Abstract: Systems and methods are described herein to implement transverse momentum injection at low frequencies to directly modify large-scale eddies in a turbulent boundary layer on a surface of an object. A set of transverse momentum injection actuators may be positioned on the surface of the object to affect large-scale eddies in the turbulent boundary layer. The system may include a controller to selectively actuate the transverse momentum injection actuators with an actuation pattern to affect the large-scale eddies to modify the drag, fluid mixing, heat transfer, and/or other interactions of the fluid flow with the surface. In various embodiments, the transverse momentum injection actuators may be operated at frequencies less than 10,000 Hertz.
Type:
Grant
Filed:
May 18, 2023
Date of Patent:
March 19, 2024
Assignee:
Enterprise Science Fund, LLC
Inventors:
Alexander J. Smits, Ivan Marusic, David Wine, Brian Holloway
Abstract: A microfluidic valve may include a first portion of a liquid conduit to contain a gas, a second portion of a liquid conduit to contain a liquid, and a constriction between the first portion and the second portion and across which a capillary meniscus is to form between the gas and the liquid. The microfluidic valve may further include a drop jetting device within the second portion to open the valve by breaking the capillary meniscus across the constriction.
Type:
Grant
Filed:
February 15, 2017
Date of Patent:
July 11, 2023
Assignee:
Hewlett-Packard Development Company, L.P.
Inventors:
Pavel Kornilovich, Alexander N. Govyadinov, Viktor Shkolnikov
Abstract: Systems and methods are described herein to implement transverse momentum injection at low frequencies to directly modify large-scale eddies in a turbulent boundary layer on a surface of an object. A set of transverse momentum injection actuators may be positioned on the surface of the object to affect large-scale eddies in the turbulent boundary layer. The system may include a controller to selectively actuate the transverse momentum injection actuators with an actuation pattern to affect the large-scale eddies to modify the drag of the fluid flow on the surface. In various embodiments, the transverse momentum injection actuators may be operated at frequencies less than 10,000 Hertz.
Type:
Grant
Filed:
October 6, 2022
Date of Patent:
July 4, 2023
Inventors:
Alexander J. Smits, Ivan Marusic, David Wine, Brian Holloway
Abstract: A fluid flow controller for introducing fluids into a microfluidic device is provided. The fluid flow controller comprising, at least one high resistance fluid pathway provided between an inlet port and a connection port; at least one low resistance fluid pathway between the inlet and connection port; and at least one valve configured to enable fluid flow through the high resistance fluid pathway, the low resistance fluid pathway or both.
Type:
Grant
Filed:
September 1, 2017
Date of Patent:
March 29, 2022
Assignee:
Fluidic Analytics Limited
Inventors:
Anthony Douglas, Tuomas Pertti Jonathan Knowles, Thomas Mueller, Andrew Lynn
Abstract: A downhole acoustic stimulation tool comprises: a sealed chamber containing a liquid; a pair of electrodes located in the chamber; at least one transducer arranged to generate an acoustic field between the electrodes thereby inducing cavitation in a volume of the liquid between the electrodes; and at least one capacitor configured to apply a pulse voltage across the electrodes when discharged, thereby causing the cavitating volume of liquid to form a plasma which collapses to form a shockwave. The at least one transducer constitutes a first energy source, and the at least one capacitor back and electrodes constitute a second energy source. Alternative forms and arrangements of the first and second energy sources are also disclosed.
Type:
Grant
Filed:
July 5, 2016
Date of Patent:
January 18, 2022
Assignee:
Global Post Graystone Inc.
Inventors:
Gregory Allen Clark, Ann-Marie Harmon De Clare
Abstract: A microfluidic device comprising at least one isolation unit and at least one capillary valve. The at least one isolation unit has at least one chamber. The at least one chamber configured to receive at least two different aqueous solutions. The at least one capillary valve is configured to allow for the at least two different aqueous solutions to be introduced into the at least one chamber without mixing prior to entering the at least one chamber based at least in part on pressure levels of the at least two different aqueous solutions.
Abstract: Provided is a single-channel chemiluminescent micro-fluidic chip, including a chip body with a quantification-reaction cavity and a waste liquid cavity. The quantification-reaction cavity is composed of a quantification-reaction pool on a lower portion and a reaction pool cover plate, the quantification-reaction pool is equally divided into three cavities by two partition plates, a labeled antibody is placed in the middle cavity, coated antibodies are placed in the others, a surface, facing the quantification-reaction pool, of the reaction pool cover plate is equally divided into two parts. In result, the coated antibodies and the labeled antibodies are physically separated to effectively avoid nonspecific binding. Due to a special structure of the reaction tank, wavy fluid flow is generated to fully mix the coated antibodies and the labeled antibodies, which improves testing efficiency and sensitivity.
Type:
Grant
Filed:
December 6, 2017
Date of Patent:
May 12, 2020
Assignee:
LANSION BIOTECHNOLOGY CO., LTD.
Inventors:
Xingshang Xu, Jeffery Chen, Long Wang, Weiyan Sun, Qilu Wan, Shen Yang
Abstract: A fluid-conduit collector spans across a plurality of collector-inlet interface structures and at least one fluidic diode element. A branch inlet portion of at least one collector-inlet interface structure, in fluid communication with a corresponding fluid-conduit runner portion, provides for receiving exhaust gases from a corresponding separate exhaust port of an intermittent-combustion internal combustion engine. A main inlet portion of the collector-inlet interface structure in fluid communication with an outlet portion thereof defines a portion of the fluid conduit of the collector. The branch inlet portion is in fluid communication with the outlet portion via a collector inlet port that is at least partially bounded by a relatively-sharp-edged junction with the fluid conduit of the collector.
Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
Type:
Grant
Filed:
July 12, 2017
Date of Patent:
July 2, 2019
Assignee:
Emulate, Inc.
Inventors:
Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
Abstract: A flow-management system may comprise a center body impermeable to air. A conical surface of the center body may face forward. A blocking surface of the center body may be coaxial with the conical surface and may comprise an annular recess. An annular ring may be aft of the center body and fluidly coupled with the blocking surface. A tube may encase the center body and annular ring. The annular ring may comprise an air-foil shape to direct a pulse to the blocking surface. The blocking surface may comprise a central peak and a circular ridge separated by the annular recess.
Type:
Grant
Filed:
June 29, 2015
Date of Patent:
December 11, 2018
Assignee:
UNITED TECHNOLOGIES CORPORATION
Inventors:
James D. Hill, Roger F. Blinn, Michael J. Cuozzo
Abstract: Systems, methods, and devices are disclosed for producing substantially uniform droplets. The system includes a fluid reservoir vessel defining a fluid reservoir, a separation membrane at one end of the fluid reservoir, at least one capillary channel at an opposite end of the fluid reservoir, a solution dispenser, and a piezo actuator in contact with a separation membrane. The separation membrane has a thickness greater than about 0.2 mm, and the solution dispenser maintains the fluid reservoir filled with fluid such that the fluid simultaneously contacts the separation membrane and the capillary channel. The solution dispenser maintains the fluid reservoir under pressure to create a fluid stream exiting the capillary. The piezo actuator is in contact with the separation membrane on a side opposite that in contact with the fluid, and the piezo actuator transfers a pressure wave through the fluid in the fluid reservoir to break up the fluid stream into uniform droplets.
Type:
Grant
Filed:
April 13, 2016
Date of Patent:
October 10, 2017
Assignees:
AMASTAN TECHNOLOGIES LLC, UNIVERSITY OF CONNECTICUT
Inventors:
Makhlouf Redjdal, Kamal Hadidi, Gregory Wrobel, Eric Jordan
Abstract: An apparatus for controlling flow of ER fluid. The apparatus has a first channel 10 for conveying carrier fluid 1 of a first dielectric constant and droplets 2 of a second dielectric constant in the carrier fluid. The apparatus further comprises a second channel 20 conveying the ER fluid and a first conductor 100 for conveying an electrical potential from the second channel to the first channel. A circuit 61 is provided for applying potential difference between the first and second channels. When a droplet is present in the first channel, the ER fluid is solidified in the second channel; when no droplet is present, the ER fluid flows as liquid in the second channel. Therefore the apparatus acts as an IF gate. Arrangements for other types of fluidic logic gate are also disclosed.
Type:
Grant
Filed:
March 29, 2010
Date of Patent:
August 22, 2017
Assignee:
The Hong Kong University of Science and Technology
Abstract: In one embodiment, a microfluidic structure comprises a culture chamber having an object flow inlet disposed between a pair of object flow outlets. A flow-around channel provides fluidic mass transport to the culture chamber through a perfusion barrier disposed opposite from the object flow inlet and object flow outlets. The perfusion barrier surrounds the culture chamber, defines an opposite wall of the culture chamber, and prevents cell passage into the flow around-channel. The perfusion barrier creates a low fluidic resistance path within the culture chamber, such that a flow of cells entering the culture chamber from the object flow inlet encounters a flow of media passing through the perfusion barrier. This causes the cells to take an approximately 180 degree turn and exit the culture chamber via the object flow outlets. The low fluidic resistance path allows the cells to settle onto the chamber floor without needing any physical barrier.
Abstract: For eliminating turbulence in a wall bounded flow a section of the flow-bounding wall is moved in the direction of the flow over the flow-bounding wall.
Type:
Grant
Filed:
November 22, 2011
Date of Patent:
February 16, 2016
Assignee:
INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Abstract: A fluid path structure in which the flow rate of fluid flowing in each flow path is equal to each other and in which each flow path has an increased flexibility in shape. The flow path structure has flow paths into which fluid is introduced. The flow paths include flow paths having different flow path lengths. The equivalent diameter of each part of each fluid path is set according to the flow path length of the fluid path so that the entire pressure loss of each flow path is equal to each other.
Type:
Grant
Filed:
January 13, 2009
Date of Patent:
January 26, 2016
Assignee:
Kobe Steel, Ltd.
Inventors:
Koji Noishiki, Tatsuo Yoshida, Seiichi Yamamoto, Kazuto Okada
Abstract: Systems and methods for secondary suctioning for an aerodynamic body are presented. A primary surface is configured along a leading edge of an aerodynamic body, and at least one secondary suction device comprising an elongated shape is configured at least a first distance from the primary surface. A non-suction surface is configured between the primary surface and the at least one secondary suction device.
Type:
Application
Filed:
June 4, 2013
Publication date:
March 26, 2015
Inventors:
Peter L. Rupp, Pradip G. Parikh, Lian L. Ng, Paul M. Vijgen
Abstract: The object of the invention is to provide a lightweight mechanism that changes the distribution of a flow rate of air for combustion supplied into each burner, without providing a mechanical movable part in a passage for high-temperature and high-pressure air for combustion in a combustor having a plurality of burners such as a pilot burner and a main burner. The combustor equipped with an air flow rate distribution control mechanism based on a fluidic element in accordance with the present invention has a plurality of burners such as a main burner and a pilot burner, wherein with the fluidic element being disposed upstream of a passage of air for combustion that is supplied to each burner, and means for sucking out or blowing out air into a control air passage of the fluidic element being provided, the distribution of a flow rate of the air flowing into the burners is controlled by changing a flow direction of the air for combustion.
Abstract: The disclosure relates to a droplet manipulating device and a method for manipulating a droplet. The droplets manipulating device includes a first magnetic field generator, a second magnetic field generator, and a flow channel. The first magnetic field generator produces a first magnetic field on the droplet, so that the droplet has the direction of magnetic field corresponding to the first magnetic field. Further, the second magnetic field generator produces a second magnetic field on the droplet so as to drive the droplet to be in motion in the flow channel.
Type:
Application
Filed:
June 2, 2014
Publication date:
January 29, 2015
Applicant:
INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
Abstract: Apparatus and methods provide for a flow control actuator having a fluid cavity that is shaped to create periodic waveforms within the resulting resonant actuating flow with predetermined characteristics for actuating a high-speed fluid flow. According to various embodiments, a flow control actuator includes a power source for exciting the actuator fluid at a resonant frequency and a cavity shaped according to resonant macrosonic synthesis principles to maximize the exit velocity of the actuating flow at an orifice of the actuator.
Abstract: Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.
Type:
Application
Filed:
June 18, 2014
Publication date:
December 25, 2014
Inventors:
Stewart Sherrit, Mircea Badescu, Xiaoqi Bao, Yoseph Bar-Cohen
Abstract: Electromagnetically active slurries comprising stabilized fluids and methods of using the stabilized, electromagnetically active slurries in fluid flow control and detection. Also, methods, fluids, equipment and/or systems for treating a subterranean formation penetrated by a wellbore, relating to treatment fluids based on the stabilized, electromagnetically active slurries.
Type:
Application
Filed:
May 21, 2013
Publication date:
November 27, 2014
Applicant:
Schlumberger Technology Corporation
Inventors:
Hemant K. J. Ladva, Yiyan Chen, Anthony Loiseau, Dmitriy Ivanovich Potapenko
Abstract: A fluid distribution door for use in a heating, ventilating, and air conditioning system includes a main body having a first surface and a second surface. The first surface and the second surface cooperate to form a first surface configuration which intersects with a second surface configuration. Each of the first surface configuration and the second surface configuration is formed by a three-dimensional feature.
Type:
Application
Filed:
March 14, 2013
Publication date:
September 18, 2014
Applicant:
VISTEON GLOBAL TECHNOLOGIES, INC.
Inventors:
Eric Keith Haupt, Jim Patrick Nolta, Jr., Shankar Patil
Abstract: A device for creating turbulent flow in a fluid including a tank having an inlet, an outlet, and an interior; at least one jet in an inflow assembly in the interior of the tank, the jet being in fluid communication with the inlet, the jet circulating fluid in the tank; a plurality of holes in an outflow assembly in the interior of the tank, the plurality of holes being in fluid communication with the outlet; and a deflector positioned to circulate the bulk of the fluid away from the plurality of holes. Methods of using the device are also provided.
Type:
Application
Filed:
March 10, 2014
Publication date:
September 11, 2014
Applicant:
CREATIVE WATER SOLUTIONS, LLC
Inventors:
Benjamin Joseph Schaffer, Thomas Raymond Schaffer, Richard Thomas Schaffer, David R. Knighton, Vance D. Fiegel
Abstract: A pulse jet liquid gas cleaning system has an ultrasonic transducer operable to transform a high-pressure stream of cryogenic fluid from a cryogenic fluid supply into pulsed jets of individual cryogenic fluid slugs.
Abstract: An apparatus for generating extreme ultra-violet (EUV) light for use in a lithography inspection tool, comprising a drive laser arranged to produce a laser pulse, a vacuum chamber, a set of focusing optics arranged to focus the laser pulse produced by the drive laser onto a target spot within the vacuum chamber with a beam target diameter of less than 100 ?m, a target material generator arranged to deliver an amount of a target material to the target spot within the vacuum chamber, and a set of collector optics arranged to focus a quantity of EUV light generated when the amount of the target material is exposed to the laser pulse at the target spot onto an intermediate focus spot.
Type:
Application
Filed:
February 13, 2014
Publication date:
September 4, 2014
Applicant:
KLA-Tencor Corporation
Inventors:
Alexander Bykanov, Oleg Khodykin, Daniel Christopher Wack
Abstract: The invention relates to a device (1) intended for handling objects (O) present in a channel (2) within a fluid (F), in particular a liquid. The device comprises: a channel (2) extending along a longitudinal axis (X), said channel (2) having a transverse section with a width (_) measured along a first transverse axis (Y) and a thickness measured along a second transverse axis (Z) perpendicular to the first, said width (_) being greater than or equal to the thickness, and said channel comprising first (3) and second (4) walls along the second transverse axis (Z); and an acoustic wave generator (10) generating acoustic waves in the channel from at least one of the walls (3; 4), said acoustic wave generator (10) operating at a frequency f that is different from a resonant frequency f0 of the channel (2) along the second transverse axis (Z).
Type:
Application
Filed:
July 30, 2012
Publication date:
August 21, 2014
Applicant:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Abstract: A water drain accelerating device has a base with a discharge port connected to a flush way assembled inside a water tank. An overflow hole is connected to the discharge port. An overflow pipe is plugged to the base. The bottom of the overflow pipe is connected to the overflow hole. A negative pressure pipe is connected to the overflow pipe. Negative pressure generates inside the overflow pipe when the base is draining. Water inside the water tank flows out of the discharge port when water drains. The water level inside the cavity of the negative pressure pipe falls down with the water level inside the water tank. Negative pressure generates inside the overflow pipe, so air inside the overflow pipe can't enter into the discharge port through the overflow hole. An air pipe extends from the overflow hole to the flush way.
Abstract: The present invention is directed to droplet actuators with local variation in gap height and methods of their use to facilitate droplet splitting and merging operations. The droplet actuators have increased gap-height regions that track droplet transport paths such that droplets can be transported along the paths with reduced risk of merging with droplets on adjacent paths.
Abstract: Provided is an antifouling structure (4) for removing fouling on a surface (1a) of a solar cell (object) (1). The antifouling structure (4) includes a first electrode (5) and a second electrode (6) provided on the surface (1a) of the solar cell (1); a power supply (8) for applying voltage to the first electrode and the second electrode (5, 6); and a water-repellent dielectric layer (7) provided so as to cover at least one of the first electrode and the second electrode (5, 6). Voltage is applied to the first electrode and the second electrode (5, 6) from the power supply (8) such that an angle at which water (polar liquid) (10) present on the water-repellent dielectric layer (7) contacts the water-repellent dielectric layer decreases.
Abstract: An apparatus for estimating a parameter of interest includes a conduit and a reactive media in the conduit. The reactive media interacts with a selected fluid component to control a flow parameter of the conduit. The apparatus also includes at least one sensor responsive to the flow parameter. The apparatus may be used for estimating a water content of a fluid flowing from a subterranean formation. The apparatus may include a flow path configured to convey fluid from the formation. The at least one sensor may be responsive to a pressure change in the flow path caused by interaction of the reactive media with water.
Abstract: Method and device for changing the properties of at least one liquid medium, in which method the liquid medium is exposed in at least one container to vibrations in the low-frequency power ultrasonic range and, to regulate the flow speed of the liquid material in the container in which the liquid medium is present for ultrasonic irradiation and/or to regulate the internal pressure of the container, the cross-section inside a line upstream of an inlet of the container in the direction of flow and/or downstream of an outlet of the container in the direction of flow is varied by means of at least one pinch valve.
Type:
Application
Filed:
July 13, 2012
Publication date:
June 5, 2014
Applicant:
DR. HIELSCHER GMBH
Inventors:
Harald Hielscher, Thomas Hielscher, Holger Hielscher
Abstract: A method of reducing aerodynamic drag on a moving blunt-edged body, the method comprising actively generating a flow of air at a blunt edge of a body and using the generated flow of air to control an external flow of air moving relative to an edge of a moving blunt-body.
Abstract: The present teachings relate to surface tension controlled valves used for handling biological fluids. The valves controlled by optically actuating an electrowetting circuit.
Abstract: Embodiments of magnetorheological systems, devices, and associated methods of control are described below are described herein. In one embodiment, a magnetorheological device includes an magnetorheological fluid, a shaft proximate and mechanically coupled to the magnetorheological fluid, and a magnetic field generator configured to generate a magnetic flux through the magnetorheological fluid along a magnetic flux path. The magnetorheological device also includes a sensor positioned in the magnetic flux path and configured to measure a current value of magnetic inductance of the magnetic flux flowing through the magnetorheological fluid.
Type:
Application
Filed:
May 2, 2012
Publication date:
March 27, 2014
Applicant:
WASHINGTON STATE UNIVERSITY
Inventors:
Hakan Gurocak, Doruk Senkal, Berk Gonenc
Abstract: A plasma processing apparatus includes a baffle ring which separates an internal space of a vacuum chamber into a plasma space and an exhaust space. Plasma is generated in the plasma space by exciting a process gas using an energy source. The process gas is then exhausted out of the plasma space through the plasma baffle ring which surrounds an outer periphery of a substrate support. The plasma baffle ring comprises an inner support ring, an outer support ring, and vertically spaced apart circumferentially overlapping rectangular blades extending between the inner ring and the outer ring. Each blade has a major surface used to block a line of sight from the plasma space to the exhaust space, wherein the major surfaces of the blades are configured to capture nonvolatile by-products, such as plasma etch by-products, before the by-products evacuate the plasma space.
Abstract: The present invention relates to a method of controlling a flow in a micro conduit system, and particularly a micro conduit system comprising one or more capillary-stop valves (6,6?) wherein the stopping ability of the capillary stop valve is overcome with the help of an acoustic wave source.
Abstract: There is disclosed apparatus and processes for increasing fluidity of a flowing fluid. The apparatus may have a number of treatment chambers adapted to receive and pass the flowing fluid. In each treatment chamber a field is applied to the fluid. The fields may be parallel to the fluid's direction of flow, and may alternate in sequence. The fluidity of the fluid is increased through exposure to the fields.
Abstract: Systems and methods are provided facilitating a steaming fluid flow utilizing acoustic waves. A system includes an acoustic wave generator and an acoustic coupler associated with the acoustic wave generator and coupling acoustic waves generated by the acoustic wave generator into a fluid. The acoustic coupler includes one or more acoustic coupling lenses, which direct the acoustic waves into the fluid and facilitate, at least in part, a streaming fluid flow in a common direction. In an enhanced embodiment, the common flow direction is at an angle to a direction acoustic waves are generated, and the acoustic coupling lens(es), in directing the acoustic waves into the fluid, redirects the acoustic waves from the direction of acoustic wave generation. The acoustic wave generator generates the acoustic waves in the megahertz or gigahertz range, for example, with a frequency of 20 MHz or higher.
Abstract: Droplet actuators that include molecular barrier coatings are provided. The molecular barrier coating may be provided atop the conductive layer of the top substrate, atop the droplet operations electrodes of the bottom substrate, or both. Where the conductive layer of the top substrate and/or the droplet operations electrodes of the bottom substrate are formed of an electrically conductive organic polymer, such as poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), the molecular barrier coating helps to immobilize the contents of the PEDOT:PSS layer. Further, the molecular barrier coating reduces, preferably entirely eliminates, moisture from seeping into the electrically conducting organic polymer. Methods of conducting droplet operations using the disclosed droplet actuators are also provided.
Abstract: In a premix supply, for supplying a fuel and oxidizer gas into a combustion chamber for burning, the premix supply having a smaller diameter flow than the combustion chamber, the premix supply comprising at least one dielectric barrier discharge device (DBD) comprising two electrodes separated by a dielectric, improved flame stability limits may be provided for the adjacent combustor by the actuation of the DBD to induce ionic wind. Both electrodes may be provided in a single wall of the premix supply. The two electrodes may be arranged substantially upstream and downstream of each other. The electrodes may be arranged to generate an ionic wind preferentially directed in a direction of flow through the premix supply.
Abstract: Drag experienced by a vehicle traveling through an environmental media, such as air or water, may be modified by one or more energy beams which may increase or decrease drag. Environmental media may be adjusted by microwave, chemical, ultrasonic, acoustic (including subsonic, sonic, or ultrasonic), or electromagnetic energy. One or more energy beams may be directed toward a transition region between turbulent and laminar flow, at the leading edge of a laminar flow, or in the direction of a crosswind.
Abstract: The invention regards a plasma-enhanced active laminar flow actuator system (1) adapted to an aerodynamic surface (3) which has a nano-engineered composite material layer(5) comprising a set of electrodes arranged (7?, 7?) in at least an upper (P1) and a lower (P2) plane extending parallel with the aerodynamic surface (3); the electrodes (7?, 7?) comprising nano filaments (9); the electrodes (7?) of the upper plane (P1) are arranged in the aerodynamic surface (3) such that they define a smooth and hard aerodynamic surface (3);conductors (11, 11?) of nano filaments (9?) arranged for electrical communication between a control unit (13) and each of the electrodes (7?, 7?), wherein the control unit (13) is adapted to address current between cooperating electrodes (7?, 7?) of the upper and lower plane (P1, P2) from a current supply depending upon air flow characteristic signals fed from air flow sensor means (19).
Abstract: Apparatus for treating a fluid in a conduit by the application thereto of radio-frequency electro-magnetic signals, includes a core element of magnetically-permeable material extending around the conduit, and one or more primary coils through which the core element extends and is energized with radio-frequency electrical signals by at least one signal generator; wherein at least one of the primary coils has an extent and/or disposition circumferentially of the core element and the conduit such as to establish an effective magnetic field throughout the core element.
Abstract: A microfluidic dispensing system may include multiple supply lines for simultaneous filling of diaphragm pumps associated with each supply line. Each supply line may fill corresponding groups of diaphragm pumps with a corresponding ingredient to a supply reservoir for the supply line. Accordingly, different groups of diaphragm pumps corresponding to different supply lines may be filled with corresponding ingredients simultaneously. Those ingredients corresponding to the different groups of diaphragm pumps may also be dispensed simultaneously, giving rise to a faster and more efficient fluidic dispensing system.
Abstract: An interface is provided for storing microfluidic samples in a nanoliter sample chip. A fluid access structure provides a fluid access region to a selected subset of sample wells from an array of sample wells. A fluid introduction mechanism introduces a sample fluid to the fluid access region so that the sample wells in the selected subset are populated with the sample fluid without the unselected sample wells being populated with the sample fluid.
Type:
Grant
Filed:
December 23, 2011
Date of Patent:
October 1, 2013
Assignee:
Life Technologies Corporation
Inventors:
Tanya Kanigan, Steve Smith, John Linton, Robert Hess, Karl Yoder, Colin Brennan
Abstract: Provided is a microfluidic device. The microfluidic device includes a sample chamber in which a sample is accommodated. The sample chamber includes: an introduction portion including a loading hole through which the sample is loaded; an accommodation portion including a discharge hole; and a neck portion forming a boundary between the introduction portion and the accommodation portion. The neck portion provides a capillary pressure for controlling flow of the sample between the introduction portion and the accommodation portion.
Abstract: The present invention is directed to modified droplet actuators, fluids and methods for enhancing and/or maintaining oil film stability in a droplet actuator. In an exemplary embodiment, the invention provides a droplet actuator with one or more substrates arranged to form a droplet operations gap comprising gap-facing surfaces; droplet operations electrodes configured to conduct droplet operations in the droplet operations gap; at least one barrier included on at least one of the substrate surfaces and having dimensions selected to: permit droplet transport from atop a first droplet operations electrode to a second droplet operations electrode when the second droplet operations electrode is activated; and prevent movement of a droplet from atop a first droplet operations electrode when the first and second droplet operations electrodes are inactive.
Type:
Application
Filed:
April 19, 2013
Publication date:
September 12, 2013
Applicant:
ADVANCED LIQUID LOGIC INC.
Inventors:
Vijay Srinivasan, Vamsee K. Pamula, Ramakrishna Sista, Prasanna Thwar
Abstract: A fluid cartridge, comprising a channel layer within which at least one circumferentially sealed fluid channel is formed, the channel layer comprising a substrate and an elastic layer fixedly arranged on the substrate, wherein the substrate has a rigidity being greater than that of the elastic layer, and wherein the at least one fluid channel is defined on at least one side thereof by the elastic layer.
Type:
Grant
Filed:
February 29, 2008
Date of Patent:
September 3, 2013
Assignee:
Agency for Science, Technology and Research
Abstract: Methods and apparatus for fluid conditioning to reduce scaling, inactivate microbes, reduce surface tension, maintain fluid composition, and improve pumping are provided for use in treating crude petroleum, industrial water, agricultural water, municipal water supplies, or any fluid flow system and comprise electromagnets of variable control that can be powered or in which a current can be induced by a permanent magnet. Magnetic field direction and intensity can be selected depending on the nature of the fluid and in some embodiments, the field can be varied during operation, including pulsing and variably selecting one or more field directions and intensities, or combinations thereof, during operation. A non-magnetic fluid transfer conduit section has at least one conductor assembly mounted about the section. In one embodiment, the conductor assembly comprises a concentric, tilted double helix coil or multipole coil.
Type:
Application
Filed:
January 24, 2013
Publication date:
August 1, 2013
Applicant:
ENVIRONMENTAL TECHNOLOGIES INTERNATIONAL, INC.
Inventor:
ENVIRONMENTAL TECHNOLOGIES INTERNATIONAL, INC.
Abstract: There is disclosed apparatus and processes for increasing fluidity of a flowing fluid. The apparatus may have a number of treatment chambers adapted to receive and pass the flowing fluid. In each treatment chamber a field is applied to the fluid. The fields may be parallel to the fluid's direction of flow, and may alternate in sequence. The fluidity of the fluid is increased through exposure to the fields.