Liquefying By Energy From An Electromagnetic Wave Or Electromagnetic Particle Or Arc Or Plasma (e.g., Radiant Heat) Patents (Class 117/50)
-
Patent number: 11739435Abstract: [Object] To provide a single-crystal fiber production equipment and a single-crystal fiber production method that do not at all require high precision control necessary for a conventional single-crystal production equipment, can very easily maintain a stable steady state for a long time, and can stably produce a long single crystal fiber having a length of several hundreds of meters or more. [Solution] The single-crystal fiber production equipment is used to produce a single crystal fiber by irradiating an upper surface of a raw material rod with a laser beam within a chamber to form a melt, immersing a seed single crystal in the melt, and pulling the seed single crystal upward.Type: GrantFiled: February 12, 2021Date of Patent: August 29, 2023Assignee: Crystal Systems CorporationInventor: Isamu Shindo
-
Patent number: 9970124Abstract: A single crystal production apparatus (and a single crystal production method) is configured to produce a single crystal by approaching a raw material M gripped by a raw material grip portion, and a seed crystal S gripped by a seed crystal grip portion by disposing the raw material grip portion and the seed crystal grip portion mutually in a vertical direction and approaching both of them each other, and forming a melting zone M1 by making a portion melted by heating the raw material M by a heating part in contact with the seed crystal S, and cooling the melting zone, wherein the heating part has an infrared generating part, and the seed crystal grip portion is disposed at a vertically top position, and the raw material grip portion is disposed at a vertically bottom position.Type: GrantFiled: March 13, 2015Date of Patent: May 15, 2018Inventor: Shin Akutsu
-
Patent number: 9482888Abstract: It is an object of the present invention to provide a magneto-optical material containing as a main component an oxide that includes a terbium oxide and having a large Verdet constant at a wavelength in the 1.06 ?m region (0.9 to 1.1 ?m) and high transparency, and to provide a small-sized optical isolator suitably used in a fiber laser for a processing machine. The magneto-optical material of the present invention contains an oxide represented by Formula (I), TbxR1?x)2O3, where x satisfies 0.4?×?1.0 and R includes at least one element selected from the group consisting of scandium, yttrium, and lanthanoid elements other than terbium, at a content of at least 99 wt %.Type: GrantFiled: October 5, 2011Date of Patent: November 1, 2016Assignee: SHIN-ETSU CHEMICAL CO., LTD.Inventors: Shinji Makikawa, Toshiaki Watanabe, Akio Yamanaka, Hirotaka Naruse
-
Publication number: 20140079363Abstract: The present invention relates to a double cladding crystal fiber and manufacturing method thereof, in which growing an YAG or a sapphire into a single crystal fiber by LHPG method, placing the single crystal fiber into a glass capillary for inner cladding, placing the single crystal fiber together with the glass capillary for inner cladding into a glass capillary for outer cladding in unison, heating the glass capillary for inner cladding and outer cladding by the LHPG method to attach to the outside of the single crystal fiber, and thus growing into a double cladding crystal fiber. When the present invention is applied to high power laser, by using the cladding pumping scheme, the high power pumping laser is coupled to the inner cladding layer, so the problems of heat dissipation and the efficiency impairment due to energy transfer up-conversion of high power laser are mitigated.Type: ApplicationFiled: March 25, 2013Publication date: March 20, 2014Applicant: NATIONAL TAIWAN UNIVERSITYInventors: KUANG-YU HSU, MU-HAN YANG, DONG-YO JHENG, SHENG-LUNG HUANG
-
Publication number: 20120298031Abstract: [Technical Problem] It is an object to provide a device for a single-crystal growth and a method of a single-crystal growth in which even when materials that are different in, for example, a melting point or a diameter are to be grown, the conditions for the stable growth of a single crystal can be obtained and a high-quality single crystal having a desired diameter can hence be grown. In addition, the device and the method have a reduced fluctuation of heating intensity to facilitate a crystal growth. [Solution of Problem] A device for a single-crystal growth is provided with a raw material rod (14) that is supported by an upper crystal driving shaft (8), a seed crystal rod (16) that is supported by a lower crystal driving shaft (12), and a heating means, and a contact part of the raw material rod (14) with the seed crystal rod (16) is heated with a heating means to form a melting zone (18) and grow a single crystal.Type: ApplicationFiled: December 28, 2010Publication date: November 29, 2012Applicants: CRYSTAL SYSTEMS CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGYInventors: Toshimitsu Ito, Yasuhide Tomioka, Yuji Yanagisawa, Isamu Shindo, Atsushi Yanase
-
Patent number: 8293009Abstract: A pressure differential is applied across a mold sheet and a semiconductor (e.g. silicon) wafer (e.g. for solar cell) is formed thereon. Relaxation of the pressure differential allows release of the wafer. The mold sheet may be cooler than the melt. Heat is extracted almost exclusively through the thickness of the forming wafer. The liquid and solid interface is substantially parallel to the mold sheet. The temperature of the solidifying body is substantially uniform across its width, resulting in low stresses and dislocation density and higher crystallographic quality. The mold sheet must allow flow of gas through it. The melt can be introduced to the sheet by: full area contact with the top of a melt; traversing a partial area contact of melt with the mold sheet, whether horizontal or vertical, or in between; and by dipping the mold into a melt. The grain size can be controlled by many means.Type: GrantFiled: November 17, 2011Date of Patent: October 23, 2012Assignee: 1366 Technologies Inc.Inventors: Emanuel M. Sachs, Richard L. Wallace, Eerik T. Hantsoo, Adam M. Lorenz, G. D. Stephen Hudelson, Ralf Jonczyk
-
Patent number: 8216373Abstract: A temperature gradient is established in a crystallization crucible by means of a heat source and a cooling system. The cooling system comprises a heat exchanger and an adjustable additional heat source. The cooling system is preferably formed by an induction coil cooled by a coolant liquid circulating in the induction coil and by an electrically conductive induction susceptor positioned between the crucible and induction coil. The fabrication process comprises heating the crucible via the top and controlling heat extraction from the crucible downwards by means of the heat exchanger and by means of regulation of the adjustable additional heat source.Type: GrantFiled: December 6, 2006Date of Patent: July 10, 2012Assignees: Apollon Solar, Cyberstar, EFD Induction SAInventors: Roland Einhaus, Francois Claude Lissalde, Pascal Rivat
-
Patent number: 8197595Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.Type: GrantFiled: January 19, 2010Date of Patent: June 12, 2012Assignee: PV Silicon Forschungs und Produktions GmbHInventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
-
Patent number: 8038794Abstract: A method of manufacturing a group III-nitride crystal substrate including the steps of introducing an alkali-metal-element-containing substance, a group III-element-containing substance and a nitrogen-element-containing substance into a reactor, forming a melt containing at least the alkali metal element, the group III-element and the nitrogen element in the reactor, and growing group III-nitride crystal from the melt, and characterized by handling the alkali-metal-element-containing substance in a drying container in which moisture concentration is controlled to at most 1.0 ppm at least in the step of introducing the alkali-metal-element-containing substance into the reactor is provided. A group III-nitride crystal substrate attaining a small absorption coefficient and the method of manufacturing the same, as well as a group III-nitride semiconductor device can thus be provided.Type: GrantFiled: April 15, 2005Date of Patent: October 18, 2011Assignees: Sumitomo Electric Industries, Ltd.Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota
-
Patent number: 7892355Abstract: A high quality single-crystalline polyalkylthiophene structure can be easily prepared by the inventive method which comprises: (i) dissolving polyalkylthiophene in an organic solvent at a temperature ranging from 50 to 100° C., sequentially quenching the polyalkylthiophene solution at a temperature ranging from 25 to 40° C. and then at ?5 to 15° C., to obtain a self-seeding polyalkylthiophene solution; and (ii) applying the self-seeding polyalkylthiophene solution obtained in step (i) to one surface of a nano-template having a hydrophobic supramolecule coating layer formed thereon to induce self-assembly and crystallization of polyalkylthiophene on the surface.Type: GrantFiled: August 20, 2007Date of Patent: February 22, 2011Assignees: Postech Foundation, Postech Academy-Industry FoundationInventors: Kilwon Cho, Do Hwan Kim
-
Patent number: 7828895Abstract: The invention relates to a method of producing an optical element using a garnet single crystal for the purpose of providing an optical element with a reduced Pb content or from which Pb can preliminarily be removed completely. By growing a garnet single crystal by using a solution containing Na, Bi and B by the LPE process and thermally treating the garnet single crystal in reducing atmosphere prepared by using nitrogen gas and/or hydrogen gas, the resulting thermally treated garnet single crystal is used to prepare an optical element.Type: GrantFiled: January 19, 2007Date of Patent: November 9, 2010Assignee: TDK CorporationInventor: Atsushi Ohido
-
Patent number: 7780783Abstract: The invention provides an apparatus for producing a single crystal, and a method for producing a silicon single crystal using the same. An apparatus for producing a single crystal includes a heating device which heats polycrystalline silicon raw material held in a crucible to form silicon melt, and a pulling up device which grows a silicon single crystal while pulling it up from the silicon melt accompanied with rotation. By providing the apparatus with a magnetic field generation unit which applies to the silicon melt a cusp magnetic field a shape of neutral plane of which is symmetric around the rotation axis of the silicon single crystal and is curved in the upward direction, various conditions for producing a silicon single crystal having a defect free region is relaxed, and a silicon single crystal having a defect free region is produced at high efficiency.Type: GrantFiled: October 9, 2007Date of Patent: August 24, 2010Assignee: Sumco CorporationInventors: Norihito Fukatsu, Kazuyuki Egashira, Senrin Fu
-
Patent number: 7749324Abstract: The present invention includes a method for casting a silicon ingot by using a continuous casting method by means of an electromagnetic induction, and a method for cutting the silicon ingot as a starting material into plural silicon blocks. When the silicon blocks with a square section are cut out, the sectional shape of the silicon ingot is set to be rectangular. Not less than 6 pieces of equal-sized silicon blocks are cut out from the silicon ingot, thereby enabling to enhance the manufacturing efficiency to a great extent. And since the amount of excision of the edge per silicon block is reduced, the production yield can be enhanced. Further, since the proportion of columnar crystals with large grain size inside the ingot can be increased, it becomes possible to enhance the conversion efficiency of a solar battery using the silicon block as a substrate material.Type: GrantFiled: December 21, 2007Date of Patent: July 6, 2010Assignee: Sumco Solar CorporationInventors: Mitsuo Yoshihara, Kenichi Sasatani
-
Patent number: 7695562Abstract: It is an object of the present invention to provide a magnetic garnet single crystal at a reduced Pb content, and a method for producing the same and an optical element using the same. The object is attained with a magnetic garnet single crystal represented by the chemical formula Bi?Na?M13-?-?Fe5-?M2?O12 (M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is at least one element selected from Si, Ge and Ti, provided that 0.5<??2.0, 0<??0.8, 0.2?3????<2.5, and 0<??1.6).Type: GrantFiled: December 29, 2006Date of Patent: April 13, 2010Assignee: TDK CorporationInventor: Atsushi Ohido
-
Patent number: 7445671Abstract: A method of producing networks of low melting metal oxides such as crystalline gallium oxide comprised of one-dimensional nanostructures. Because of the unique arrangement of wires, these crystalline networks defined as “nanowebs”, “nanowire networks”, and/or “two-dimensional nanowires”. Nanowebs contain wire densities on the order of 109/cm2. A possible mechanism for the fast self-assembly of crystalline metal oxide nanowires involves multiple nucleation and coalescence via oxidation-reduction reactions at the molecular level. The preferential growth of nanowires parallel to the substrate enables them to coalesce into regular polygonal networks. The individual segments of the polygonal network consist of both nanowires and nanotubules of ?-gallium oxide. The synthesis of highly crystalline noncatalytic low melting metals such as ?-gallium oxide tubes, nanowires, and nanopaintbrushes is accomplished using molten gallium and microwave plasma containing a mixture of monoatomic oxygen and hydrogen.Type: GrantFiled: June 16, 2004Date of Patent: November 4, 2008Assignees: University of Louisville, University of KentuckyInventors: Mahendra Kumar Sunkara, Shashank Sharma, Burtron H. Davis, Uschi M. Graham
-
Patent number: 7326294Abstract: Small crystals are made by mixing a solution of a desired substance with an anti-solvent in a fluidic vortex mixer in which the residence time is less than 1s, for example 10 ms. The liquid within the fluidic vortex mixer (12) is subjected to high intensity ultrasound from a transducer (20, 22). The solution very rapidly becomes supersaturated, and the ultrasound can induce a very large number of nuclei for crystal growth. Small crystals, for example less than 5 ?m, are formed. The resulting suspension is treated so as to add or remove ingredients, and then spray dried using an atomizer tuned to create small droplets in such a way that each droplet should contain not more than one crystal. Crystal agglomeration is hence prevented.Type: GrantFiled: April 8, 2003Date of Patent: February 5, 2008Assignee: Accentus PLCInventors: Linda Jane McCausland, David Reay
-
Patent number: 7258740Abstract: The present invention relates to an apparatus for making a source material into a crystal fiber having different regions of polarization inversion. The apparatus of the present invention is similar to a laser-heated pedestal growth (LHPG) apparatus, characterized in that a first electric field generating device and a second electric field generating device are included. The first electric field generating device is used for providing a first external electric field which is used for poling the crystal fiber and inducing micro-swing of the crystal fiber. The second electric field generating device is disposed on a predetermined position above the first electric field generating device for providing a second external electric field to control and maintain the amplitude of the micro-swing. Whereby, the growth condition of the crystal fiber can be controlled precisely, and a uniformly and regularly periodic polarization inversion structure is fabricated.Type: GrantFiled: April 14, 2005Date of Patent: August 21, 2007Assignee: National Sun Yat-Sen UniversityInventors: Sheng-Lung Huang, Hsiao-Wen Lee, Chia-Chang Kuo, Sheng Bang Huang, Tsai-Shuan Chou, Li-Min Lee
-
Patent number: 7025827Abstract: A doped semiconductor wafer of float zone-pulled semiconductor material contains a dopant added to a molten material and has a radial macroscopic resistance distribution of less than 12% and striations of ?10% to +10%. There is also a process for producing a doped semiconductor wafer by float zone pulling of a single crystal and dividing up the single crystal, in which process, during the float zone pulling, a molten material which is produced using an induction coil is doped with a dopant. It is exposed to at least one rotating magnetic field and is solidified. The single crystal which is formed during the solidification of the molten material is rotated. The single crystal and the magnetic field are rotated with opposite directions of rotation and the magnetic field has a frequency of 400 to 700 Hz.Type: GrantFiled: April 10, 2003Date of Patent: April 11, 2006Assignee: Siltronic AGInventors: Rolf Knobel, Wilfried Von Ammon, Janis Virbulis, Manfred Grundner
-
Patent number: 6966946Abstract: A manufacturing method of a Ga2-xFexO3 crystal is provided which can form a superior, uniform, and large crystal. By a floating zone melting method in which ends of material bars (3, 5), which are disposed at an upper and a lower position and which are composed of Ga2-xFexO3, are heated in a gas atmosphere with halogen lamps (6, 7) disposed at confocal areas so as to form a floating melting zone between the ends of the material bars (3, 5) which are disposed at the upper and the lower position and which are composed of Ga2-xFexO3, Ga2-xFexO3 a single crystal having an orthorhombic crystal structure is formed.Type: GrantFiled: October 11, 2002Date of Patent: November 22, 2005Assignee: Japan Science and Technology AgencyInventors: Yoshio Kaneko, Yoshinori Tokura, Shigeki Miyasaka
-
Patent number: 6942731Abstract: The invention relates to a method for improving the efficiency of epitaxially grown quantum dot semiconductor components having at least one quantum dot layer. The efficiency of semiconductor components containing an active medium consisting of quantum dots is often significantly below the theoretically possible values. The inventive method enables the efficiency of the relevant component to be clearly increased without substantially changing the growth parameters of the various epitaxial layers. In order to improve the efficiency of the component, the crystal is morphologically changed when the growth of the component is interrupted at the point in the overall process at which the quantum dots of a layer have just been covered. The growth front is smoothed at the same time, leading to, for example, a reduction in waveguide loss as the thickness of the waveguide is more homogeneous if the relevant component has one such waveguide.Type: GrantFiled: August 30, 2001Date of Patent: September 13, 2005Assignee: Technische Universitaet BerlinInventors: Roman Sellin, Nikolai N. Ledenstov, Dieter Bimberg
-
Patent number: 6712902Abstract: A feed rod for growing a magnetic single crystal having a composition represented by the formula (Y3-aAa)(Fe5-b-cBb)O12-&agr;, wherein A is at least one element selected from the lanthanoide series, B is at least one element selected from the group consisting of Ga, Al, In, and Sc, c is a value for decreasing the Fe content from the stoichiometric amount, &agr; is a value for decreasing the oxygen content to satisfy the chemically neutral condition, and the relationships 0≦a≧0.5; 0≦b≧1.0; 0<c≧0.15 and 0<&agr; are satisfied.Type: GrantFiled: August 15, 2002Date of Patent: March 30, 2004Assignee: Murata Manufacturing Co., Ltd.Inventor: Mikio Geho
-
Patent number: 6635555Abstract: A method is provided to produce thin polycrystalline films having a single predominant crystal orientation. The method is well suited to the production of films for use in production of thin film transistors (TFTs). A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize the amorphous silicon to form a film with a preferred crystal orientation. The crystallized film is then polished to a desired thickness for subsequent processing.Type: GrantFiled: February 28, 2001Date of Patent: October 21, 2003Assignee: Sharp Laboratories of America, Inc.Inventor: Apostolos Voutsas
-
Publication number: 20030150374Abstract: The present invention reduces temperature gradient in the direction of the radius of solidified ingots of silicon immediately after solidification, which has serious influences on the quality as a solar cell and improves the quality. Silicon raw materials are melted inside a bottomless crucible 3 combined with an induction coil 2 by electromagnetic induction heating. The silicon melt 19 formed inside the bottomless crucible 3 is allowed to descend and solidified ingots of silicon 12 are manufactured continuously. Plasma heating by a transferred plasma arc torch 9 is also used for melting the silicon raw materials. The plasma arc torch 9 is moved for scanning along the inner surface of the bottomless crucible 3 in the horizontal direction. A plasma electrode on the solidified ingot side to generate transferred plasma arc is allowed to contact the surface of the solidified ingot at positions where the temperature of the solidified ingot becomes 500 to 900° C.Type: ApplicationFiled: January 8, 2003Publication date: August 14, 2003Inventors: Kenichi Sasatani, Naritoshi Kimura, Masakazu Ohnishi
-
Publication number: 20020112659Abstract: A method of manufacturing a single crystal, for example, an oxide single crystal, without using any seed crystal, includes the steps of preparing a raw material polycrystalline rod, and then using either the Floating Zone Method or the Laser Heated Pedestal Growth Method heating and melting the raw material polycrystalline rod to form a molten zone and then cooling and solidifying the molten zone successively in the length direction, wherein a fiber-shaped single crystal, which is 3 mm or smaller in diameter, grows in the direction normal to the densest surface.Type: ApplicationFiled: February 4, 2002Publication date: August 22, 2002Applicant: Murata Manufacturing Co., Ltd.Inventors: Takenori Sekijima, Mikio Geho
-
Patent number: 6387178Abstract: A single crystal producing method for growing a single crystal, comprises the steps of: placing a material at one focal point in a light-condensing and heating furnace having an ellipse in section; placing a heat light source at another focal point; and emitting a laser beam has a wavelength of not less than about 160 nm and not greater than about 1,000 nm, on or near the one focal point to form a melt zone; and moving the melt zone to grow a single crystal.Type: GrantFiled: November 20, 2000Date of Patent: May 14, 2002Assignee: Murata Manufacturing Co., Ltd.Inventors: Mikio Geho, Takenori Sekijima, Takashi Fujii
-
Publication number: 20010017101Abstract: After power supply, a CPU, serving as warm-up duration calculation means, calculates duration for warm-up operation from temperature characteristic data of a load detection part on the basis of a power shut down duration, for notifying it's warm-up operation state by a display device on the basis of the calculated duration for warm-up operation.Type: ApplicationFiled: February 26, 2001Publication date: August 30, 2001Applicant: SHIMADZU CORPORATIONInventor: Hiroshi Hamamoto
-
Patent number: 6210478Abstract: A method and apparatus for locally and successively melting a material by induction heating using a horizontal floating-zone crucible to refine and/or analyze the material. An electromagnetic field is generated to create a localized molten zone within the material that is at least partially levitated within the crucible. The crucible has an upper peripheral opening so that an upper portion of the molten zone is generally at a higher temperature than the lower portion of the molten zone adjacent the crucible wall. As a result, insoluble inclusions within the material separate and float to the upper portion of the molten zone. The molten zone may be translated longitudinally through the material to drive the inclusions toward one end of the material. The process can be carried out to refine or characterize the material, or to determine the solidus and liquidus temperatures of the material.Type: GrantFiled: July 9, 1999Date of Patent: April 3, 2001Assignee: General Electric CompanyInventors: Bernard Patrick Bewlay, Don Mark Lipkin, Dennis Joseph Dalpe
-
Patent number: 6039802Abstract: There is provided a single crystal growth method which allows single crystal of an incongruent melting compound to be grown stable while controlling its growth orientation. The single crystal growth method comprises the steps of: holding polycrystal and seed crystal within a heating furnace; joining the polycrystal with the seed crystal; heating the polycrystal on the side opposite from the side where the polycrystal is joined with the seed crystal to form a melt zone; moving the melt zone to the side where the polycrystal is joined with the seed crystal so that the melt zone is in contact with the seed crystal to allow seeding; and growing single crystal by moving the melt zone which has been in contact with the seed crystal and been seeded to the opposite side from the side where the polycrystal is joined with the seed crystal.Type: GrantFiled: March 5, 1998Date of Patent: March 21, 2000Assignee: Murata Manufacturing Co., Ltd.Inventors: Takenori Sekijima, Takashi Fujii, Kikuo Wakino, Masakatsu Okada
-
Patent number: 6033470Abstract: The present invention provides a cerium-containing magnetic garnet single crystal having a size large enough to use as a material for optical communication of an isolator and for an electronic device, and a production method therefor. The cerium-containing magnetic garnet single crystal of the present invention is obtained by melting a cerium-containing magnetic garnet polycrystal while applying a sharp, large temperature gradient to the solid-liquid interface of the melt and the solid, and then solidifying the melted polycrystal. The polycrystal is preferably heated by using an optical heating device, for example, a combination of a main heating device using a laser beam, and an auxiliary heating device using reflected light from a halogen lamp.Type: GrantFiled: March 21, 1997Date of Patent: March 7, 2000Assignee: Murata Manufacturing Co., Ltd.Inventors: Takashi Fujii, Takenori Sekijima, Kikuo Wakino, Masakatsu Okada
-
Patent number: 5935374Abstract: An electronic device fabrication apparatus a reaction chamber; a cathode electrode and an anode electrode opposed to each other in the reaction chamber; a gas introduction pipe introduced into the reaction chamber for supplying reaction gas into the reaction chamber, the gas introduction pipe being electrically connected to the cathode electrode; and a high frequency power generation device for applying high frequency lower having a high exciting frequency which is included in one of a VHF band and a UHF band to the cathode electrode through the gas introduction pipe for exciting the reaction gas into a plasma state. The gas introduction pipe includes an impedance adjusting device for adjusting an impedance of the gas introduction pipe.Type: GrantFiled: June 23, 1998Date of Patent: August 10, 1999Assignee: Sharp Kabushiki KaishaInventors: Yasuhiko Ito, Osamu Sakai
-
Patent number: 5762707Abstract: The present invention provides an apparatus for permitting easy formation of a stable molten region and easy growing of even large-diameter single crystals, with a good-quality of single crystals, of which a floating zone melting apparatus of the infrared-ray concentrated heating type has halogen lamps at one side focal point of four oppositely arranged ellipsoidal reflecting mirrors along orthogonal axes with the inside surfaces thereof as the reflectors, and condensing infrared-rays reflected from the reflectors onto the other side focal point, thereby accomplishing heating, wherein the eccentricity is within a range of from 0.4 to 0.65.Type: GrantFiled: September 17, 1996Date of Patent: June 9, 1998Assignee: Cristal Systems, Inc.Inventor: Isamu Shindo
-
Patent number: 5556461Abstract: A method of producing a silicon single crystal by the floating-zone method, comprising the steps of: providing a polysilicon rod having an average grain length of 10 to 1000 .mu.m; heating a portion of the polysilicon rod to form a molten zone while applying a magnetic field of 300 to 1000 gauss to the molten zone; and passing the molten zone through the length of the polysilicon rod thereby the polysilicon rod is converted into a silicon single crystal ingot through a one-pass zoning of the floating zone method. An apparatus for reducing the method into practice is also described.Type: GrantFiled: June 15, 1994Date of Patent: September 17, 1996Assignee: Shin-Etsu Handotai Co., Ltd.Inventors: Masanori Kimura, Hirotoshi Yamagishi
-
Patent number: 5499599Abstract: A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.Type: GrantFiled: August 11, 1994Date of Patent: March 19, 1996Assignee: Martin Marietta Energy Systems, Inc.Inventors: Douglas H. Lowndes, James W. McCamy
-
Patent number: 5499598Abstract: Silicon granules filled in a nonconductive cylinder are locally heated from outside of the cylinder using a local heating means, for example, a radio-frequency induction heating coil etc. to form a silicon granule sintering portion and a silicon melting portion, with gradually moving the local heating means in such a manner that the positions of the sintering portion and of the melting portion can be moved gradually. Concomitantly with the movement of the positions of the sintering portion and the melting portion, the melting portion in the original position is solidified to produce a silicon rod. According to this method, molten silicon is formed without contacting the inner wall surface of the cylinder and then solidified so that there can be obtained a silicon rod containing no impurities derived from the material of the cylinder.Type: GrantFiled: March 11, 1994Date of Patent: March 19, 1996Assignee: Tokuyama CorporationInventor: Hiroyuki Oda
-
Patent number: 5437243Abstract: Human-made diamond, as well as naturally found diamond, is a transparent, superhard, crystalline, and electrically nonconductive form of carbon. In this invention, an electrical current of supercritical density alone produces the transformation of graphite to diamond. The entire graphite-to-diamond transformation requires only a few millionths of a second. Using the principles of the invention, diamond can be produced in a variety of shapes, such as loose debris, rods, fibers, bars, dust, etc. In addition to diamond, Buckminster Fuller Balls, known also as C-60 carbon fullerines, are produced using the process and apparatus of the invention.Type: GrantFiled: July 1, 1992Date of Patent: August 1, 1995Inventor: Maciej J. Pike-Biegunski
-
Patent number: 5386798Abstract: A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.Type: GrantFiled: October 6, 1993Date of Patent: February 7, 1995Assignee: Martin Marietta Energy Systems, Inc.Inventors: Douglas H. Lowndes, James W. McCamy
-
Patent number: 5386797Abstract: A single crystal of a compound comprises which easily decomposes at a temperature around the melting point and evaporates at least a part of the compound having a volume of 5 cc or more and a composition deviation of respective elements from the stoichiometric composition of the compound being within the range of .+-.5% in terms of weight ratio.Type: GrantFiled: March 26, 1993Date of Patent: February 7, 1995Assignee: Kabushiki Kaisha ToshibaInventor: Kazuto Yokota
-
Patent number: 5310531Abstract: A polycrystalline silicon rod for preparing a monocrystalline silicon rod by a floating zone method, wherein at least a central portion of the section of the polycrystalline silicon rod has coarsened silicon monocrystalline grains around the center over an area of or above the minimum section of a molten zone during progress in the floating zone method and the outer peripheral portion of the coarsened region has fine monocrystalline grains. From the polycrystalline silicon rod, the monocrystalline silicon rod for a semiconductor is prepared with a high yield by the single floating zone method.Type: GrantFiled: November 30, 1992Date of Patent: May 10, 1994Assignee: Shin-Etsu Handotai Co., Ltd.Inventors: Yasuhiro Ikeda, Kyoji Oguro
-
Patent number: 4694920Abstract: A combinational weighing system with a plurality of weighing devices employs at least three central processing units such as microprocessors. One keeps monitoring the weight information from the weighing devices and analyzes stability of weight data. Another one controls the charging and discharging of the weighing devices. The third performs combinational computation to select a combination. The system has increased flexibility regarding operation and adjustments, and allows efficient methods of zero-point and span adjustment of weighing devices. Its compact unitized input-output unit allows the user to operate the system interactively.Type: GrantFiled: September 3, 1985Date of Patent: September 22, 1987Assignee: Ishida Scales Manufacturing Company, Ltd.Inventors: Kazufumi Naito, Setsuo Haze, Hideo Nobutugu, Yukio Nakagawa, Seiji Yamada, Shuji Murata