Processes Of Growth From Solid Or Gel State (e.g., Solid Phase Recrystallization) Patents (Class 117/4)
  • Patent number: 10301742
    Abstract: To provide a lithium niobate (LN) substrate which allows treatment conditions regarding a temperature, a time, and the like to be easily managed and in which an in-plane distribution of a volume resistance value is very small, and a method of producing the same. A method of producing an LN substrate by using an LN single crystal grown by the Czochralski process, in which an LN single crystal having a Fe concentration of 50 mass ppm or more and 1000 mass ppm or less in the single crystal and processed into a form of a substrate is buried in an Al powder or a mixed powder of Al and Al2O3, and heat-treated at a temperature of 350° C. or more and less than 450° C., to produce a lithium niobate single crystal substrate having a volume resistivity controlled to be within a range of more than 1×1010 ?·cm to 2×1012 ?·cm or less.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 28, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Tomio Kajigaya
  • Patent number: 10276302
    Abstract: Process for treating a magnetic structure, wherein it comprises the following steps: providing a magnetic structure comprising one first layer of magnetic material comprising a CoFeB alloy; irradiating the magnetic structure with light low-energy ions; and simultaneously holding the magnetic structure with a preset temperature profile and for a preset time.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 30, 2019
    Assignees: Centre National de la Recherche Scientifique (CNRS), Universite Paris SUD (Paris II)
    Inventor: Dafine Ravelosona
  • Patent number: 10112873
    Abstract: A three-dimensional (3D) printing composition includes ceramic filaments comprising an additive having an aspect ratio of at least 2:1. 3D printed ceramic articles include the ceramic filaments.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 30, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Christopher S. Nordahl
  • Patent number: 9994971
    Abstract: A method for fabricating a carbon-based composite material includes: bearing a carbon-based composite material layer containing an amorphous carbon matrix and a plurality of equi-axed ultrananocrystalline diamond grains dispersed in the amorphous carbon matrix on a susceptor and applying a plasma treatment on the carbon-based composite material layer in a plasma environment containing a C2 species and a CN species. The susceptor is provided with a negative bias voltage, and is bombarded by the plasma species to be naturally heated to a working temperature less than 500° C. The C2 species and CN species are attracted by the negative bias voltage to the carbon-based composite material layer to make the carbon-based composite material layer generate a phase transformation, so as to facilitate growth of each of the adjacent equi-axed ultrananocrystalline diamond into a nano needle-like diamond grain wrapped by a nano graphite phase.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: June 12, 2018
    Assignee: TAMKANG UNIVERSITY
    Inventor: I-Nan Lin
  • Patent number: 9793686
    Abstract: A semiconductor device comprising a silicon substrate on which is grown a <100 nm thick epilayer of AlAs or related compound, followed by a compound semiconductor other than GaN buffer layer. Further III-V compound semiconductor structures can be epitaxially grown on top. The AlAs epilayer reduces the formation and propagation of defects from the interface with the silicon, and so can improve the performance of an active structure grown on top.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 17, 2017
    Assignee: UCL Business PLC
    Inventors: Huiyun Liu, Andrew David Lee, Alwyn John Seeds
  • Patent number: 9731262
    Abstract: The present invention relates to a method for preparing an aqueous or hydro-alcoholic colloidal solution of metal chalcogenide amorphous nanoparticles notably of the Cu2ZnSnS4 (CZTS) type and to the obtained colloidal solution. The present invention also relates to a method for manufacturing a film of large-grain crystallized semi-conducting metal chalcogenide film notably of CZTS obtained from an aqueous or hydro-alcoholic colloidal solution according to the invention, said film being useful as an absorption layer deposited on a substrate applied in a solid photovoltaic device.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: August 15, 2017
    Assignee: IMRA EUROPE SAS
    Inventors: Stephane Bourdais, Christophe Chone, Yan Cuccaro
  • Patent number: 9184246
    Abstract: A silicon carbide substrate has a first main surface, and a second main surface opposite to the first main surface. A region including at least one main surface of the first and second main surfaces is made of single-crystal silicon carbide. In the one main surface, sulfur atoms are present at not less than 60×1010 atoms/cm2 and not more than 2000×1010 atoms/cm2, and carbon atoms as an impurity are present at not less than 3 at % and not more than 25 at %. Thereby, a silicon carbide substrate having a stable surface, a semiconductor device using the substrate, and methods for manufacturing them can be provided.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: November 10, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Keiji Ishibashi
  • Patent number: 9130111
    Abstract: The present invention provides a method for manufacturing a monocrystalline film and a device formed by the above method, and according to the method mentioned above, lift-off of the monocrystalline silicon film is preferably performed and a high-purity monocrystalline silicon film can be obtained. A monocrystalline silicon substrate (template Si substrate) 201 is prepared, and on this monocrystalline silicon substrate 201, an epitaxial sacrificial layer 202 is formed. Subsequently, on this sacrificial layer 202, a monocrystalline silicon thin film 203 is rapidly epitaxially-grown using a RVD method, followed by etching of the sacrificial layer 202, whereby a monocrystalline silicon thin film 204 used as a photovoltaic layer of solar cells is formed.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 8, 2015
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventor: Suguru Noda
  • Patent number: 9039832
    Abstract: A high pressure high temperature (HPHT) method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least (1) and a growth surface substantially parallel to a {110} crystallographic plane is utilized is described. The growth is effected at a temperature in the range from 1280° C. to 1390° C.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: May 26, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Raymond Anthony Spits, Carlton Nigel Dodge
  • Patent number: 9034104
    Abstract: A larger substrate can be used, and a transistor having a desirably high field-effect mobility can be manufactured through formation of an oxide semiconductor layer having a high degree of crystallinity, whereby a large-sized display device, a high-performance semiconductor device, or the like can be put into practical use. A single-component oxide semiconductor layer is formed over a substrate; then, crystal growth is carried out from a surface to an inside by performing heat treatment at 500° C. to 1000° C. inclusive, preferably 550° C. to 750° C. inclusive so that a single-component oxide semiconductor layer including single crystal regions is formed; and a multi-component oxide semiconductor layer including single crystal regions is stacked over the single-component oxide semiconductor layer including single crystal regions.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 19, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takuya Hirohashi, Masahiro Takahashi, Takashi Shimazu
  • Patent number: 9034102
    Abstract: A method of fabricating a hybrid orientation substrate is described. A silicon substrate with a first orientation having a silicon layer with a second orientation directly thereon is provided, and then a stress layer is formed on the silicon layer. A trench is formed between a first portion and a second portion of the silicon layer through the stress layer and into the substrate. The first portion of the silicon layer is amorphized. A SPE process is performed to recrystallize the amorphized first portion of the silicon layer to be a recrystallized layer with the first orientation. An annealing process is performed at a temperature lower than 1200° C. to convert a surface layer of the second portion of the silicon layer to a strained layer. The trench is filled with an insulating material after the SPE process or the annealing process, and the stress layer is removed.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 19, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yao-Tsung Huang, Chien-Ting Lin, Che-Hua Hsu, Guang-Hwa Ma
  • Patent number: 8999058
    Abstract: This disclosure enables high-productivity fabrication of semiconductor-based separation layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers), optical reflectors (made of multi-layer/multi-porosity porous semiconductors such as porous silicon), formation of porous semiconductor (such as porous silicon) for anti-reflection coatings, passivation layers, and multi-junction, multi-band-gap solar cells (for instance, by forming a variable band gap porous silicon emitter on a crystalline silicon thin film or wafer-based solar cell). Other applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation).
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: April 7, 2015
    Assignee: Solexel, Inc.
    Inventors: George D. Kamian, Somnath Nag, Subbu Tamilmani, Mehrdad M. Moslehi, Karl-Josef Kramer, Takao Yonehara
  • Patent number: 8956453
    Abstract: The present invention provides a method for providing a crystalline germanium layer on a crystalline base substrate having a crystalline surface. The method comprises cleaning the base substrate for removing contaminants and/or native oxides from the surface, providing an amorphous germanium layer on the surface of the base substrate while exposing to the base substrate to a hydrogen source such as e.g. a hydrogen plasma, a H2 flux or hydrogen originating from dissociation of GeH4 and/or to a non-reactive gas source such as N2, He, Ne, Ar, Kr, Xe, Rn or mixtures thereof, and crystallizing the amorphous germanium layer by annealing the base substrate so as to provide a crystalline germanium layer.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 17, 2015
    Assignees: IMEC, Vrije Universiteit Brussel
    Inventors: Ruben Lieten, Stefan Degroote
  • Publication number: 20150024177
    Abstract: Disclosed is a method of fabricating a single crystal colloidal monolayer on a substrate. The method includes preparing a pair of adhesive substrates, arranging powder particles between the substrates, and uniaxially rubbing one of the substrates in any one direction to allow the particles to be close-packed between the substrates, thereby forming a single crystal monolayer.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Inventors: Unyong JEONG, JaeMin MYOUNG, Taeil LEE, ChooJin PARK
  • Patent number: 8894765
    Abstract: A PIN-PMN-PT ferroelectric single crystal and a method of manufacture are disclosed. The PIN-PMN-PT ferroelectric single crystal is oriented and polarized along a single crystallographic direction. The PIN-PMN-PT ferroelectric single crystal ferroelectric has increased remnant polarization.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 25, 2014
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Edward F. Alberta
  • Patent number: 8895416
    Abstract: Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 25, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Bhushan Sopori, Anikara Rangappan
  • Patent number: 8871022
    Abstract: The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: October 28, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8864907
    Abstract: A condition of a single crystal manufacturing step subjected to the Czochralski method applying an initial oxygen concentration, a dopant concentration or resistivity, and a heat treatment condition is determined simply and clearly on the basis of the conditions of a wafer manufacturing step and a device step so as to obtain a silicon wafer having a desired gettering capability. A manufacturing method of a silicon substrate which is manufactured from a silicon single crystal grown by the CZ method and provided for manufacturing a solid-state imaging device is provided. The internal state of the silicon substrate, which depends on the initial oxygen concentration, the carbon concentration, the resistivity, and the pulling condition of the silicon substrate, is determined by comparing a white spot condition representing upper and lower limits of the density of white spots as device characteristics with the measured density of white spots.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Publication number: 20140219902
    Abstract: The presently disclosed and/or claimed inventive concept(s) relates generally to hexagonal osmium boride, OsB2, and methods of producing the same. In one non-limiting embodiment, hexagonal OsB2 is produced by mechanochemical synthesis of osmium and boron in a high energy ball mill.
    Type: Application
    Filed: January 16, 2014
    Publication date: August 7, 2014
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Nina Orlovskaya, Zhilin Xie, Richard G. Blair
  • Patent number: 8734583
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20140119981
    Abstract: A Bi1-xSbx thin film is provided that includes a Dirac-cone with different degrees of anisotropy in their electronic band structure by controlling the stoichiometry, film thickness, and growth orientation of the thin film, so as to result in a consistent inverse-effective mass tensor including non-parabolic or linear dispersion relations.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Shuang Tang, Mildred S. Dresselhaus
  • Publication number: 20140102355
    Abstract: Methods of producing a polarization-modulating element that modulates a polarization state of incident light into a predetermined polarization state, the polarization-modulating element being used with an illumination optical apparatus, include preparing an optical material having optical activity, and providing the optical material with a circumferentially varying thickness profile and a central region that is an aperture having no optical activity. The thickness profile is set so that light in a linearly polarized state having a direction of polarization substantially along a single direction, is transformed into light in an azimuthal polarization state having a direction of polarization substantially along a circumferential direction or into light in a radially polarized state having a direction of polarization substantially along the radial direction.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 17, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 8696808
    Abstract: Each region, which should be left on a substrate after patterning, of a semiconductor film is grasped in accordance with a mask. Then, each region to be scanned with laser light is determined so that at least the region to be obtained through the patterning is crystallized, and a beam spot is made to hit the region to be scanned, thereby partially crystallizing the semiconductor film. Each portion with low output energy of the beam spot is shielded by a slit. In the present invention, the laser light is not scanned and irradiated onto the entire surface of the semiconductor film but is scanned such that at least each indispensable portion is crystallized to a minimum. With the construction described above, it becomes possible to save time taken to irradiate the laser light onto each portion to be removed through the patterning after the crystallization of the semiconductor film.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Satoshi Murakami, Mai Akiba
  • Patent number: 8673073
    Abstract: A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 18, 2014
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8663387
    Abstract: A method and system for processing at least one portion of a thin film sample on a substrate, with such portion of the film sample having a first boundary and a second boundary. One or more first areas of the film sample are successively irradiated by first beamlets of an irradiation beam pulse so that the first areas are melted throughout their thickness and allowed to re-solidify and crystallize thereby having grains grown therein. Thereafter, one or more second areas of the film sample are irradiated by second beamlets so that the second areas are melted throughout their thickness. At least two of the second areas partially overlap a particular area of the re-solidified and crystallized first areas such that the grains provided in the particular area grow into each of the at least two second areas upon re-solidification thereof.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 4, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8663491
    Abstract: High quantum yield InP nanocrystals are used in the bio-technology, bio-medical, and photovoltaic, specifically IV, III-V and III-VI nanocrystal technological applications. InP nanocrystals typically require post-generation HF treatment. Combining microwave methodologies with the presence of a fluorinated ionic liquid allows Fluorine ion etching without the hazards accompanying HF. Growing the InP nanocrystals in the presence of the ionic liquid allows in-situ etching to be achieved. The optimization of the PL QY is achieved by balancing growth and etching rates in the reaction.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: March 4, 2014
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Geoffrey F. Strouse, Derek D. Lovingood
  • Patent number: 8580031
    Abstract: A method of producing a three-dimensional photonic crystal by laminating a layer having a periodic structure, the method including the steps of forming a first structure and a second structure each including the layer having the periodic structure; and bonding a first bonding layer of the first structure and a second bonding layer of the second structure. The first bonding layer is one layer obtained by dividing a layer constituting the three-dimensional photonic crystal at a cross section perpendicular to a lamination direction, and the second bonding layer is the other layer obtained by dividing the layer constituting the three-dimensional photonic crystal at the cross section perpendicular to the lamination direction.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aihiko Numata, Hikaru Hoshi, Kenji Tamamori
  • Patent number: 8557040
    Abstract: The disclosed subject matter relates to the use of laser crystallization of thin films to create epitaxially textured crystalline thick films. In one or more embodiments, a method for preparing a thick crystalline film includes providing a film for crystallization on a substrate, wherein at least a portion of the substrate is substantially transparent to laser irradiation, said film including a seed layer having a predominant surface crystallographic orientation; and a top layer disposed above the seed layer; irradiating the film from the back side of the substrate using a pulsed laser to melt a first portion of the top layer at an interface with the seed layer while a second portion of the top layer remains solid; and re-solidifying the first portion of the top layer to form a crystalline laser epitaxial with the seed layer thereby releasing heat to melt an adjacent portion of the top layer.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: October 15, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8506703
    Abstract: A method for forming colloidal photonic crystals comprises; surrounding an outer circumference of a cylinder with a flexible substrate, spacing the cylinder a predetermined distance from a panel coated with a colloidal solution, and rotating the cylinder to form colloidal photonic crystals on the flexible panel.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 13, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Young-sang Cho, Mi-jeong Song, Hong-seok Lee
  • Patent number: 8475588
    Abstract: A wafer structure and epitaxial growth method for growing the same. The method may include forming a mask layer having nano-sized areas on a wafer, forming a porous layer having nano-sized pores on a surface of the wafer by etching the mask layer and a surface of the wafer, and forming an epitaxial material layer on the porous layer using an epitaxial growth process.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 2, 2013
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventor: Sung-Soo Park
  • Patent number: 8470089
    Abstract: The invention relates to a process for manufacturing a single crystal comprising a rare-earth halide, having improved machining or cleavage behavior, comprising heat treatment in a furnace, the atmosphere of which is brought, for at least 1 hour, to between 0.70 times Tm and 0.995 times Tm of a single crystal comprising a rare-earth halide, Tm representing the melting point of said single crystal, the temperature gradient at any point in the atmosphere of the furnace being less than 15 K/cm for said heat treatment. After carrying out the treatment according to the invention, the single crystals may be machined or cleaved without uncontrolled fracture. The single crystals may be used in a medical imaging device, especially a positron emission tomography system or a gamma camera or a CT scanner, for crude oil exploration, for detection and identification of fissile or radioactive materials, for nuclear and high-energy physics, for astrophysics or for industrial control.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: June 25, 2013
    Assignee: Saint-Gobain Cristaux et Detecteurs
    Inventors: Dominique Richaud, Alain Iltis, Vladimir Ouspenski
  • Patent number: 8460461
    Abstract: The present invention provides an oriented substrate for forming an epitaxial thin film thereon, which has a more excellent orientation than that of a conventional one and a high strength, and a method for manufacturing the same. The present invention provides a clad textured metal substrate for forming the epitaxial thin film thereon, which includes a metallic layer and a silver layer bonded to at least one face of the metallic layer, wherein the silver layer has a {100}<001> cube texture in which a deviating angle ?? of crystal axes satisfies ???9 degree. The textured metal substrate can be manufactured by subjecting the silver sheet containing 30 to 200 ppm oxygen by concentration to the orienting treatment of hot-working and heat-treating, and bonding the metal sheet with the oriented silver sheet by using a surface activated bonding process.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: June 11, 2013
    Assignees: Chubu Electric Power Co., Ltd., Tanaka Kikinzoku Kogyo. K.K.
    Inventors: Naoji Kashima, Shigeo Nagaya, Kunihiro Shima, Hirofumi Hoshino
  • Patent number: 8449671
    Abstract: A method of fabricating an SiC single crystal includes (a) physical vapor transport (PVT) growing a SiC single crystal on a seed crystal in the presence of a temperature gradient, wherein an early-to-grow portion of the SiC single crystal is at a lower temperature than a later-to-grow portion of the SiC single crystal. Once grown, the SiC single crystal is annealed in the presence of a reverse temperature gradient, wherein the later-to-grow portion of the SiC single crystal is at a lower temperature than the early-to-grow portion of the SiC single crystal.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: May 28, 2013
    Assignee: II-VI Incorporated
    Inventors: Ping Wu, Ilya Zwieback, Avinesh K. Gupta, Edward Semenas
  • Patent number: 8435418
    Abstract: High quantum yield InP nanocrystals are used in the bio-technology, bio-medical, and photovoltaic, specifically IV, III-V and III-VI nanocrystal technological applications. InP nanocrystals typically require post-generation HF treatment. Combining microwave methodologies with the presence of a fluorinated ionic liquid allows Fluorine ion etching without the hazards accompanying HF. Growing the InP nanocrystals in the presence of the ionic liquid allows in-situ etching to be achieved. The optimization of the PL QY is achieved by balancing growth and etching rates in the reaction.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: May 7, 2013
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Geoffrey F. Strouse, Derek D. Lovingood
  • Patent number: 8394194
    Abstract: A method of forming a layer of amorphous silicon oxide positioned between a layer of rare earth oxide and a silicon substrate. The method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate. The structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 12, 2013
    Inventors: Rytis Dargis, Andrew Clark, Robin Smith, Michael Lebby
  • Patent number: 8357308
    Abstract: High quantum yield InP nanocrystals are used in the bio-technology, bio-medical, and photovoltaic, specifically IV, III-V and III-VI nanocrystal technological applications. InP nanocrystals typically require post-generation HF treatment. Combining microwave methodologies with the presence of a fluorinated ionic liquid allows Fluorine ion etching without the hazards accompanying HF. Growing the InP nanocrystals in the presence of the ionic liquid allows in-situ etching to be achieved. The optimization of the PL QY is achieved by balancing growth and etching rates in the reaction.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 22, 2013
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Geoffrey F. Strouse, Derek D. Lovingood
  • Patent number: 8337618
    Abstract: A silicon crystallization system includes a vibration device for vibrating a linear laser beam along a longer-axis direction of the linear laser beam. A vibration frequency at which the laser beam is vibrated is periodically generated and randomly changes within a predetermined range.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 25, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Oh-Seob Kwon, Sang-Jo Lee, Hong-Ro Lee, Je-Kil Ryu
  • Publication number: 20120315482
    Abstract: There are provided a cluster of thin sheet graphite crystals or the like which is useful as an electrode material for lithium ion batteries, hybrid capacitors and the like, and a method for efficiently producing the same at high productivity. The method is one for producing a cluster of thin sheet graphite crystals composed of aggregates in such a state that thin sheet graphite crystals extend from the inside toward the outside, comprising charging a powdery and/or particulate material of an organic compound pre-baked to an extent of containing remaining hydrogen in a graphite vessel, and subjecting the powdery and/or particulate material together with the vessel to hot isostatic pressing treatment (HIP treatment) using a compressed gas atmosphere under the predetermined conditions.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 13, 2012
    Inventors: Kazuo Muramatsu, Masahiro Toyoda
  • Patent number: 8287643
    Abstract: The present invention provides an oriented substrate for forming an epitaxial thin film thereon, which has a more excellent orientation than that of a conventional one and a high strength, and a method for manufacturing the same. The present invention provides a clad textured metal substrate for forming the epitaxial thin film thereon, which includes a metallic layer and a silver layer bonded to at least one face of the metallic layer, wherein the silver layer has a {100}<001> cube texture in which a deviating angle ?? of crystal axes satisfies ???9 degree. The textured metal substrate can be manufactured by subjecting the silver sheet containing 30 to 200 ppm oxygen by concentration to the orienting treatment of hot-working and heat-treating, and bonding the metal sheet with the oriented silver sheet by using a surface activated bonding process.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: October 16, 2012
    Assignees: Chubu Electric Power Co., Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Naoji Kashima, Shigeo Nagaya, Kunihiro Shima, Hirofumi Hoshino
  • Patent number: 8257494
    Abstract: One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 4, 2012
    Assignee: Dimerond Technologies, LLC
    Inventor: Dieter M. Gruen
  • Patent number: 8257492
    Abstract: A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: September 4, 2012
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8258603
    Abstract: A solid-state far ultraviolet light emitting element is formed by a hexagonal boron nitride single crystal, excited by electron beam irradiation to emit far ultraviolet light having a maximum light emission peak in a far ultraviolet region at a wavelength of 235 nm or shorter.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: September 4, 2012
    Assignee: National Institute for Materials Science
    Inventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
  • Publication number: 20120214068
    Abstract: Graphene based materials are provided in connection with various devices and methods of manufacturing. As consistent with one or more embodiments, an apparatus includes a graphene sheet and a single-crystal structure grown on the graphene sheet, with the graphene sheet and single-crystalline structure functioning as an electrode terminal. In various embodiments, the single-crystalline structure is grown on a graphene sheet, such as by using precursor particles to form nanoparticles at the distributed locations, and diffusing and recrystallizing the nanoparticles to form the single-crystal structure.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 23, 2012
    Inventors: Hongjie DAI, Hailiang WANG
  • Patent number: 8246743
    Abstract: Single-crystal silicon carbide nanowires and a method for producing the nanowires are provided. The single-crystal silicon carbide nanowires have a very high aspect ratio and can be used for the fabrication of nanoelectronic devices, including electron gun emitters and MEMS probe tips, for use in a variety of displays and analyzers. Further provided is a filter comprising the nanowires. The filter is applied to systems for filtering vehicle engine exhaust gases to achieve improved filtering performance and increased lifetime.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: August 21, 2012
    Assignee: IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Sung-Churl Choi, Sang-Hoon Lee, Jin-Seok Lee, Yun-Ki Byeun
  • Patent number: 8221544
    Abstract: A polycrystalline film is prepared by (a) providing a substrate having a thin film disposed thereon, said film capable of laser-induced melting, (b) generating a sequence of laser pulses having a fluence that is sufficient to melt the film throughout its thickness in an irradiated region, each pulse forming a line beam having a predetermined length and width, said width sufficient to prevent nucleation of solids in a portion of the thin film that is irradiated by the laser pulse, (c) irradiating a first region of the film with a first laser pulse to form a first molten zone, said first molten zone demonstrating a variation in width along its length to thereby define a maximum width (Wmax) and a minimum width (Wmin), wherein the first molten zone crystallizes upon cooling to form one or more laterally grown crystals, (d) laterally moving the film in the direction of lateral growth a distance that is greater than about one-half Wmax and less than Wmin; and (e) irradiating a second region of the film with a seco
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: July 17, 2012
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. Van Der Wilt
  • Patent number: 8202364
    Abstract: By controlling the average size of matrix grains of polycrystalline bodies to more than a critical size at which an abnormal, exaggerated or discontinuous grain growth ends, and less than twice the critical size, large single crystals enough for practical use may be made even without occurring abnormal grain growth in polycrystalline bodies only through a heat treatment process without using a melting process and a special apparatus, thereby allowing the mass production of the large single crystals at low costs with high reproduction possibility.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 19, 2012
    Assignee: Ceracomp Co., Ltd.
    Inventors: Ho-Yong Lee, Jong-Bong Lee, Tae-Moo Hur, Dong-Ho Kim
  • Publication number: 20120112158
    Abstract: The invention provides an epitaxial substrate, a semiconductor light-emitting device using such epitaxial substrate and fabrication thereof. The epitaxial substrate according to the invention includes a crystalline substrate. In particular, a crystal surface of the crystalline substrate thereon has a plurality of randomly arranged nanorods. The plurality of nanorods is formed of oxide of a material different from that forms the crystalline substrate.
    Type: Application
    Filed: February 9, 2011
    Publication date: May 10, 2012
    Applicant: SINO-AMERICAN SILICON PRODUCTS INC.
    Inventors: Jiunn-Yih Chyan, Hung-Chi Chien, Kun-Lin Yang, Wen-Ching Hsu
  • Patent number: 8157912
    Abstract: Polycrystalline alumina (PCA) that has been doped with magnesium oxide is converted to sapphire by additionally doping the PCA with boron oxide and sintering to induce abnormal grain growth. The boron oxide may be added to an already formed green PCA ceramic shape by applying an aqueous boric acid solution to the green ceramic and heating the green ceramic in air to convert the boric acid to boron oxide.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: April 17, 2012
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: George C. Wei
  • Patent number: 8118932
    Abstract: By locally heating specific scan positions within a region of interest and automatically obtaining respective measurement data in a time-resolved and spatially-resolved fashion, dynamic processes within a metallization layer of semiconductor devices may be efficiently monitored and/or modified. For instance, OBIRCH and SEI techniques may be used in combination with the automated data recording and manipulation, thereby providing an efficient means for in situ failure analysis, defect identification, for any dynamic degradation processes in interconnects and interlayer dielectrics.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 21, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Joerg Buschbeck, Eckhard Langer, Marco Grafe
  • Patent number: 8114217
    Abstract: There are provided a crystallization method which can design laser beam having a light intensity and a distribution optimized on an incident surface of a substrate, form a desired crystallized structure while suppressing generation of any other undesirable structure area and satisfy a demand for low-temperature processing, a crystallization apparatus, a thin film transistor and a display apparatus. When crystallizing a non-single-crystal semiconductor thin film by irradiating laser beam thereto, irradiation light beam to the non-single-crystal semiconductor thin film have a light intensity with a light intensity distribution which cyclically repeats a monotonous increase and a monotonous decrease and a light intensity which melts the non-single-crystal semiconductor. Further, at least a silicon oxide film is provided on a laser beam incident surface of the non-single-crystal semiconductor film.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 14, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masayuki Jyumonji, Hiroyuki Ogawa, Masakiyo Matsumura, Masato Hiramatsu, Yoshinobu Kimura, Yukio Taniguchi, Tomoya Kato