecting a film to be treated to a heating treatment effectively by a lamp annealing process, ultraviolet light is irradiated from the upper face side of a substrate where the film to be treated is formed and infrared light is irradiated from the lower face side by which the lamp annealing process is carried out. According to such a constitution, the efficiency of exciting the film to be treated is significantly promoted since electron excitation effect by the ultraviolet light irradiation is added to vibrational excitation effect by the infrared light irradiation and strain energy caused in the film to be treated by the lamp annealing process is removed or reduced by a furnace annealing process.Type: GrantFiled: March 10, 1998Date of Patent: July 23, 2002Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hisashi Ohtani
-
Publication number: 20020059896Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.Type: ApplicationFiled: January 4, 2002Publication date: May 23, 2002Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
-
Patent number: 6372039Abstract: A method and device for irradiating a pulse laser beam having a linear shape and a rectangular shape beam spot onto a non-single crystal semiconductor thin film. The method includes scanning the pulse laser beam so that previous and next beam spots are partially overlapped.Type: GrantFiled: March 22, 1999Date of Patent: April 16, 2002Assignee: NEC CorporationInventors: Hiroshi Okumura, Hiroshi Tanabe
-
Patent number: 6336969Abstract: In an annealing process in which laser light is irradiated to a semiconductor thin film, a refractive index of the semiconductor thin film after laser light irradiation is measured and conditions for the next laser light irradiation are adjusted based on the measured refractive index value. For example, laser light irradiation conditions are adjusted so that semiconductor thin films always have the same refractive index. As a result, the annealing can be performed under the same conditions at every laser light irradiation even if the laser light irradiation conditions vary unavoidably.Type: GrantFiled: April 11, 2000Date of Patent: January 8, 2002Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Naoaki Yamaguchi, Koichiro Tanaka, Satoshi Teramoto
-
Patent number: 6299681Abstract: A polycrystalline article is converted to a single crystal in a solid-state process. Heat is applied at a first end of the article to effect a predetermined spatial temperature profile thereat having a maximum temperature approaching a melting temperature thereof. The temperature profile is maintained to initiate conversion at the first end. The heat is moved along the article toward an opposite second end to correspondingly propagate the conversion along the article.Type: GrantFiled: November 27, 1998Date of Patent: October 9, 2001Assignee: General Electric CompanyInventors: Farzin Homayoun Azad, Marshall Gordon Jones
-
Patent number: 6204156Abstract: A process to fabricate a thin film transistor using an intrinsic polycrystalline silicon film, by a method of: preparing a semiconductor assembly; forming an insulation layer on a substrate; forming a first amorphous silicon layer on said insulation layer; forming silicon nucleation sites on said first amorphous silicon layer; converting said first amorphous silicon layer into hemispherical grained silicon, said hemispherical grained silicon being formed about said silicon nucleation sites; forming a second amorphous silicon layer covering said hemispherical grained silicon; annealing said second amorphous silicon layer to convert said second amorphous silicon layer into a grained silicon film, said grained silicon film being formed about said hemispherical grained silicon and having a dimension of approximately 0.1 microns to 0.Type: GrantFiled: September 2, 1999Date of Patent: March 20, 2001Assignee: Micron Technology, Inc.Inventor: Er-Xuan Ping
-
Patent number: 6187088Abstract: A pulse laser beam having a rectangular irradiation region is irradiated on the same point in a non-single crystal semiconductor film multiple times. The pulse laser beam has an energy profile in a longitudinal direction in the beam irradiation region as follows: (a) there are the first region having an energy density of Ea or higher and the second regions on both sides of the first region having an energy density of less than Ea, and (b) an energy density slope has an absolute value of 20 to 300 J/cm3 in a boundary region extending to 1 &mgr;m from the boundary line between the first and the second regions.Type: GrantFiled: July 15, 1999Date of Patent: February 13, 2001Assignee: NEC CorporationInventor: Hiroshi Okumura