Abstract: There is provided a valve drive device including: a base including a fluid inlet, a fluid outlet, and a valve seat surface, at least one of the fluid inlet and the fluid outlet being opened at the valve seat surface; a cover configured to define a valve chamber; a valve element configured to open and close any one of the fluid inlet and the fluid outlet in the valve chamber; and a valve element driver configured to drive and rotate the valve element. The valve element driver includes: a motor; a drive gear configured to rotate together with a rotor of the motor; a driven gear configured to rotate, in a state of meshing with the drive gear, the valve element by rotation of the drive gear; and a power transmission switching unit.
Abstract: An aerosol container has a mouth centered on an axis. A plastic valve plate is fitted to and tightly attached to the mouth and has a disk formed with an outlet centered on the axis. An outlet valve is carried on the valve plate and has a housing holding a movable valve element. A rigid extension is integrally formed on the disk around the hole, projects axially into the container, and forms a cavity in which the housing of the valve is fitted. A seal is fixed in the cavity between the housing and a surface of the extension forming the cavity.
Abstract: The invention relates to a system comprising a rotary valve and an actuating device for the rotary valve. The invention further relates to a related flow system having a rotary valve. The flow system is in particular a micro-flow system. The system comprises at least two separate components, wherein the one component is a rotary valve comprising a hollow cylindrical mount (2), a cylindrical valve body (5) located in the mount, and openings (3a, 3b, 3c, 3d) for at least two channels at the bottom of the mount (2). The other component comprises an actuating device (9) that is provided with pressing means, by means of which the valve body (5) can be pressed to the bottom of the mount (2).
Type:
Grant
Filed:
June 22, 2010
Date of Patent:
November 18, 2014
Assignee:
Qiagen GmbH
Inventors:
Rainer Dahlke, Markus Jeziorski, Hans Robert Attig, Jan Claussen, Eva Schaeffer
Abstract: Generally, the subject matter disclosed herein relates to length-adjustable pressure-retaining components used in piping systems. In one illustrative embodiment, a device comprising a first pressure component and an adjustable spacer ring operatively coupled to the first pressure component is disclosed, wherein the adjustable spacer ring is adapted to adjust a combined overall length of said the pressure component and the adjustable spacer ring.
Type:
Grant
Filed:
March 2, 2011
Date of Patent:
February 25, 2014
Assignee:
FMC Technologies, Inc.
Inventors:
Henry Wong, Pablo Garce, Sandra Lipezker, Yue Gong
Abstract: A multi-position valve assembly including a valve housing, a stator element and a rotor element rotatably mounted about a rotational axis. The valve assembly further includes a pressure adjustment assembly movable between a release position and a stop position, hard stopped relative to the valve housing. The pressure adjustment assembly includes a pressure adjuster device configured to movably cooperate between the rotor element and the valve housing to adjustably generate an axial compression pressure at the rotor-stator interface at a calibrated operating pressure, PC. When the pressure adjustment assembly is oriented in the release position, the axial compression pressure is substantially removed from the rotor-stator interface. In contrast, when the pressure adjustment assembly is oriented in the stop position, the axial compression pressure is substantially reproduced at the calibrated operating pressure, PC.
Abstract: A dual flap device for the environmentally tight connection of two receptacles is provided with two housing halves, which can be releasably connected. Each housing half accommodates a flap, which is pivotable by way of a half shaft. In a connected position of the dual flap device, the housing halves and the flaps rest against each other and are tensioned against one another, respectively. The half shafts of the two flaps unite to form a mutual shaft having a rotational axis. Thus, using a locking device, both flaps can be pivoted between a closed position and an open position by way of the mutual shaft. A first housing half is provided with a locking device, at least on one side, located in axial extension of the respective half shaft, which makes it possible to switch the dual flap device between an unlocked and a locked position.
Abstract: A retrofit valve assembly for a frost-resistant hydrant comprises a replacement valve assembly and stem sufficiently long enough to enable the replacement stem to be cut and readily retrofit to existing frost-resistant hydrants of different lengths.
Abstract: A retrofit valve assembly for a frost-resistant hydrant comprises ceramic valve disks and a hydrant adapter to enable the valve assembly to be readily retrofit to existing frost-resistant hydrants produced by different manufacturers.
Abstract: A rotatable wedge valve mechanism has a valve body or valve cartridge defining a valve chamber and flow ports in fluid communication with the valve chamber. A valve seat is located within the valve chamber in registry with one of the flow ports. A non-rotatable core member having a convex external surface portion is supported within said valve chamber. A wedge member is mounted for rotation within the valve chamber and has a range of rotary motion between open and closed positions of said valve and a non-uniform wall thickness throughout said range of rotary motion. An actuator upon rotary movement achieves opening and closing rotation of said wedge member. A method is provided for machining concave and convex wedge member surfaces from selected center-points to achieve relative thicknesses of wall sections of the wedge member.
Abstract: Valve control assemblies are disclosed which accommodate out of plumb conditions using a flexible set of rings linked to the temperature control, and a projection/axial slot arrangement linked to the volume control. Different wall thicknesses are accommodated using one or more adaptors/extensions between a temperature bonnet control and a portion of the valve cartridge which controls temperature. There is also a combined shroud/tool for protecting the valve during rough-in and permitting it to be tested.
Abstract: A retrofit valve assembly for a frost-resistant hydrant comprises ceramic valve disks and a hydrant adapter to enable the valve assembly to be readily retrofit to existing frost-resistant hydrants produced by different manufacturers.
Abstract: A rotatable wedge cartridge valve has a cartridge body defining a cartridge chamber of a defined internal width having flow ports in communication with the cartridge chamber. A rotatable wedge valve cartridge assembly is removeably positioned within the cartridge chamber and has a controllable width. A core member defines a flow passage and has a spherical outer surface portion. A valve seat is located within the cartridge chamber. A rotatable wedge valve member is mounted for rotation relative to the core and has a concave surface portion in rotary guided relation with the spherical outer surface. The rotatable wedge valve member also has an external convex surface that is positioned for sealing engagement with the valve seat and has a geometry developing a non-uniform wall thickness along the rotatable wedge valve member.
Abstract: A rotatable wedge cartridge valve has a cartridge body defining a cartridge chamber of a defined internal width having flow ports in communication with the cartridge chamber. A rotatable wedge valve cartridge assembly is removeably positioned within the cartridge chamber and has a controllable width. A core member defines a flow passage and has a spherical outer surface portion. A valve seat is located within the cartridge chamber. A rotatable wedge valve member is mounted for rotation relative to the core and has a concave surface portion in rotary guided relation with the spherical outer surface. The rotatable wedge valve member also has an external convex surface that is positioned for sealing engagement with the valve seat and has a geometry developing a non-uniform wall thickness along the rotatable wedge valve member.
Abstract: A portable receptacle is vacuumized for use in taking an air or gas sample for subsequent examination to determine type, origin, components of the air or gas. Critical to a long shelf life of the vacuumized receptacle is a valve which virtually seals the receptacle for months or years permitting storage of the receptacle in a state ready for immediate use at a site. The valve utilizes a positionable member plated with a noble metal. A filter serves to collect particulate from the air or gas flow into the receptacle. A funnel shaped collector aids in the collection.
Abstract: A valve device having a novel vale seat plate is provided. The valve seat plate has an inlet opening, an outlet opening, a front side and a back side. A sealing case covers the front side and inlet and outlet pipes are attached to the back side to communicate respectively with the inlet and outlet openings. A valve element moves to cover the outlet opening on the front side to close the outlet opening. The novel valve seat plate includes at least two plates that are joined to each other. One plate forms the area around the outlet opening and the other plate forms other areas of the valve seat plate.
Abstract: A gear meshing with a pinion controls the angle of rotation of a valve element which is brought into sliding contact with a valve seat, thereby controlling the opening and closing of a communicating hole of outflow pipe. During welding the valve seat plate and a housing, a hook portion of an upper portion of the gear is retained by a retaining portion to cause the valve element to be spaced apart from the valve seat. After natural cooling, the pinion is remotely operated by an electric motor to rotate the gear, thereby canceling the holding. A resilient arm causes the gear to be disengaged from the retaining portion by its urging force, brings the valve element into pressure contact with the valve seat, and allows the opening/closing operation to function smoothly.
Abstract: Couplers for joining actuators to valves are configured to allow their affixment to different makes and models of actuators and valves, thereby allowing an off-the-shelf S coupling solution and avoiding the need to specially construct a coupler which is only adapted to connect whatever valve and actuator that are desired for coupling. The couplers include a shaft/stem bore which accommodates the torque-transmitting components of the valve and actuator to be coupled, and sets of affixment holes surround the shaft/stem bore, with these affixment holes being arrayed in patterns matching those of different common valves and actuators. Thus, a coupler may affix to different valves or actuators provided the appropriate affixment holes are chosen. The couplers may be formed as single-piece or multi-piece units.
Abstract: An electric servo motor operated valve has a motor and gear reduction subassembly and a valve body subassembly with a cross-ported cylindrical rotary valve member with an arcuately shaped resilient face seal member for sealing about the cross port. The motor gear subassembly is attached to the valve body subassembly by sonic weldment.
Abstract: A rotary valve includes a housing having a housing bore which can be laterally closed by bearing covers. Inside the housing, a cellular wheel is rotatably supported. A guiding device extends in an axial direction of the cellular wheel and serves for drawing the cellular wheel in the direction of its axis of rotation out of the housing bore. This guiding device includes an additional bearing which can be displaceable in the axial direction relative to that bearing cover which is on the guiding side. The additional bearing serves to support the cellular wheel temporarily during removal from the housing bore. This additional bearing can be connected to that end of a cellular wheel shaft which is situated at the side of the guiding device.
Type:
Grant
Filed:
November 22, 1999
Date of Patent:
February 13, 2001
Assignee:
Waeschle GmbH
Inventors:
Kurt Pfeifer, Ewald Könlg, Klaus Hemmelmann