Having Moving Solid-liquid-solid Region Patents (Class 117/37)
  • Patent number: 11053460
    Abstract: This application describes laundry care compositions that contain leuco colorants and their use in the laundering of textile articles. These types of colorants are provided in a stable, substantially colorless state and then may be transformed to an intense colored state upon exposure to certain physical or chemical changes such as, for example, exposure to oxygen, ion addition, exposure to light, and the like. The laundry care compositions containing the leuco colorants are designed to enhance the apparent or visually perceived whiteness of, or to impart a desired hue to, textile articles washed or otherwise treated with the laundry care composition.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: July 6, 2021
    Assignee: Milliken & Company
    Inventors: Haihu Qin, Benjamin R. Butterfield, Diana C. Balasca, Xiaoyong Hong, Sanjeev K. Dey, Dominick J. Valenti
  • Patent number: 10723982
    Abstract: This application describes laundry care compositions that contain leuco colorants and their use in the laundering of textile articles. These types of colorants are provided in a stable, substantially colorless state and then may be transformed to an intense colored state upon exposure to certain physical or chemical changes such as, for example, exposure to oxygen, ion addition, exposure to light, and the like. The laundry care compositions containing the leuco colorants are designed to enhance the apparent or visually perceived whiteness of, or to impart a desired hue to, textile articles washed or otherwise treated with the laundry care composition.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 28, 2020
    Assignee: Milliken & Company
    Inventors: Haihu Qin, Benjamin R. Butterfield, Diana C. Balasca, Xiaoyong Hong, Sanjeev K. Dey, Dominick J. Valenti
  • Patent number: 10362637
    Abstract: The present disclosure provides a thermal system that includes an array of heating resistor circuits having first termination ends and second termination ends, and a plurality of nodes connected to the heating resistor circuits at the first and second termination ends. The thermal system further includes power wires to provide power to the heating resistor circuits and signal wires to sense a temperature of each of the heating resistor circuits. Each node is connected to a power wire and to a signal wire, and a number of heating resistor circuits is greater than or equal to a number of power wires and to a number of the signal wires.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 23, 2019
    Assignee: Watlow Electric Manufacturing Company
    Inventors: Jacob Lindley, Cal Swanson
  • Patent number: 10273595
    Abstract: A lasing medium having a tailored dopant concentration and a method of fabrication thereof is disclosed. The lasing medium has a single crystal having a continuous body having a selected length, wherein the crystal comprises dopant distributed along the length of the body to define a dopant concentration profile. In one embodiment, the dopant concentration profile results in a uniform heating profile. A method of fabricating a laser crystal having a tailored dopant concentration profile includes arranging a plurality of polycrystalline segments together to form an ingot, the polycrystalline segments each having dopant distributed, providing a crystal seed at a first end of the ingot, and moving a heating element along the ingot starting from the first end to a second end of the ingot, the moving heating element creating a moving molten region within the ingot while passing therealong.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: April 30, 2019
    Assignee: Raytheon Company
    Inventor: Robert W. Byren
  • Patent number: 9982221
    Abstract: This application describes laundry care compositions that contain leuco colorants and their use in the laundering of textile articles. These types of colorants are provided in a stable, substantially colorless state and then may be transformed to an intense colored state upon exposure to certain physical or chemical changes such as, for example, exposure to oxygen, ion addition, exposure to light, and the like. The laundry care compositions containing the leuco colorants are designed to enhance the apparent or visually perceived whiteness of, or to impart a desired hue to, textile articles washed or otherwise treated with the laundry care composition.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: May 29, 2018
    Assignee: Milliken & Company
    Inventors: Haihu Qin, Benjamin R. Butterfield, Diana C. Balasca, Xiaoyong Hong, Sanjeev K. Dey, Dominick J. Valenti
  • Patent number: 9926644
    Abstract: A lasing medium having a tailored dopant concentration and a method of fabrication thereof is disclosed. The lasing medium has a single crystal having a continuous body having a selected length, wherein the crystal comprises dopant distributed along the length of the body to define a dopant concentration profile. In one embodiment, the dopant concentration profile results in a uniform heating profile. A method of fabricating a laser crystal having a tailored dopant concentration profile includes arranging a plurality of polycrystalline segments together to form an ingot, the polycrystalline segments each having dopant distributed, providing a crystal seed at a first end of the ingot, and moving a heating element along the ingot starting from the first end to a second end of the ingot, the moving heating element creating a moving molten region within the ingot while passing therealong.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 27, 2018
    Assignee: Raytheon Company
    Inventor: Robert W. Byren
  • Patent number: 9513532
    Abstract: This disclosure provides a second harmonic generator and an optical parametric oscillator, the second harmonic generator and the optical parametric oscillator comprise one or more nonlinear optical frequency conversion crystal and a pump laser source, the nonlinear optical frequency conversion crystal is a monoclinic Ga.sub.2S.sub.3 crystal, the space group of the monoclinic Ga.sub.2S.sub.3 crystal is Cc, and the unit cell parameters are a=11.1.ANG., b=6.4.ANG., c=7.0.ANG., .alpha.=90.degree., .beta.=121.degree., .gamma.=90.degree., and Z=4.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: December 6, 2016
    Inventors: Mingjian Zhang, Guocong Guo, Huiyi Zeng, Xiaoming Jiang, Yuhang Fan, Binwen Liu
  • Patent number: 9410262
    Abstract: A silicon single crystal is produced by a method wherein a silicon plate is inductively heated; granular silicon is melted on the silicon plate; and the molten silicon thus produced flows through a flow conduit in the center of the plate to a phase boundary at which a silicon single crystal crystallizes, wherein a silicon ring having a lower resistivity than the plate, and lying on the plate, is inductively heated prior to inductively heating the plate, and melting the ring.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: August 9, 2016
    Assignee: SILTRONIC AG
    Inventors: Josef Lobmeyer, Georg Brenninger, Waldemar Stein
  • Publication number: 20150047554
    Abstract: When a plate-like sample 20 extracted from a polycrystalline rod is evaluated, peaks can appear in a ?-scanning chart. The smaller the number of such peaks, and the narrower the half-value width of the peak, the more suitable the polycrystalline silicon rod is as a raw material for producing single-crystal silicon. It is preferable that the number of peaks in the ?-scanning chart is, for both the Miller index planes <111> and <220>, equal to or smaller than 24/cm2 when converted into unit per area of the plate-like sample. It is also preferable that the value obtained by multiplying the peak half-value width by ?L=21/2?R0/360, where R0 is the radius of the sample, is defined as an inhomogeneous crystal grain size, and that a polycrystalline silicon rod of which all the inhomogeneous crystal grain sizes are smaller than 0.5 mm is selected as a raw material for producing single-crystal silicon.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 19, 2015
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shuichi Miyao, Junichi Okada, Shigeyoshi Netsu
  • Patent number: 8940095
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventor: Partha Dutta
  • Patent number: 8673073
    Abstract: A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 18, 2014
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Publication number: 20140033966
    Abstract: Plate-like samples each having as a principal plane thereof a cross section perpendicular to the long axis direction of a polycrystalline silicon rod grown by the deposition using a chemical vapor deposition method are sampled; an X-ray diffraction measurement is performed omnidirectionally in the plane of each of the plate-like samples thus sampled; and when none of the plate-like samples has any X-ray diffraction peak with a diffraction intensity deviating from the average value ±2×standard deviation (?±2?) found for any one of the Miller indices <111>, <220>, <311> and <400>, the polycrystalline silicon rod is selected as the raw material for use in the production of single-crystalline silicon. The use of such a polycrystalline silicon raw material suppresses the local occurrence of the portions remaining unmelted, and can contribute to the stable production of single-crystalline silicon.
    Type: Application
    Filed: April 4, 2012
    Publication date: February 6, 2014
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shuichi Miyao, Junichi Okada, Shigeyoshi Netsu
  • Publication number: 20130333611
    Abstract: A lattice matching layer for use in a multilayer substrate structure comprises a lattice matching layer. The lattice matching layer includes a first chemical element and a second chemical element. Each of the first and second chemical elements has a hexagonal close-packed structure at room temperature that transforms to a body-centered cubic structure at an ?-? phase transition temperature higher than the room temperature. The hexagonal close-packed structure of the first chemical element has a first lattice parameter. The hexagonal close-packed structure of the second chemical element has a second lattice parameter. The second chemical element is miscible with the first chemical element to form an alloy with a hexagonal close-packed structure at the room temperature. A lattice constant of the alloy is approximately equal to a lattice constant of a member of group III-V compound semiconductors.
    Type: Application
    Filed: March 11, 2013
    Publication date: December 19, 2013
    Applicant: Tivra Corporation
    Inventors: Indranil De, Francisco Machuca
  • Patent number: 8454746
    Abstract: Silicon single crystals are prepared from molten granules, by producing a first volume of molten silicon between a growing single crystal and the lower end of a silicon conical tube which is closed at its lower end, and encloses a central opening of a rotating silicon plate below which the tube extends, by means of a first induction heating coil arranged below the plate; producing a second volume of molten silicon by a second induction heating coil arranged above the plate; melting the lower end of the tube to form a passage for the second volume of molten silicon, the passage produced at a point in time when the second volume is not yet present or is less than double the volume of the first volume; and crystallizing monocrystalline silicon on the growing single crystal with consumption of molten silicon from the first and the second volume.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: June 4, 2013
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer
  • Patent number: 8409348
    Abstract: A production method of a zinc oxide single crystal, comprising depositing a crystal of zinc oxide on a seed crystal from a mixed melt of zinc oxide and a solvent capable of melting zinc oxide and having a higher average density than zinc oxide in the melt. Preferably, a zinc oxide single crystal is continuously pulled while supplying the same amount of a zinc oxide raw material as that of the pulled zinc oxide. A single crystal excellent in the crystal quality and long in the pulling direction can be continuously produced.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 2, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Yoshizumi Tanaka, Itsuhiro Fujii
  • Publication number: 20130068156
    Abstract: A method for growing II-VI semiconductor crystals and II-VI semiconductor layers as well as crystals and layers of their ternary or quaternary compounds from the liquid or gas phase is proposed. To this end, the solid starting materials are introduced into a growing chamber for the growing of crystals. Inside the growing chamber, carbon monoxide is supplied by way of reducing agent. At least certain zones of the growing chamber are heated to a temperature at which a first-order phase transition of the starting materials takes place and the starting materials pass into the liquid or gas phase. The starting materials are then cooled down accompanied by the formation of a semiconductor crystal or semiconductor layer, again with a first-order phase transition taking place. The oxygen present in the growing chamber is bound by the carbon monoxide and the formation of an oxide layer at the phase boundary of the growing semiconductor crystal or semiconductor layer is prevented.
    Type: Application
    Filed: May 30, 2011
    Publication date: March 21, 2013
    Applicant: Albert-Ludwigs-Universitaet Freiburg
    Inventor: Alex Fauler
  • Patent number: 8382895
    Abstract: A method of manufacturing a silicon monocrystal by FZ method, wherein a P-type or N-type silicon crystal having been pulled up by CZ method is used as a raw material. While impurities whose conductivity type is the same as that of the raw material are supplied by a gas doping method, the raw material is recrystallized by an induction-heating coil for obtaining a product-monocrystal.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: February 26, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Shinji Togawa, Toshiyuki Sato
  • Publication number: 20130044779
    Abstract: A lasing medium having a tailored dopant concentration and a method of fabrication thereof is disclosed. The lasing medium has a single crystal having a continuous body having a selected length, wherein the crystal comprises dopant distributed along the length of the body to define a dopant concentration profile. In one embodiment, the dopant concentration profile results in a uniform heating profile. A method of fabricating a laser crystal having a tailored dopant concentration profile includes arranging a plurality of polycrystalline segments together to form an ingot, the polycrystalline segments each having dopant distributed, providing a crystal seed at a first end of the ingot, and moving a heating element along the ingot starting from the first end to a second end of the ingot, the moving heating element creating a moving molten region within the ingot while passing therealong.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Applicant: RAYTHEON COMPANY
    Inventor: Robert W. BYREN
  • Publication number: 20120260847
    Abstract: In a silicon crystallization method, a pulse is delivered from each of two excimer lasers. The duration of one of the pulses is extended in a pulse-duration extender to a duration significantly longer than that of that of the other. The extended-duration and other pulses are delivered along a common path. The other pulse temporally overlaps the extended-duration pulse after delivery of the extended-duration pulse begins. The silicon is preheated by the extended-duration before being melted by the combined pulses during the temporal overlap period.
    Type: Application
    Filed: August 31, 2011
    Publication date: October 18, 2012
    Applicant: Coherent GmbH
    Inventor: Paul Christiaan VAN DER WILT
  • Patent number: 8257492
    Abstract: A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: September 4, 2012
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8241420
    Abstract: The invention intends to provide a single crystal material that can be used as a dielectric material for use in electronic devices, which has a high Qf value; and a process for producing the same. According to the invention, a single crystal of a composite oxide is obtained from a composition in which a slight amount of SrTiO3 is added to LaAlO3, and the (1-X)LaAlO3—XSrTiO3 single crystal material having the specific composition has such dielectric characteristics for electronic devices that the dielectric constant is 24 or more and the Qf value is 300,000 GHz or more, is considerably improved in the Qf value as a dielectric material, and can be applied to a high-temperature superconducting filter.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: August 14, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventor: Takeshi Shimada
  • Patent number: 8216373
    Abstract: A temperature gradient is established in a crystallization crucible by means of a heat source and a cooling system. The cooling system comprises a heat exchanger and an adjustable additional heat source. The cooling system is preferably formed by an induction coil cooled by a coolant liquid circulating in the induction coil and by an electrically conductive induction susceptor positioned between the crucible and induction coil. The fabrication process comprises heating the crucible via the top and controlling heat extraction from the crucible downwards by means of the heat exchanger and by means of regulation of the adjustable additional heat source.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: July 10, 2012
    Assignees: Apollon Solar, Cyberstar, EFD Induction SA
    Inventors: Roland Einhaus, Francois Claude Lissalde, Pascal Rivat
  • Patent number: 8210906
    Abstract: A wafer slicing method includes winding a wire around rollers and pressing the wire against an ingot while supplying slurry to the rollers. A previously conducted experiment provides a supply temperature profile of the slurry during the slicing process and the relationship to the axial displacement of the rollers. This relationship is used to implement slurry delivery during the slicing process. The resultant wafers are bowed in a uniform direction. This slicing method provides excellent reproducibility in addition to producing wafers that are bowed in a uniform direction.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 3, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroshi Oishi, Daisuke Nakamata
  • Patent number: 8197595
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Publication number: 20120048178
    Abstract: The invention provides a process for producing polycrystalline silicon, including introduction of a reaction gas containing a silicon-containing component and hydrogen by means of one or more nozzles into a reactor including at least one heated filament rod on which silicon is deposited, wherein an Archimedes number Arn which describes flow conditions in the reactor, as a function of the fill level FL which states the ratio of one rod volume to one empty reactor volume in percent, for a fill level FL of up to 5% is within the range limited at the lower end by the function Ar=2000×FL?0.6 and at the upper end by the function Ar=17 000×FL0.9, and at a fill level of greater than 5% is within a range from at least 750 to at most 4000.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 1, 2012
    Applicant: WACKER CHEMIE AG
    Inventors: Marcus SCHAEFER, Oliver KRAETZSCHMAR
  • Patent number: 8101019
    Abstract: In the method of making a monocrystalline or polycrystalline semiconductor material semiconductor raw material is introduced into a melting crucible and directionally solidified using a vertical gradient freeze method. The molten material trickles downward, so that the raw material that has not yet melted gradually slumps in the melting crucible. The semiconductor raw material is replenished from above onto a zone of semiconductor raw material which has not yet melted or is not completely melted to at least partly compensate for shrinkage of the raw material and to raise the filling level. To reduce the melting time and influence the thermal conditions in the system as little as possible, the semiconductor raw material to be replenished is heated to a temperature below its melting temperature and introduced into the crucible in the heated state.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: January 24, 2012
    Assignee: Schott AG
    Inventors: Uwe Sahr, Matthias Mueller, Ingo Schwirtlich, Frank-Thomas Lentes, Frank Buellesfeld
  • Publication number: 20110185963
    Abstract: Silicon single crystals are prepared from molten granules, by producing a first volume of molten silicon between a growing single crystal and the lower end of a silicon conical tube which is closed at its lower end, and encloses a central opening of a rotating silicon plate below which the tube extends, by means of a first induction heating coil arranged below the plate; producing a second volume of molten silicon by a second induction heating coil arranged above the plate; melting the lower end of the tube to form a passage for the second volume of molten silicon, the passage produced at a point in time when the second volume is not yet present or is less than double the volume of the first volume; and crystallizing monocrystalline silicon on the growing single crystal with consumption of molten silicon from the first and the second volume.
    Type: Application
    Filed: January 18, 2011
    Publication date: August 4, 2011
    Applicant: SILTRONIC AG
    Inventors: Wilfried Von Ammon, Ludwig Altmannshofer
  • Publication number: 20110107960
    Abstract: Silicon single crystals are grown by a method of remelting silicon granules, by crystallizing a conically extended section of the single crystal with the aid of an induction heating coil arranged below a rotating plate composed of silicon; feeding inductively melted silicon through a conical tube in the plate, the tube enclosing a central opening of the plate and extending below the plate, to a melt situated on the conically extended section of the single crystal in contact with a tube end of the conical tube, wherein by means of the induction heating coil below the plate, sufficient energy is provided to ensure that the external diameter of the tube end is not smaller than 15 mm as long as the conically extended section of the single crystal has a diameter of 15 to 30 mm.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 12, 2011
    Applicant: SILTRONIC AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Martin Wasner
  • Patent number: 7799131
    Abstract: The present invention provides a method for the continuous production of semiconductor ribbons by growth from a linear molten zone. The creation of the molten zone is achieved by application of an electric current, direct or alternating, parallel to the surface of the ribbon and perpendicular to the direction of growth, and intense enough to melt the said material, preferably using electrodes of the said material. The molten zone is fed by transference of the material, in the liquid state, from one or more reservoirs, where melting of the feedstock occurs. Preferably, the said electrodes and the said reservoir(s) are only constituted by the said material, thus avoiding contamination by foreign materials. The present invention is applicable, for example, in the industry of silicon ribbons production for photovoltaic application.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: September 21, 2010
    Assignee: Faculdade de Ciencias Da Universidade de Lisboa
    Inventors: António Vallêra, João Serra, Jorge Maia Alves, Miguel Brito, Roberto Gamboa, João Henriques
  • Patent number: 7691201
    Abstract: A method of forming an assembly of isolated nanowires of at least one material within a matrix of another material is provided. The method comprises: providing a substrate; forming a catalyst array on a major surface of the substrate; growing an array of the nanowires corresponding with the catalyst array, the nanowires, each comprising at least one material; and forming a matrix of another material that fills in spaces between the nanowires. The method is useful for producing a variety of structures useful in a number of devices, such as photonic bandgap structures and quantum dot structures.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: April 6, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Theodore I. Kamins, Philip J. Kuekes
  • Patent number: 7645337
    Abstract: In accordance with one aspect, the present invention provides a method for providing polycrystalline films having a controlled microstructure as well as a crystallographic texture. The methods provide elongated grains or single-crystal islands of a specified crystallographic orientation. In particular, a method of processing a film on a substrate includes generating a textured film having crystal grains oriented predominantly in one preferred crystallographic orientation; and then generating a microstructure using sequential lateral solidification crystallization that provides a location-controlled growth of the grains orientated in the preferred crystallographic orientation.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: January 12, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul Christian van der Wilt
  • Patent number: 7588636
    Abstract: A method of production of a silicon carbide single crystal enabling fast, stable, and continuous growth of a high quality silicon carbide single crystal and enabling both an increase in size of the bulk single crystal and an improvement of quality of a thin film single crystal, comprising stacking, in order from the bottom, a silicon carbide source material rod, a solvent, a seed crystal, and a support rod supporting the seed crystal at its bottom end so as to form a columnar workpiece, heating a bottom end of the source material rod as a bottom end of the columnar workpiece, and cooling a top end of the support rod as the top end of the columnar workpiece so as to form a temperature gradient inside the columnar workpiece so that the top end face becomes lower in temperature than the bottom end face of the solvent; and causing a silicon carbide single crystal to grow continuously downwardly starting from the seed crystal, wherein said method further comprises using an inside cylindrical susceptor tightly surr
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: September 15, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masateru Nakamura
  • Publication number: 20090047538
    Abstract: A method for production of a bead single crystal includes heating at least one wire using electron beam heating to form the bead single crystal. The bead single crystal is advantageously produced by the electron beam heating of the at least one wire in vacuo. Bead single crystals comprising Ag, Al, Cr, Cu, Ir, Mo, Nb, Ni, Pd, Pt, Re, Rh, Ru, Ta, W or metal alloys, in particular, Ag/Au, Pt/Rh or Pt/Re alloys are advantageously produced by the method. The bead single crystals are preferably used in surface research, thin layer technology and electrochemistry.
    Type: Application
    Filed: July 5, 2006
    Publication date: February 19, 2009
    Inventors: Bert Voigtlaender, Udo Linke, Helmut Stollwerk
  • Patent number: 7351283
    Abstract: A crystalline thin structure (104, 204, 404) is grown on a surface (108, 228) of a substrate (112, 208, 400) by depositing molecules (136, 220) from a molecular precursor to a lateral growth front (144, 224) of the structure using a crystal grower (116, 200). In one embodiment, the crystal grower comprises a solution (124) containing the molecular precursor in a solvent (140). Molecules are added to the lateral growth front by moving one or both of the free surface (120, 120?) of the solution and deposition surface relative to the other at a predetermined rate. In another embodiment, the crystal grower comprises a mask (212) that includes at least one opening (216). Precursor molecules are vacuum deposited via a molecular beam (236) at the growth front (228) of the crystalline thin structure (204) as one or both of the opening and surface are moved relative to the other at a predetermined rate.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: April 1, 2008
    Assignee: The University of Vermont and State Agricultural College
    Inventor: Randall L. Headrick
  • Patent number: 7306670
    Abstract: In the case of the epitaxial growth according to the prior art, a number o strips often have to be produced in a plane in order to restore an area to be repaired. This leads to overlapping and misorientation of the crystalline structures. In the case of the method according to the invention, the strip is of such a width that no overlapping occurs, since the width is adapted to the contour of the area to be repaired.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: December 11, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Beck, Georg Bostanjoglo, Nigel-Philip Cox, Rolf Wilkenhöner
  • Patent number: 7294197
    Abstract: Metallurgical grade silicon or high purity silicon beads developed from a fluidized bed process are melted in a cooled aluminum crucible, such that a non wetted interface is created between the molten silicon and a cooled supporting substrate that includes a surface layer of substantially inert aluminum oxide. It is believed that the molten silicon does not wet the surface of the supporting substrate and the surface of the supporting substrate does not chemically interact with the silicon. It is shown that, in spite of the enormous temperature difference, molten silicon (ca. 1450° C.) can be stabilized, by appropriate energy control, in direct (but non-wetted) contact with cold (ca. 40° C.) material such as aluminum.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: November 13, 2007
    Inventor: Nicholas Gralenski
  • Patent number: 7258740
    Abstract: The present invention relates to an apparatus for making a source material into a crystal fiber having different regions of polarization inversion. The apparatus of the present invention is similar to a laser-heated pedestal growth (LHPG) apparatus, characterized in that a first electric field generating device and a second electric field generating device are included. The first electric field generating device is used for providing a first external electric field which is used for poling the crystal fiber and inducing micro-swing of the crystal fiber. The second electric field generating device is disposed on a predetermined position above the first electric field generating device for providing a second external electric field to control and maintain the amplitude of the micro-swing. Whereby, the growth condition of the crystal fiber can be controlled precisely, and a uniformly and regularly periodic polarization inversion structure is fabricated.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: August 21, 2007
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Hsiao-Wen Lee, Chia-Chang Kuo, Sheng Bang Huang, Tsai-Shuan Chou, Li-Min Lee
  • Patent number: 7179330
    Abstract: The present invention is a method of manufacturing a silicon single crystal by Czochralski method without performing Dash Necking method, wherein a temperature variation at a surface of a silicon melt is kept at ±5° C. or less at least for a period from a point of bringing the tip end of a seed crystal into contact with the silicon melt to a point of shifting to pull the single crystal. Thereby, in a method of growing a silicon single crystal by Czochralski method without using Dash Necking method, a success ratio of growing a single crystal free from dislocation can be increased, at the same time a heavy silicon single crystal having a large diameter in which a diameter of a constant diameter portion is over 200 mm can be grown even in the case of growing a silicon single crystal having a crystal orientation of <110>.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: February 20, 2007
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Sadayuki Okuni, Nobuaki Mitamura, Tomohiko Ohta, Nobuo Katuoka
  • Patent number: 7156916
    Abstract: Monolithic integrated crystalline-structure-processed arrays of mechanical, and combined mechanical and electrical devices, and related systems and processing methods.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: John W. Hartzell
  • Patent number: 7083676
    Abstract: At least one amorphous silicon island is formed on a substrate first. A first step and a second step laser crystallization processes are thereafter performed in sequence. The amorphous silicon island is irradiated with a laser pulse having a first energy density to re-crystallize an edge portion of the amorphous silicon island into a polysilicon structure. The amorphous silicon island is then irradiated with a laser pulse having a second energy density to re-crystallize a center portion of the amorphous silicon island into a polysilicon structure.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: August 1, 2006
    Assignee: AU Optronics Corp.
    Inventor: Mao-Yi Chang
  • Patent number: 7011704
    Abstract: A method for the production of a single crystal has the single crystal crystallizing from a melt and being subjected to a rotation with an alternating rotation direction. The single crystal is periodically rotated through a sequence of rotation angles, and the rotation direction is changed after each rotation through a rotation angle of the sequence, with a change of the rotation direction defining an inversion point on the circumference of the single crystal. There is at least one recurring pattern of inversion points created, in which the inversion points lie distributed on straight lines that are aligned parallel with the z-axis and are spaced apart uniformly from one another.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: March 14, 2006
    Assignee: Wacker Siltronic Gesellschaft Fur Halbleitermaterialien AG
    Inventor: Ludwig Altmannshofer
  • Patent number: 6736895
    Abstract: A mask and its application in sequential lateral solidification (SLS) crystallization of amorphous silicon are provided. The mask includes a light absorptive portion for blocking a laser beam and a plurality of stripe-shaped light transmitting portions for passing the laser beam. Each stripe-shaped light transmitting portion is rectangular-shaped, and each light-transmitting portion includes triangular-shaped or semicircular-shaped edges on both sides. The distance between the adjacent light transmitting portions is less than the width of the light transmitting portion. The width of the light transmitting portions is less than or equal to twice the maximum length of lateral grain growth that is to be grown by sequential lateral solidification (SLS).
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: May 18, 2004
    Assignee: LG. Philips LCD Co., Ltd.
    Inventor: Yun-Ho Jung
  • Patent number: 6677222
    Abstract: A first layer made of polysilicon is formed on the surface of an underlying substrate. The surface of the first layer is exposed to an environment which etches silicon oxide. If the surface of the first layer is covered with a silicon oxide film, the silicon oxide film is removed. An energy is supplied to the first layer, the energy allowing silicon crystal to re-grow. Solid phase growth of silicon occurs in the first layer to planarize the surface thereof. A polysilicon film having small root mean square of roughness can be formed.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: January 13, 2004
    Assignee: Fujitsu Limited
    Inventors: Yasuyoshi Mishima, Katsuyuki Suga, Michiko Takei, Akito Hara
  • Patent number: 6669775
    Abstract: A method of obtaining a wafer exhibiting high resistivity and high gettering effect while preventing the reduction of resistivity due to the generation of oxygen donors, and while further minimizing in-grown defects is provided by: a) using the CZ method to grow a silicon single crystal ingot having a resistivity of 100 &OHgr;·cm or more, preferably 1000 &OHgr;·cm, and an initial interstitial oxygen concentration of 10 to 40 ppma with a v/G ratio of from about 1×10−5 cm2/s·K to about 5×10−5 cm2/s·K, b) processing the ingot into a wafer, and c) subjecting the wafer to an oxygen precipitation heat treatment whereby the residual interstitial oxygen content in the wafer is reduced to about 8 ppma or less.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 30, 2003
    Assignee: SEH America, Inc.
    Inventors: Oleg V. Kononchuk, Sergei V. Koveshnikov, Zbigniew J. Radzimski, Neil A. Weaver
  • Patent number: 6663711
    Abstract: A process produces a crystal of a material with non-congruent melting using at least one first element and a second element. The process includes (a) placing, in a vertical alignment and maintaining under a controlled atmosphere, a bar of the first element gripped between a lower bar and an upper bar made out of the material, (b) transforming the bar of the first element into a floating zone by heating to a temperature that avoids the evaporation of the first element, the heating being obtained by heating means that provides a temperature gradient in the floating zone so that the lower face of the upper bar appears as a cold face, and (c) contra-rotating the lower and upper bars around the alignment axis and moving the whole bar assembly upwards in relation to the heating means in order to obtain the crystal on the cold face by growth in solution.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: December 16, 2003
    Assignee: Commissarat a l′Energie Atomique
    Inventors: Jürgen Wollweber, Thierry Duffar, Jean-Louis Santailler, Véronique Chevrier
  • Publication number: 20020166500
    Abstract: Disclosed is a method of producing fluoride crystal, wherein the method includes a dehydrating step for dehydrating a raw material of fluoride by heating a crucible being adapted to accommodate a raw material of fluoride therein and having an exhaust mechanism for exhausting an inside gas of the crucible, and a exhausting step for exhausting, in the dehydrating step, an inside gas of the crucible by use of the exhaust mechanism.
    Type: Application
    Filed: February 26, 2002
    Publication date: November 14, 2002
    Inventors: Nobukazu Yogo, Tetsuo Kuwabara
  • Publication number: 20020108558
    Abstract: A system is disclosed for efficient utilization of charge replenishment rods in Czochralski silicon crystal growing processes.
    Type: Application
    Filed: October 5, 2001
    Publication date: August 15, 2002
    Inventors: John Peter Hill, Jay Curtis Nelson, William John Juhasz, Henry Dare Wood
  • Publication number: 20010007238
    Abstract: To obtain large, high-quality crystals of a metal ortho-phosphate, in particular GaPO4 or AlPO4, from a nutrient solution with the use of seeds, the proposal is put forward that a seed crystal with at least two rod- or wafer-shaped legs be used, which seed legs form an angle with each other and define a main growth region, and which are positioned eccentrically in the single crystal grown. Contiguous faces of two seed legs, which have been chosen for crystal growing, enclose an angle <180°. In this way the yield of the high-quality crystal region will be increased.
    Type: Application
    Filed: December 27, 2000
    Publication date: July 12, 2001
    Inventors: Peter Krempl, Wolfgang Wallnofer, Ferdinand Krispel, Herbert Thanner
  • Patent number: 6210478
    Abstract: A method and apparatus for locally and successively melting a material by induction heating using a horizontal floating-zone crucible to refine and/or analyze the material. An electromagnetic field is generated to create a localized molten zone within the material that is at least partially levitated within the crucible. The crucible has an upper peripheral opening so that an upper portion of the molten zone is generally at a higher temperature than the lower portion of the molten zone adjacent the crucible wall. As a result, insoluble inclusions within the material separate and float to the upper portion of the molten zone. The molten zone may be translated longitudinally through the material to drive the inclusions toward one end of the material. The process can be carried out to refine or characterize the material, or to determine the solidus and liquidus temperatures of the material.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: April 3, 2001
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Don Mark Lipkin, Dennis Joseph Dalpe
  • Patent number: 6165263
    Abstract: A method for growing a single crystal by allowing a seed crystal to contact a molten zone formed by melting a polycrystalline material, followed by moving the molten zone away from the seed, wherein the oxygen concentration in the atmosphere during growth of the single crystal is lower than about 10% by volume.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: December 26, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takenori Sekijima, Takashi Fujii, Kikuo Wakino, Masakatsu Okada