Utilizing Diverse Fluids Patents (Class 137/806)
  • Publication number: 20080314464
    Abstract: The invention provides a device (1, 301, 501) for producing a spherical segmented flow of fluid, which device includes: a functional fluid conduit (6, 506) arranged to contain a functional fluid (15, 515); at least two carrier fluid conduits (7, 8, 507, 508), each carrier fluid conduit arranged to carry a carrier fluid (16, 514), the functional fluid conduit merging with the carrier fluid conduits at a junction (9) to form an encased flow conduit (9a, 529) thereby permitting functional fluid to be sandwiched (or encased) by the carrier fluid to form an encased flow, the encased flow conduit having a discontinuity (10, 510) therein such that the encased flow forms into a flow of alternate segmented spheres after the discontinuity, wherein the device is provided with a segmented flow conduit (11, 511) downstream of the encased flow conduit, the encased segmented flow conduit being provided with an enlargement (21, 512) in cross-section.
    Type: Application
    Filed: December 19, 2005
    Publication date: December 25, 2008
    Inventors: Robert Huw Davis, Daniel David Palmer
  • Patent number: 7445754
    Abstract: Disclosed is to a device for exchanging minimum amount of the fluid only by using surface tension of the fluid instead of external force like a pump. According to the device, an additional pump and power supply is not needed, thereby the device can be small sized and portable, and not only manufacturing cost decreases and yield increases but the device is hardly out of order.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: November 4, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kwang Hyo Chung, Jong Soo Ko, Hyun Chul Yoon, Hae Sik Yang, Hyeon Bong Pyo, Sung Jin Kim, Yun Tae Kim
  • Publication number: 20080257435
    Abstract: A fluid displacement mechanism is disclosed. In an embodiment, first and second cavities are separated by a flexible membrane. The first cavity contains a non-conductive fluid and the second cavity contains a conductive fluid. First and second electrodes are positioned in the first and second cavities respectively such that the application of a voltage between the electrodes causes movement of the membrane by the build up of an electrostatic charge between the membrane and first electrode.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 23, 2008
    Applicant: Microsoft Corporation
    Inventor: Timothy A. Large
  • Publication number: 20070227536
    Abstract: Various embodiments of a breath-activated nebulizer with fluidic control and related methods of using such a nebulizer are disclosed. The nebulizer may include a body comprising a reservoir for holding medication, a nozzle for emitting a jet of pressurized gas, and a fluid conduit in communication with the reservoir for delivery of the medication proximate the jet to produce an aerosol of medication. The nebulizer may also include a nebulizer outlet in communication with an interior of the body for delivery of the aerosol to a patient, a control conduit in fluid communication with the fluid conduit for delivery of a control gas to the fluid conduit to prevent the delivery of the medication proximate the jet, and a fluidic amplifier configured to control the delivery of the control gas to the control conduit.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 4, 2007
    Inventors: David A. Rivera, Steven M. Harrington, Bruce K. Bridges, Neil A. Korneff
  • Patent number: 7171983
    Abstract: Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 6, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Ring-Ling Chien, J. Wallace Parce, Andrea W. Chow, Anne Kopf-Sill
  • Patent number: 7156117
    Abstract: The present invention is directed to methods of controlling the flow of fluids through a microfluidic circuit and, more particularly, to methods of controlling the movement of fluid through a microfluidic circuit using one or more triggerable passive valves. In one embodiment of a method of controlling the flow of fluids through a microfluidic circuit according to the present invention, the microfluidic circuit includes a triggerable valve in series with a passive valve. In a further embodiment of a method of controlling the flow of fluids through a microfluidic circuit according to the present invention, the microfluidic circuit includes first and second triggerable valves in parallel.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: January 2, 2007
    Assignee: Lifescan Scotland Limited
    Inventor: Sebastian Bohm
  • Patent number: 7134453
    Abstract: The invention relates to a microfluidic switch for stopping a liquid flow during a time interval with the following features: the switch has at least one first channel and at least one second channel; the first channel and the second channel have a common end area; the first channel in the end area has a stopping mechanism for stopping of a liquid flow flowing in the first channel; the stopping mechanism can be controlled by means of a liquid flow flowing in the second channel for continuing the liquid flow in the first channel. Transport in the first and the second channel takes place advantageously by the capillarity acting in the channel.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: November 14, 2006
    Assignee: Boehringer Ingelheim Microparts GmbH
    Inventors: Ralf Peters, Gert Blankenstein, Holger Bartos, Claus Marquordt
  • Patent number: 7118910
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: October 10, 2006
    Assignee: Fluidigm Corporation
    Inventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Weinecke, Geoffrey Facer
  • Patent number: 7111635
    Abstract: A method is provided for fabricating a constriction region in a channel of a microfluidic device. The method includes the steps of introducing a pre-polymer mixture including a monomer, cross-linking agent and photoinitiator into the channel. The pre-polymer mixture is polymerized at a localized area of the channel so as to shrink and solidify the liquid mixture. The solidified and shrunken liquid mixture provides the constriction region in the channel.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: September 26, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, Jeffrey S. Moore, Jaisree Moorthy
  • Patent number: 7082955
    Abstract: A system for conveying fluid through a conduit that creates a strong laminar flow of the material surrounded by a boundary layer flow of the same or a different flowable material, such that long transport distances through dramatic elevation and directional changes can be achieved. Some embodiments of the system include a blower assembly, an inlet conduit, an outlet conduit and a mixing chamber, wherein the mixing chamber includes an outer barrel, an inner barrel and an accelerating chamber. Low pressure gas is supplied to the system by the blower assembly and mixed with particulate material. The gas/material mixture is transported through the mixing chamber into the accelerating chamber and through the outlet conduit. In other embodiments, the particulate material is mixed with the gas in the accelerating chamber.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: August 1, 2006
    Assignee: Ecotechnology, Ltd.
    Inventors: Darin L. Lane, Walter D. Prince, Alan Miller
  • Patent number: 7077152
    Abstract: Systems and methods for metering microfluidic volumes are provided. A discrete plug may be separated from a larger volume of first fluid by injecting a second fluid, such as a gas, into a channel containing the first fluid. The injection of the second fluid to isolate the desired amount of the first fluid may be controlled through timing of flows, visual indicators and/or automated control systems using optical or electrical sensors.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: July 18, 2006
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 7069943
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: July 4, 2006
    Assignee: Cytonome, Inc.
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 7066190
    Abstract: An air-driven microfluid control device and its method are disclosed. The control device contains an air source, a first inlet, a second inlet, a narrow sector, and an outlet. The air source is connected two the two inlets to produce an airflow. The first inlet connects to the narrow sector, which then connects to the outlet. The air flows through the first inlet and the narrow sector and exits via the outlet. A fluid tunnel connects to the narrows sideways. The second inlet connects to the fluid tunnel so that the air entering the second inlet flows into the fluid tunnel. Through the interaction between the two inlets, pushing and pulling forces can be produced to control the fluid inside the fluid tunnel.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: June 27, 2006
    Assignee: Dr. Chip Biotechnology Incorporation
    Inventors: Chien-An Chen, Shun-Chieh Yang
  • Patent number: 7066207
    Abstract: A system and method for conveying flowable material through a conduit that creates a strong laminar flow of the material surrounded by a boundary layer flow of the same or a different flowable material, such that long transport distances through dramatic elevation and directional changes can be achieved. Some embodiments of the system include a blower assembly, an inlet conduit, an outlet conduit and a mixing chamber, wherein the mixing chamber includes an outer barrel, an inner barrel and an accelerating chamber. Low pressure air is supplied to the system by the blower assembly and mixed with particulate material. The air/material mixture is transported through the mixing chamber into the accelerating chamber and through the outlet conduit. In other embodiments, the particulate material is mixed with the air in the accelerating chamber.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: June 27, 2006
    Assignee: Ecotechnology, Ltd.
    Inventors: Darin L. Lane, Walter D. Prince, Alan Miller
  • Patent number: 7059351
    Abstract: A liquid transportation device includes a working board, a working liquid, a liquid channel and a cover board, wherein the liquid channel is formed on a top surface of the working board, the covering board is fully covered the liquid channel, the liquid channel composed of a material substantially tending to the liquid, and the covering board is composed of a material substantially phobic to the liquid. The working liquid flows within the liquid channel in guidance of the deviation of surface tension between the liquid channel to the working liquid, and the covering board to the working liquid, so that the working liquid is transported within the liquid channel without any external power.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: June 13, 2006
    Assignee: National Taiwan University
    Inventors: Chin-Chou Chu, Chien-Fu Chen, Chun-Fei Kung, Chien-Cheng Chang, Fan-Gang Tseng
  • Patent number: 6901963
    Abstract: Provided is a micro fluidic device that can control a flow time of micro fluid by using a capillary phenomenon. The micro fluidic device includes: a flow channel for flowing fluid, the flow channel being formed between a top substrate and a bottom substrate or between a top substrate, a bottom substrate, and a middle substrate; a flow blocking surface for stopping a flow of the fluid in the flow channel temporarily; and a hump for delaying the flow formed in the line of continuity with the flow blocking surface. The micro fluidic device of the present research can control the flow time in a simple manner.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: June 7, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Jin Kim, Yong Beom Shin, HaeSik Yang, Dae Sik Lee, Kyu Won Kim, Se Ho Park, Yun Tae Kim
  • Patent number: 6895983
    Abstract: An apparatus for dividing the flow of a gas stream and a method for controlling the flow division of a gas stream are disclosed, the apparatus including an inlet conduit for receiving the gas stream, outlet conduits in fluid communication with the inlet conduit for delivering the gas stream, a balancing gas feed conduit in fluid communication with an outlet conduit, a balancing gas feeder in fluid communication with the balancing gas feed conduit, and a balancing gas controller; and the method including the steps of dividing the process gas stream into process gas stream fractions and injecting a balancing gas stream into a process gas stream fraction in an amount sufficient to displace a portion of gas flow from the process gas stream fraction into one or more remaining process gas stream fractions.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 24, 2005
    Assignee: The Chemithon Corporation
    Inventor: John Chittenden
  • Patent number: 6880576
    Abstract: Microfluidic devices with multiple fluid process regions for subjecting similar samples to different process conditions in parallel are provided. One or more common fluid inputs may be provided to minimize the number of external fluid supply components. Solid materials such as chromatographic separation media or catalyst media is preferably provided in each fluid process region. Solid materials may be supplied to the devices in the form of slurry, with particles retained by porous elements or frits. Different fluid process regions may having different effective lengths, different solid material types or amounts, or may receive different ratios of common fluids supplied to the device. The flow resistances of dissimilar fluid process regions may be balanced passively with the addition of impedance elements in series with each fluid process region.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 19, 2005
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Eugene Dantsker
  • Patent number: 6877528
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 12, 2005
    Assignee: Cytonome, Inc.
    Inventors: John Richard Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 6866067
    Abstract: A micro channel unit having a shape designed to reduce a pressure drop when fluid passes through a connecting channel portion is provided. The micro channel unit includes a micro channel with a width of micrometer dimensions through which liquid flows. The micro channel includes a plurality of straight channel portions and connecting channel portions that connect each pair of adjacent straight channel portions. The connecting channel portions are wider than the straight channel portions connected by the connecting channel portions. The use of the micro channel unit can reduce the pressure drop when fluid passes through the connecting channel portions, thereby reducing the amount of power required to drive the fluid flow and further enabling miniaturization of microfluidic devices such as pumps and peripheral devices.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: March 15, 2005
    Assignee: Seoul National University
    Inventors: Seokhyun Lim, Haecheon Choi
  • Patent number: 6843272
    Abstract: A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed “bubble” in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: January 18, 2005
    Assignee: Sandia National Laboratories
    Inventors: Joseph S. Schoeniger, Eric B. Cummings, James S. Brennan
  • Publication number: 20040216790
    Abstract: An air-driven microfluid control device and its method are disclosed. The control device contains an air source, a first inlet, a second inlet, a narrow sector, and an outlet. The air source is connected two the two inlets to produce an airflow. The first inlet connects to the narrow sector, which then connects to the outlet. The air flows through the first inlet and the narrow sector and exits via the outlet. A fluid tunnel connects to the narrows sideways. The second inlet connects to the fluid tunnel so that the air entering the second inlet flows into the fluid tunnel. Through the interaction between the two inlets, pushing and pulling forces can be produced to control the fluid inside the fluid tunnel.
    Type: Application
    Filed: July 15, 2003
    Publication date: November 4, 2004
    Inventors: Chien-An Chen, Shun-Chieh Yang
  • Patent number: 6805164
    Abstract: A fluidic oscillator capable of generating free fluid jets having distinctive, controllable and industrially/commercially useful flow patterns has a switching chamber having an inlet port that allows a pressurized fluid to enter and flow through the oscillator, an exhaust passage having a sidewall that forms one boundary wall of the switching chamber, a container passage having a sidewall that forms the second boundary wall of the switching chamber, a compliance member connected to the distal end of the container passage, and an expansion chamber connected to the distal end of the exhaust passage, with the expansion chamber having an exhaust orifice that allows fluid to flow from the oscillator. In operation, such an oscillator yields a contained fluid jet that issues from the inlet port into the swishing chamber and alternately switches its flow direction between the container and exhaust passages.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: October 19, 2004
    Assignee: Bowles Fluidics Corporation
    Inventor: Ronald D. Stouffer
  • Patent number: 6779559
    Abstract: Methods devices and systems that employ non-mechanical valve modules for controlling directing fluid and other material movement through integrated microscale channel network. These non-mechanical valve modules apply forces that counter the driving forces existing through a given channel segment, via fluidly connected channel segments, so as to selectively arrest flow of material within the given channel segment.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: August 24, 2004
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Andrea W. Chow
  • Publication number: 20040144421
    Abstract: Methods devices and systems that employ non-mechanical valve modules for controllably directing fluid and other material movement through integrated microscale channel networks. These non-mechanical valve modules apply forces that counter the driving forces existing through a given channel segment, via fluidly connected channel segments, so as to selectively arrest flow of material within the given channel segment.
    Type: Application
    Filed: November 5, 2003
    Publication date: July 29, 2004
    Applicant: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Andrea W. Chow
  • Patent number: 6767331
    Abstract: A backload-responsive fluidic switch having high pressure recovery of more than 50% comprises a body member with a power nozzle having a width W and a centerline CL which is adapted to be coupled to a source of fluid under pressure for issuing a jet of fluid along the centerline. A pair of diverging fluid flow passages have a common connection with the power nozzle and respective bounding walls, each respective bounding wall diverging from the centerline no more than about 50°, and a splitter defining respective inner walls of the pair of diverging walls, the splitter being spaced a distance of about 3W from the power nozzle. Inflatable bladder(s) connected to the diverging fluid flow passage(s), and a vent connected to the other of said fluid flow passages.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: July 27, 2004
    Assignee: Bowles Fluidics Corporation
    Inventors: Ronald D. Stouffer, Gregory A. Russell, Aland Santamarina
  • Patent number: 6695009
    Abstract: Methods of concentrating materials within microfluidic channel networks by moving materials into regions in which overall velocities of the material are reduced, resulting in stacking of the material within those reduced velocity regions. These methods, devices and systems employ static fluid interfaces to generate the differential velocities, as well as counter-current flow methods, to concentrate materials within microscale channels.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: February 24, 2004
    Assignee: Caliper Technologies Corp.
    Inventors: Ring-Ling Chien, Benjamin N. Wang
  • Patent number: 6681788
    Abstract: Methods devices and systems that employ non-mechanical valve modules for controllably directing fluid and other material movement through integrated microscale channel networks. These non-mechanical valve modules apply forces that counter the driving forces existing through a given channel segment, via fluidly connected channel segments, so as to selectively arrest flow of material within the given channel segment.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: January 27, 2004
    Assignee: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Andrea W. Chow
  • Patent number: 6679279
    Abstract: A fluidic valve (125, 300, 500, 900, 1000, 1100, 1200, 1300) switches a state of flow of a fluid in a fluid communication channel of a fluid guiding structure (505). Heating a bi-phase valve element (515, 1065, 1215) causes a change a state of the bi-phase valve element from a high viscosity state to a low viscosity state. A bi-phase valve element that clogs the fluid communication channel can be pushed into an expanded portion (135, 320, 520, 915, 1220) of the fluid communication channel by an application of pressure to the fluid while the bi-phase valve element is in the low viscosity state, unclogging the fluid communication channel. A bi-phase valve element can be pushed from a valve element source chamber (550, 1250) into the fluid communication channel by using a pumped fluid entering the source chamber at a pump inlet (551) while the bi-phase valve element is in the low viscosity state, clogging the fluid communication channel.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 20, 2004
    Assignee: Motorola, Inc.
    Inventors: Robin Hui Liu, Justin J. Bonanno, Piotr Grodzinski, Randall Stevens
  • Patent number: 6662818
    Abstract: Regulator for precision control of pressure based on a means of measuring pressure differentials. More specifically, the present invention provides a pressure control that tracks a relatively high background pressure, and applies a positive or negative offset to create the small pressure differentials that can be utilized to transport fluids within a capillary network. The present invention is also directed to a method of controlling microfluidic elements (such as donut cavities) with a high degree of precision. In high performance liquid chromatography applications, this is accomplished using tracking pressure regulators to measure and respond to the difference between the liquid pump pressure and the regulated pneumatic pressure.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: December 16, 2003
    Assignee: PerSeptive Biosystems, Inc.
    Inventors: Carlton H. Paul, Guy B. Praria, Jeffrey H. Stokes
  • Patent number: 6659118
    Abstract: A system and method for conveying flowable material through a conduit that creates a strong laminar flow of the material surrounded by a boundary layer flow of the same or a different flowable material, such that long transport distances through dramatic elevation and directional changes can be achieved. Some embodiments of the system include a blower assembly, an inlet conduit, an outlet conduit and a mixing chamber, wherein the mixing chamber includes an outer barrel, an inner barrel and an accelerating chamber. Low pressure air is supplied to the system by the blower assembly and mixed with particulate material. The air/material mixture is transported through the mixing chamber into the accelerating chamber and through the outlet conduit. In other embodiments, the particulate material is mixed with the air in the accelerating chamber.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: December 9, 2003
    Assignee: Ecotechnology, Ltd.
    Inventors: Darin L. Lane, Walter D. Prince, Alan Miller
  • Patent number: 6637463
    Abstract: Methods and apparatus are presented for controlling fluid flow through flow paths with pressure gradient fluid control. Passive fluid flow barriers may be used to act as valves, thereby allowing the flow of fluids through flow paths to be regulated so as to allow fluids to be introduced via a single channel and subsequently split into multiple channels. Flow through the flow paths can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. Each flow path may have multiple segments, at least one of which is designed to balance the pressure drops of the flow paths to provide uniform flow of fluids through the flow paths. The configurations of the wells may also be modified by adding vents or flow dividers to enhance fluid flushing and gas removal capability.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: October 28, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Ming Lei, Nils B. Adey, Michael R. McNeely
  • Patent number: 6632286
    Abstract: A process is described for the production of decomposable soluble products from a slurry of solids in which the slurry is convey axially through the reactor and excess liquid is removed radially through the walls of the reactor. The primary example is the hydrolysis of lignocellulosic biomass to form sugars, usually using an acid catalyst. In one variation of the process liquid and possibly steam are added through the inner wall of the reactor to provide additional flow in the radial direction and to control the temperature. Pressures are maintained such that the product stream is thermally quenched due to partial flashing as it leaves the reactor.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: October 14, 2003
    Assignee: Trustees of Dartmouth College
    Inventor: Alvin Omar Converse
  • Patent number: 6615856
    Abstract: A method of controlling fluid flow within a microfluidic circuit using external valves and pumps connected to the circuit is disclosed. The external valves and pumps, which are not a part of the microfluidic substrate, control fluid pumping pressure and the displacement of air out of the fluid circuit as fluid enters into the circuit. If a valve is closed, air cannot be displaced out of circuit, which creates a pneumatic barrier that prevents fluid from advancing within the circuit (under normal operating pressures). Applications of this method of fluid control are explained.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 9, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Mark K. Spute
  • Patent number: 6601613
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: August 5, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Arnold R. Oliphant, Mark K. Spute
  • Patent number: 6591852
    Abstract: Methods and apparatus for controlling fluid flow through microchannels by use of passive valves or stopping means comprised of abrupt microchannel widenings in the microchannels are presented. Such passive fluid flow barriers create pressure barriers impeding flow of solution past the passive fluid flow barriers until enough force is built up to overcome the force of the pressure barrier. Use of such stopping means acting as passive barriers or valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: July 15, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Mark K. Spute, Arnold R. Oliphant
  • Publication number: 20030121788
    Abstract: A dielectric gate and related systems and methods for controlling fluid flow. A dielectric gate includes one or more electrodes coupled between an inlet fluid pathway and an outlet fluid pathway. The electrodes are configured to draw fluid from the inlet fluid pathway to the outlet fluid pathway in a precise manner by using dielectric forces arising from electrical signals applied to the electrodes.
    Type: Application
    Filed: December 20, 2001
    Publication date: July 3, 2003
    Inventors: Peter Gascoyne, Jon Schwartz, Jody V. Vykoukal, Frederick F. Becker
  • Patent number: 6578607
    Abstract: A diffuser comprises a conduit having a cross-sectional area that increases in a direction fluid flow. In one embodiment, the diffuser is used to reduce the incidence and severity of flow fluctuations that occur in an electrostatic deposition apparatus. In some embodiments, the diffuser includes one or more flow control features. A first flow-control feature comprises one or more appropriately-shaped annular slits through which fluid having a greater momentum than a primary fluid moving through the diffuser is injected into the “boundary layer” near the wall of the diffuser. A second flow control feature comprises one or more annular slits or, alternatively, slots or holes that are disposed at appropriate locations around the circumference of the diffuser through which a portion of fluid flowing in the boundary layer is removed. Boundary-layer flow removal is effected, in one embodiment, by creating a pressure differential across such annular slit or slots.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 17, 2003
    Assignee: Delsys Pharmaceutical Corp.
    Inventors: Kerry Dennis O'Mara, David Keller, Joseph Thomas McGinn
  • Publication number: 20030005967
    Abstract: Systems and methods for metering microfluidic volumes are provided. A discrete plug may be separated from a larger volume of first fluid by injecting a second fluid, such as a gas, into a channel containing the first fluid. The injection of the second fluid to isolate the desired amount of the first fluid may be controlled through timing of flows, visual indicators and/or automated control systems using optical or electrical sensors.
    Type: Application
    Filed: May 6, 2002
    Publication date: January 9, 2003
    Applicant: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 6453928
    Abstract: A device for moving a fluid in a fluidics system. The device may include one or more controllably openable closed chambers. The pressure within the closed chamber(s) is lower than the ambient pressure outside the fluidics system or lower than the pressure within another channel of the fluidic system. The closed chamber(s) is configured for being controllably opened. The chamber (or chambers) is configured such that when a chamber is opened the chamber is in fluidic communication with a flow channel included within the fluidics system. The fluid may be moved into the flow channel or may be moved within the flow channel. The fluid may be a liquid, a gas, a mixture of gases or an aerosol. The fluidics system may include a controller for controlling the opening of a selected chamber or chambers.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: September 24, 2002
    Assignee: Nanolab Ltd.
    Inventors: Shay Kaplan, Amit Shacham
  • Patent number: 6450189
    Abstract: Atomized particles within a desired size range (e.g., 1 micron to about 5 microns) are produced from two immiscible fluids, a first fluid source containing the formulation to be atomized, and a second fluid source which is contained in a pressure chamber surrounding at least the area where the first liquid is to be provided. The invention provides methods for: the production of templates for microfabrication, such as particles that serve as templates for self-assembly of monolayers; the creation of small particles to serve as building blocks for the microassembly of objects; and the use of an atomizate to etch configurations and/or patterns onto the surface of an object by removing a selected portion of the surface.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: September 17, 2002
    Assignee: Universidad de Sevilla
    Inventor: Alfonso Gañán-Calvo
  • Patent number: 6450203
    Abstract: A method of controlling flow of a driven fluid in a channel, the channel being defined by an encircling wall, the method comprising the steps of sealing the channel with a sealing fluid immiscible in the driven fluid blocking the channel at an initial position, in which the sealing fluid has a first contact angle with the encircling wall and the driven fluid has a second contact angle with the encircling wall and the first contact angle is less than the second contact angle; and moving the sealing fluid in the channel by a force generated outside of the channel.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: September 17, 2002
    Assignee: Micralyne Inc.
    Inventors: Christopher J. Backhouse, Herbert A. Hartshorne
  • Publication number: 20020052567
    Abstract: A backload-responsive fluidic switch having high pressure recovery of more than 50% comprises a body member with a power nozzle having a width W and a centerline CL which is adapted to be coupled to a source of fluid under pressure for issuing a jet of fluid along the centerline. A pair of diverging fluid flow passages have a common connection with said power nozzle and respective bounding walls, each respective bounding wall diverging from the centerline no more than about 50°, and a splitter defining respective inner walls of said pair of diverging walls, the splitter being spaced a distance of about 3W from the power nozzle. Inflatable bladder(s) connected to the diverging fluid flow passage(s), and a vent connected to the other of said fluid flow passages.
    Type: Application
    Filed: October 19, 2001
    Publication date: May 2, 2002
    Inventors: Ronald D. Stouffer, Gregory A. Russell, Aland Santamarina
  • Publication number: 20020036018
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 28, 2002
    Inventors: Michael R. McNeely, Arnold R. Oliphant, Mark K. Spute
  • Publication number: 20020003001
    Abstract: A passive valve for use within microfluidic structures. Surface tension forces developed within microscale channels are used to control flow within the channels. Flow can be halted within a channel until fluid force reaches a predetermined pressure to allow the channel to open.
    Type: Application
    Filed: May 23, 2001
    Publication date: January 10, 2002
    Inventors: Bernhard H. Weigl, Gerald L. Klein
  • Patent number: 6296020
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: October 2, 2001
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Arnold R Oliphant, Mark K. Spute
  • Patent number: 6176676
    Abstract: Structure with elements includes a main body of the element used in gas stream and a plurality of fluid passage. Each outlet of the fluid passage is opened on surface of the main body. Coolant fluid flows from each outlet through the passage to cover the surface as a film-like fluid. The plurality of fluid passages include first fluid passages and second fluid passages. The coolant fluid flows from the outlet of the first fluid passage along the direction of the gas stream on the surface. On the other hand, the coolant fluid also flows from the outlet of the second fluid passage toward the gas stream neighbored on each outlet of the first fluid passage.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: January 23, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Ikeda, Akinori Koga, Junji Ishii
  • Patent number: 6092982
    Abstract: Structure with elements includes a main body of the element used in gas stream and a plurality of fluid passage. Each outlet of the fluid passage is opened on surface of the main body. Coolant fluid flows from each outlet through the passage to cover the surface as a film-like fluid. The plurality of fluid passages include first fluid passages and second fluid passages. The coolant fluid flows from the outlet of the first fluid passage along the direction of the gas stream on the surface. On the other hand, the coolant fluid also flows from the outlet of the second fluid passage toward the gas stream neighbored on each outlet of the first fluid passage.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: July 25, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Ikeda, Akinori Koga, Junji Ishii
  • Patent number: 6062261
    Abstract: A microfabricated device and method for proportioning and mixing electrokinetically manipulated biological or chemical materials is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the electrical resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates voltage division on the microchip without relying on external wiring schemes and voltage division techniques external to the microchip.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: May 16, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Stephen C. Jacobson, J. Michael Ramsey
  • Patent number: 5931178
    Abstract: An apparatus and method for performing high speed interruption of the flow of a very fine, high pressure, high speed water jet 12 of the type used to cut foods, paper, and other goods. The water jet 12 is interrupted by a pivotal blocking bar 22 within a blocker housing. The blocking bar 22 is pivoted in a collar 24b to a first desired position out of the path of water jet 12 or to a second desired position for blocking the path of water jet 12. A pivot arm 28, controlled by an output shaft 30 of a rotary actuator 32, controls the rotation of the blocking bar 22. A high pressured airflow is introduced into the device for controlling the exhaustion of blocked water within the device and for cooling the rotary actuator 32.
    Type: Grant
    Filed: March 19, 1996
    Date of Patent: August 3, 1999
    Assignee: Design Systems, Inc.
    Inventors: Craig E. Pfarr, Norman A. Rudy, Darren P. Wattles