Vane Acts As Compression Means Patents (Class 123/227)
-
Patent number: 10358790Abstract: A soil spreading scraper device has a cutting blade to cut soil from the ground and a rotating impeller member for spreading the cut soil as the frame is displaced forwardly. The impeller member includes a main disc body and a plurality of impeller blades on the main disc body which are pivotal relative to the body between a working position in which the blade body extends in a direction of the impeller axis away from the main disc body and a deflected position in which the blade body extends in a circumferential direction of the disc body in a trailing relationship relative to the pivot axis of the blade body. An actuating assembly resists displacement of the blade body into the deflected position until pressure on the paddle exceeds a prescribed holding force. A spring biases the body to return to the working position.Type: GrantFiled: May 13, 2016Date of Patent: July 23, 2019Assignee: Elmer's Welding & Manufacturing LTD.Inventor: Mark Christopher Thompson
-
Patent number: 10012142Abstract: A rotary internal combustion engine includes a cylinder seat and a power wheel. The cylinder seat has a circular cylinder, at least one first explosion chamber disposed on a cylinder wall, and an ignition system, a fuel supply system, a compression assembly, an exhaust and an intake installed thereon for each respective first explosion chamber. The power wheel is slidably coupled to the circular cylinder, and has at least one compression chamber and a second explosion chamber disposed adjacent thereto and when rotated provides connection to the first explosion chamber. As a result of rotation of the power wheel, air and fuel gas are compressed in the compression chamber, collected into the first and second explosion chambers, and then ignited by the ignition system to produce a high explosive yield, so that the power wheel is rotated constantly in a single direction to provide high-efficiency kinetic energy.Type: GrantFiled: May 5, 2016Date of Patent: July 3, 2018Inventor: Rong-Jen Wu
-
Patent number: 8261715Abstract: Internal combustion engine has intake with compression in piston/cylinders and combustion and exhaust in a turbine. Turbine assembly includes a rotor connected to an output shaft and has variable blades pivotally mounted to rotor. The output shaft is connected to a crankshaft that is connects to the pistons to synchronizes intake and compression with combustion and exhaust. While the rotor spins centrifugal force causes the blades to swivel outwardly. The blades swivel inboard of the rotor as the space between them and the turbine housing cam contour gradually decreases. After partial compression, air enters the turbine assembly's combustion and exhaust chamber. Once full compression is attained, combustion takes place initiating a power cycle causing the turbine to rotate. When the power cycle is completed, the inner cam contour forces the blades inboard and exhaust is cleared by the subsequent variable blade, facilitating the next combustion and exhaust cycle.Type: GrantFiled: September 2, 2009Date of Patent: September 11, 2012Inventor: Samuel Lee Samuels
-
Patent number: 7793516Abstract: The problems of prior compressor structures relying upon conventional check valves are obviated by using, instead, flow control passages which operate to control flow while avoiding mechanical moving elements which may become problematical.Type: GrantFiled: September 29, 2006Date of Patent: September 14, 2010Assignee: Lenovo (Singapore) Pte. Ltd.Inventors: Timothy Samuel Farrow, Albert Vincent Makley
-
Patent number: 7707987Abstract: A hydrogen G-cycle rotary vane internal combustion engine has a sodium vapor chamber transferring excess combustion heat into combustion chambers. An active water cooling system captures heat from the engine housing stator, rotor, and sliding vanes and transfers it back into the combustion cycle by premixing it with hydrogen to reduce peak combustion temperature and with an early an late stage combustion chamber injection to help transfer heat from the sodium vapor chamber, to control chamber temperature, and to increase chamber vapor pressure. A combustion chamber sealing system includes axial seals between the rotor and the stator, vane face seals, and toggling split vane seals between the outer perimeters of the sliding vanes and the stator. Sliding vanes reciprocate laterally in and out of the rotor assisted by a vane belting system. A thermal barrier coating minimizes heat transfer and thermal deformation. Solid lubricants provide high temperature lubrication and durability.Type: GrantFiled: September 29, 2006Date of Patent: May 4, 2010Assignee: Prime Mover International, LLCInventor: Barry R. Guthrie
-
Patent number: 7451738Abstract: A Turbocombustion engine for conversation of combustible fuel to rotating energy includes a cylinder, piston, connecting rod and crankshaft system for suction and compression and a rotor for expansion and exhaust. Combustible fuel is compressed within a combustion chamber separate from the cylinder and the combustion force applied directly to the rim of the rotor as in turbines with much larger capacity than the cylinder, converting the entire combustion force at maximum torque to rotating energy. The combustion chamber also includes a variable compression ratio system that constantly adjusts the compression ratio within the combustion chamber for optimum performance of the engine under all variables.Type: GrantFiled: May 25, 2004Date of Patent: November 18, 2008Inventor: Jerry Iraj Yadegar
-
Patent number: 6761143Abstract: An expansion unit (4) for converting an expansion energy of pressure-increased steam into a rotation energy of an output shaft, wherein a cover member (26) is provided on the casing outer surface of the expansion unit (4). The cover member (26) has a function of sealing the end section of an output shaft (23) protruding beyond the casing outer surface against the outside and a function of recovering steam led out from the casing and has its pressured reduced after the conversion. The end section of the output shaft (23) provided inside the cover member (26) and a driven-side transmission shaft (119) disposed outside the cover member (26) are coupled with each other via a magnet type shaft coupling (120) so as to be able to transmit power, whereby the output shaft (23) and the driven-side transmission shaft (119) can be coupled without steam in the expansion unit leaking outside.Type: GrantFiled: September 18, 2002Date of Patent: July 13, 2004Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Naoki Itoh, Tsuneo Endoh, Yasunobu Kawakami, Ryuji Sano
-
Patent number: 6688276Abstract: The engine includes a cylindrical rotor, set up in the interior of a stator, limited by two flat surfaces forming a first chamber to provided the admission phase and the compression phase and another chamber to provided the expansion phase (D1) and the exhaust phase. The chambers are separated by two section. The peripheral interior surface of the stator is adjusted to the rotor periphery and its extension corresponds to the gap between two pistons.Type: GrantFiled: May 24, 2002Date of Patent: February 10, 2004Inventors: Fernando Augusto Baptista, João Manuel Pereira Dias Baptista
-
Patent number: 6681738Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against an on-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: GrantFiled: December 18, 2002Date of Patent: January 27, 2004Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Tsuneo Endoh, Kensuke Honma
-
Patent number: 6675765Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: GrantFiled: December 18, 2002Date of Patent: January 13, 2004Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Tsuneo Endoh, Kensuke Honma
-
Patent number: 6668786Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: GrantFiled: December 18, 2002Date of Patent: December 30, 2003Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Tsuneo Endoh, Kensuke Honma
-
Patent number: 6659065Abstract: An internal combustion rotary engine that employs resilient, flexible vanes attached to a rotor that spins within an oval cavity in a housing. The vanes, which are long enough to extend slightly radially from the rotor by a distance beyond the interior surface of the cavity, bend in response to the cyclical variation between the rotor and the oval cavity in order to define four chambers and form a sliding seal with the interior surface. As the vanes revolve with the rotating rotor, the volumes of these four chambers vary cyclically and enable the four phases of an approximate Otto Cycle. The engine is more efficient than a conventional, reciprocating engine because the expansion force of the combustion gas acts directly on the rotating element with a minimum of moving parts.Type: GrantFiled: August 12, 2002Date of Patent: December 9, 2003Inventor: David C Renegar
-
Publication number: 20030084867Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against anon-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: ApplicationFiled: December 18, 2002Publication date: May 8, 2003Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHAInventors: Tsuneo Endoh, Kensuke Honma
-
Publication number: 20030084868Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against an on-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: ApplicationFiled: December 18, 2002Publication date: May 8, 2003Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHAInventors: Tsuneo Endoh, Kensuke Honma
-
Publication number: 20030084866Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: ApplicationFiled: December 18, 2002Publication date: May 8, 2003Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHAInventors: Tsuneo Endoh, Kensuke Honma
-
Patent number: 6513482Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.Type: GrantFiled: September 5, 2001Date of Patent: February 4, 2003Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Tsuneo Endoh, Kensuke Honma
-
Patent number: 6349695Abstract: An internal combustion rotary power machine which functions in general accordance with the principles of the Carnot heat engine cycle without dependence upon reciprocating pistons, valves or other reciprocating mechanical components for working fluid manipulation. Through elimination reciprocating components the machine potentially offers a large measure of functional excellence in terms power density, efficiency, reliability, mechanical simplicity and production economy. Combustion occurs as a continuously sustained process thereby significantly facilitating the use of gaseous fuel. The machine presented in this disclosure is based on substantial analysis of the functional principles of internal combustion rotary vane machines as related to thermodynamic efficiency, mechanical efficiency, and thermal control considerations. The disclosure demonstrates the integration of primary geometric relationships and technical features necessary to effectively fulfill functional viability requirements.Type: GrantFiled: March 5, 2001Date of Patent: February 26, 2002Inventor: Charles Matthew Lee
-
Patent number: 4688531Abstract: In a rotary internal combustion engine with a rotor housing (1, 2, 3, 19, 20) in which a rotor (4) is eccentrically supported, preferably three radial bores (11) at mutual equal angular distance are provided. In each of the bores (11) a sliding cylinder sleeve (12) is installed which is closed at its outer end which faces out towards the cylindrical inside of the rotor housing (1). The cylinder sleeve (12) is fastened rotatably at its inner, open end to the end covers (19, 20) of the rotor housing (1) such that the cylinder sleeves (12) turn concentrically about the center line (7') of the rotor housing (1) as the rotor rotates. A sliding piston (21) is arranged in each cylinder sleeve (12), said piston (21) being fastened using connections (22, 23, 24, 25) to the rotor (4) such that each piston (21) is the same distance from the center line (8') of the rotor (4) and rotates concentrically about this center line.Type: GrantFiled: June 30, 1986Date of Patent: August 25, 1987Inventor: Jan M. Aase
-
Patent number: 4227506Abstract: A four-cycle internal combustion engine comprises a housing defining an internal compartment having one or more peripheral lobes, an inner body mounted in the housing for non-rotational orbital movement and having a plurality of peripheral lobes corresponding in number to the number of compartment lobes, and with a peripheral recess in the inner body between inner body lobe. A movable wall member is mounted for movement in each inner body peripheral recess and defines with the housing and inner body, a variable-volume fluid intake and compression chamber. The inner body is mounted in the housing compartment so that each of its peripheral lobes moves in a circular orbit into a respective one of the compartment lobes during movement of the inner body, and the inner body lobe, housing, and movable wall member define a variable-volume power chamber and exhaust chamber in each of the compartment lobes during movement of the inner body.Type: GrantFiled: January 24, 1979Date of Patent: October 14, 1980Inventor: James R. Gurley