Contains Trivalent Chromium Ion Or Reducing Agent Or An Organic Additive Patents (Class 148/267)
  • Patent number: 11925988
    Abstract: Methods for reducing a concentration of hexavalent chromium within a first aluminum slurry by adding a reducing agent to form a second aluminum slurry are provided. The reducing agent causes a chemical reduction reaction with the hexavalent chromium compound of the first aluminum slurry to form a trivalent chromium compound within the second aluminum slurry such that a first weight ratio of hexavalent chromium to trivalent chromium in the first aluminum slurry is decreased to a second weight ratio of hexavalent chromium to trivalent chromium in the second aluminum slurry, with the second weight ratio being less than the first weight ratio.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: March 12, 2024
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Mark Alan Rhoads
  • Patent number: 10934629
    Abstract: Provided is a surface-treated steel sheet with a compound layer containing F and composed essentially or Zr at least on one surface thereof, wherein the Zr amount is 80 to 350 mg/m2 and the F amount is 0.5 to 10 mg/m2 within the layer, and an organic resin coated metal container manufactured using the surface-treated steel sheet. The surface-treated steel sheet of the present invention is manufactured through forming a layer having the Zr amount of 80 to 350 mg/m2 at least on one surface of a steel sheet by cathode electrolytic treatment in an aqueous solution containing a Zr ion and F ion, and subsequently adjusting the surface to control the F amount to 0.5 to 10 mg/m2 by one or more treatments selected from immersion and spraying with an ion-containing aqueous solution and cathode electrolytic treatment in the ion-containing aqueous solution.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: March 2, 2021
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Kunihiro Yoshimura, Naomi Taguchi, Satoko Fukutomi, Wataru Kurokawa, Munemitsu Hirotsu, Mitsuhide Aihara, Satoshi Mikami
  • Patent number: 10745791
    Abstract: A method of forming a coating of an Al—Zn—Si—Mg alloy on a steel strip to form an Al—Zn—Mg—Si coated steel strip is disclosed. The method includes the steps of dipping steel strip into a bath of molten Al—Zn—Si—Mg alloy and forming a coating of the alloy on exposed surfaces of the steel strip and cooling the coated strip with cooling water. The cooling step includes controlling the pH of cooling water to be in a range of p H 5-9. Particular embodiments focus on Al—Zn—Si—Mg alloys that contain the following elements in % by weight: Zn: 30 to 60, Si: 0.3 to 3, Mg: 0.3 to 10, and Balance Al and unavoidable impurities.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 18, 2020
    Assignee: Bluescope Steel Limited
    Inventors: Aaron Kiffer Neufeld, Wayne Andrew Renshaw, Geoff Tapsell
  • Patent number: 10392705
    Abstract: Methods for treatment shaped bodies are described herein. The methods generally include contacting at least one shaped body with an aqueous acidic composition to form a conversion layer on a surface of the at least one shaped body, wherein the surface includes iron or steel and a carbon content in a range of 0 to 2.06 wt. % and a chrome content in a range of 0 to <10 wt. % and wherein the surface is optionally galvanized or alloy galvanized. The aqueous acidic composition includes water; from 2 to 500 g/L oxalic acid; and from 0.01 to 20 g/L of at least one catalyst based on guanidine, nitrate or combinations thereof, wherein a pickling removal of the aqueous acidic composition is in a range of 1 to 6 g/m2.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: August 27, 2019
    Assignee: Chemetall GmbH
    Inventors: Benjamin Güttler, Ralf Schneider, Frank Hollmann, Gorka De Luis Garcia, Iñaki Nieves Quintana, Martin Orben, Norbert Schwinke-Kruse
  • Patent number: 9797044
    Abstract: An aqueous acidic composition is provided for forming a chromium-containing chemical conversion coating on a member having an iron-based metal surface. The composition contains a water-soluble trivalent chromium-containing substance, a water-soluble zinc-containing substance, and a water-soluble polyvalent carboxylic acid compound. On the total composition basis, the water-soluble trivalent chromium-containing substance has a content of 60 mmol/L or more in terms of chromium, the water-soluble zinc-containing substance has a molar content in terms of zinc such that a ratio of the content is 0.6 or more to a molar content in terms of chromium of the water-soluble trivalent chromium-containing substance, and the water-soluble polyvalent carboxylic acid compound has a content of 55 mmol/L or more in terms of polyvalent carboxylic acid.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 24, 2017
    Assignee: Yuken Industry Co., Ltd.
    Inventors: Mari Asano, Yuu Endo
  • Patent number: 9157154
    Abstract: A treating solution for forming on a surface of either zinc or a zinc alloy a hexavalent-chromium-free trivalent-chromium chemical conversion coating which has an even black appearance and satisfactory corrosion resistance. The treating solution has a long treating-bath life. Also provided is a method of forming a black trivalent-chromium chemical conversion coating. The aqueous treating solution, which is for forming a black trivalent-chromium chemical conversion coating on zinc or a zinc alloy, contains trivalent chromium ions, a phosphoric ester and/or phosphorous ester, and a sulfur compound. The method is a method of chemically treating zinc or a zinc alloy which comprises using the aqueous treating solution to chemically treat the zinc or zinc alloy at a solution temperature of 10-60° C., whereby a black trivalent-chromium chemical conversion coating is formed on the zinc or zinc alloy.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: October 13, 2015
    Assignee: DIPSOL CHEMICALS CO., LTD.
    Inventor: Manabu Inoue
  • Patent number: 9039845
    Abstract: Aqueous compositions useful as pretreatments prior to painting and to prevent the formation of white rust in the uncoated condition include an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. A method for treating a surface of a zinc-containing metal includes contacting the surface with an aqueous composition including an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. The composition may also include an agent for reducing hydrophilicity, such as a polyacrylic acid. The aqueous composition has been found to be particularly well-suited for treating a zinc-containing metal to passivate the surface, improve paint adhesion, and/or improve corrosion resistance.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Bulk Chemicals, Inc.
    Inventors: Ted M. Schlosser, Edward M. Musingo
  • Patent number: 8999076
    Abstract: In one embodiment, the invention provides a composition useful for passivating a metal surface, in particular a zinciferous surface, comprising, preferably consisting essentially of, most preferably consisting of water and: (A) dissolved phosphate ions; (B) dissolved trivalent chromium ions; (C) dissolved anions of at least one complex fluoride of an element selected from the group consisting of Ti, Zr, Hf, Si, Sn, Al, Ge and B; preferably Ti, Si and/or Zr; (D) an optional component of dissolved free fluoride ions; (E) organic acid inhibitor, preferably comprising quaternary ammonium compounds; and, optionally (F) a pH adjusting component; and optionally organic hydroxyl acids.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 7, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: David R. McCormick, Thomas W. Cape
  • Patent number: 8951363
    Abstract: The invention refers to a process for producing an anticorrosive coating in which a surface to be treated is brought into contact with an aqueous treatment solution containing chromium(III) ions and at least one phosphate compound and an organosol. The corrosive protection of metal surfaces, in particular those containing zinc and zinciferous surfaces with conversion layers is improved. The decorative and functional properties of the surfaces are retained or improved. In addition, the well-known problems associated with the use of compounds containing chromium(VI) or with multi-stage processes are avoided in which a passivation layer containing chromium ions and a sealing are applied one after the other.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: February 10, 2015
    Assignee: Atotech Deutschland GmbH
    Inventors: Udo Hofmann, Hermann Donsbach, Joerg Unger, Volker Krenzel
  • Publication number: 20150020925
    Abstract: A method for surface treatment of a part made of aluminum, magnesium, or one of the alloys thereof, to protect the part from corrosion. The method comprises consecutively immersing the part in a first aqueous bath containing a corrosion-inhibiting metal salt and an oxidizing compound, and a second aqueous bath containing an oxidizing compound and a corrosion-inhibiting rare-earth salt. The method can be carried out for the chemical conversion of aluminum or the alloys thereof, and of magnesium or the alloys thereof, on parts that have not been previously treated, or after anodizing the part to seal the anodic layer.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 22, 2015
    Applicant: MECAPROTEC INDUSTRIES
    Inventors: Pierre Bares, Cedric Stephan, Celine Gazeau
  • Patent number: 8916007
    Abstract: The object of this present invention is to provide novel means for inhibiting elution of hexavalent chromium from a chemical conversion coating. A composition for chemical conversion treatment comprises at least 0.1 g/L of a polyphenol and at least 1.5 g/L in chromium ion equivalent of an aqueous trivalent chromium compound and has a pH of 6 or less. A chemical conversion coating formed on a metallic surface of a member by contacting the surface with the composition for chemical conversion treatment has a hexavalent chromium content of 0.04 ?g/cm2 or less after exposure to an environment having a temperature of 80 degrees C. and a relative humidity of 100% for 120 hours. The content of hexavalent chromium is measured by a method compliant with EN15205. A composition containing at least 0.1 g/L of a polyphenol can be used as a composition for post-coating treatment of a chemical conversion coating obtained by conventional chemical conversion treatment.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: December 23, 2014
    Assignee: Yuken Industry Co., Ltd.
    Inventor: Naruhiko Nojima
  • Patent number: 8828152
    Abstract: A substrate includes an iron-nickel alloy core or a cobalt-nickel ferrous alloy core, a chromium conversion coating on at least a portion of the core, and an insulating coating on the chromium conversion coating. A method of making a substrate includes: providing an iron-nickel alloy core or a cobalt-nickel ferrous alloy core, applying a chromium conversion coating on at least a portion of the core, and applying an insulating coating on the chromium conversion coating.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 9, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Michael J. Pawlik, Kelly L. Mardis, Robin M. Peffer
  • Publication number: 20140130941
    Abstract: An aqueous acidic composition is provided for forming a chromium-containing chemical conversion coating on a member having an iron-based metal surface. The composition contains a water-soluble trivalent chromium-containing substance, a water-soluble zinc-containing substance, and a water-soluble polyvalent carboxylic acid compound. On the total composition basis, the water-soluble trivalent chromium-containing substance has a content of 60 mmol/L or more in terms of chromium, the water-soluble zinc-containing substance has a molar content in terms of zinc such that a ratio of the content is 0.6 or more to a molar content in terms of chromium of the water-soluble trivalent chromium-containing substance, and the water-soluble polyvalent carboxylic acid compound has a content of 55 mmol/L or more in terms of polyvalent carboxylic acid.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 15, 2014
    Applicant: YUKEN INDUSTRY CO., LTD
    Inventors: Mari Asano, Yuu Endo
  • Patent number: 8591670
    Abstract: An acidic, aqueous composition contains a trivalent chromium compound, an organo-functional silane, and a compound of a group IV-B element. The composition protects metal surfaces, preferably aluminum and aluminum alloys, against corrosion and improves their paint adhesion. The trivalent chromium compound may comprise chromium fluoride and optionally others, such as chromium nitrate. The organo-functional silane is preferably an aminopropyltriethoxy silane, and the compound of a group IV-B element is preferably fluorozirconic acid. The composition can either be dried-in-place or rinsed before a further coating layer is applied. The composition may also include at least one polymer having a plurality of both carboxylic functional groups, alone or with hydroxyl groups.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: November 26, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventor: Richard J. Church
  • Patent number: 8460534
    Abstract: The invention relates to a treatment solution for producing substantially chromium(VI) free black conversion layers on alloy layers containing zinc, the solution comprising the following: (i) at least one first carboxylic acid having 1 to 8 carbon atoms, the acid containing no polar groups with exception of the carboxyl group and being a monocarboxylic acid, (ii) at least one second carboxylic acid having 1 to 8 carbon atoms, comprising at least one further polar group that is selected from —OH, —SO3H, —NH2, —NHR, —NR2, —NR3+, and —COOH (wherein R is a C1-C6 alkyl group), (iii) 20 to 400 mmol/l Cr3+ and (iv) 50 to 2000 mmol/l NO3?. The invention further provides a method for the black passivation of surfaces containing zinc, wherein the surface to be treated is immersed into such a treatment solution.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: June 11, 2013
    Assignee: Atotech Deutschland GmbH
    Inventors: Jaroslava Krizova, Vaclav Kriz, Jiri Kloubek, Björn Dingwerth
  • Patent number: 8449695
    Abstract: A method of preparing an aqueous composition of a chromium III compound, comprising adding hydrogen peroxide to a mixture comprising water and a chromium VI compound in the presence of at least one acid according to the formula H2GF6, in which G is a Group IV-B element. The composition may contain less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions, relative to chromium and may test negative for chromium VI using s-diphenylcarbazide. The composition may be used for treating a metal surface, among other applications.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 28, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventor: José B. Rivera
  • Patent number: 8435360
    Abstract: The invention relates to a method for producing a coating layer protecting against corrosion wherein a surface which is to be treated is brought into contact with an aqueous treatment solution containing chromium(III) ions and at least one phosphate compound, wherein the ratio of the molar concentration of the chromium(III) ions to the molar concentration of the at least one phosphate compound (calculated as orthophosphate) lies between 1:1.5 and 1:3. The method improves the corrosion protection of metallic, in particular, zinc-containing, surfaces provided with conversion layers. The decorative and functional properties of the surface are maintained or improved. Furthermore, the known problems resulting from the use of chromium(VI)-containing compounds or from post-treatments with polymer dispersions are avoided.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 7, 2013
    Assignee: Atotech Deutschland GmbH
    Inventors: Björn Dingwerth, Andreas Noack
  • Patent number: 8425692
    Abstract: A composition for forming a protective coating on a metal surface includes water; Cr2(GF6)3 in which G is a Group IV-B element; and at least one polymer having a plurality of carboxylic acid groups and at least one polymer having a plurality of hydroxyl groups, and/or at least one polymer having a plurality of both carboxylic acid and hydroxyl groups; wherein the composition contains less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions relative to chromium. A method of forming a protective coating on a metal surface includes contacting the metal surface with the composition.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 23, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventors: José B. Rivera, Richard J. Church
  • Patent number: 8425693
    Abstract: A method of preparing an aqueous composition of a chromium III compound, comprising adding hydrogen peroxide to a mixture comprising water and a chromium VI compound in the presence of at least one acid according to the formula H2GF6, in which G is a Group IV-B element. The composition may contain less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions, relative to chromium and may test negative for chromium VI using s-diphenylcarbazide. The composition may be used for treating a metal surface, among other applications.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 23, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventor: José B. Rivera
  • Patent number: 8337641
    Abstract: Disclosed is a treatment solution for use in the formation of a black trivalent chromium chemical conversion coating film with uniformly stabilized black wash, luster and corrosive resistance irrespective of the type of the acidic, neutral or alkaline zinc plating bath employed or the presence or absence of nickel eutectoid. Also disclosed is a method of forming the black trivalent chromium chemical conversion coating film. The treatment solution comprises a trivalent chromium ion, a chelating agent capable of forming a water-soluble complex with the trivalent chromium, at least one metal ion selected from the group consisting of a cobalt ion, a nickel ion and an iron ion, and formic acid or a salt thereof as a buffer for hydrogen ion concentration. The treatment solution can be used for forming a black hexavalent chromium-free chemical conversion coating film on zinc or a zinc alloy.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: December 25, 2012
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Tomitaka Yamamoto, Naoki Okabe
  • Patent number: 8273190
    Abstract: A method of preparing an aqueous composition of a chromium III compound, comprising adding hydrogen peroxide to a mixture comprising water and a chromium VI compound in the presence of at least one acid according to the formula H2GF6, in which G is a Group IV-B element. The composition may contain less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions, relative to chromium and may test negative for chromium VI using s-diphenylcarbazide. The composition may be used for treating a metal surface, among other applications.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 25, 2012
    Assignee: Bulk Chemicals, Inc.
    Inventor: Jose B. Rivera
  • Patent number: 8262811
    Abstract: For producing corrosion resistant yellow passivate layers on zinc and zinc alloy surfaces, an aqueous reaction solution is utilized that contains trivalent chromium ions, at least one acid as well as at least one heteroaromatic compound selected from the group comprising nicotinic acid, the salts and derivatives thereof.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: September 11, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Lee Capper, Andreas Noack
  • Patent number: 8231743
    Abstract: Improved compositions and processes for zincating magnesium and magnesium alloy substrates. An aqueous zincating composition having a pH of from about 8 to about 11 and including zinc ions, a complexing agent, fluoride ions and a reducing agent. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including immersing the substrate in the non-electrolytic aqueous zincating composition for a time sufficient to deposit a zincate on the substrate. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including preparing a aqueous non-electrolytic composition comprising zinc ions, a complexing agent, fluoride ions and a pH in the range from about 8 to about 11; adding to the composition an amount of a reducing agent sufficient to improve deposition of zincate on the magnesium or magnesium alloy substrate; and immersing the substrate in a composition for a time sufficient to deposit the zincate on the substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: July 31, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Jacob Grant Wiles, Nayan H. Joshi
  • Publication number: 20120052304
    Abstract: A method for adhesively bonding a metallic substrate and a component together includes treating the metallic substrate to form an oxide layer thereon, treating the oxide layer with a conversion coating solution to form a bond promoter coating on the oxide layer, and depositing an adhesive material on the bond promoter coating to bond the component and the metallic substrate together.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Promila P. Bhaatia, Joseph Parkos
  • Patent number: 8083842
    Abstract: Disclosed is an aqueous solution of a chromium salt, in which the oxalic acid content is 8% by weight or less relative to chromium. In the aqueous solution of the chromium salt, the total organic carbon content is 4% by weight or less relative to chromium. The chromium salt is preferably a chromium chloride, a chromium phosphate, or a chromium nitrate. The chromium chloride preferably contains a basic chromium chloride represented by the composition formula Cr(OH)xCly (wherein 0<x?2, 1?y<3, and x+y=3). The chromium phosphate is preferably one represented by the composition formula Cr(H3?3/nPO4)n (wherein n is a number satisfying 2?n?3). The chromium nitrate is preferably a basic chromium nitrate represented by the composition formula Cr(OH)x(NO3)y (wherein 0<x?2, 1?y<3, and x+y=3).
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 27, 2011
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Hideki Kotaki, Tomohiro Banda, Takashi Hara, Nobuo Takagi
  • Patent number: 8070886
    Abstract: A treatment solution that is used to form a chemical coating of trivalent chromium free of hexavalent chromium having uniform black appearance and good corrosion resistance on the surface of zinc or zinc alloy and that attains prolongation of treatment bath lifetime; and a method of forming a black trivalent chromium chemical coating on the surface of zinc or zinc alloy. There is provided a treatment solution for forming of a black trivalent chromium chemical coating on zinc or zinc alloy, comprising trivalent chromium ions, a chelating agent capable of forming a water-soluble complex with trivalent chromium, zinc ions, a sulfur compound and phosphite ions.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: December 6, 2011
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Manabu Inoue, Satoshi Yuasa
  • Publication number: 20110168299
    Abstract: In a method for manufacturing an aqueous solution containing a source of chromium (III) according to the present invention, an aqueous solution containing trivalent chromium is added to an aqueous solution of an inorganic alkali under the condition of a reaction liquid temperature of 0° C. or more and less than 50° C., so that the amount of the trivalent chromium is not locally excessive with respect to the amount of the alkali, to produce chromium hydroxide, and then the chromium hydroxide is dissolved in an aqueous solution of an acid to obtain an aqueous solution containing a source of chromium (III). Preferably, after production of the chromium hydroxide, filtration is performed, and the chromium hydroxide is washed with water until the conductivity of the filtrate is 5 mS/cm or less.
    Type: Application
    Filed: August 24, 2009
    Publication date: July 14, 2011
    Applicant: NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Shigeo Hoshino, Ryokichi Shimpo, Yasuyuki Tanaka
  • Publication number: 20110132498
    Abstract: A chemical conversion treatment solution comprising, based on the total composition, 0.1 g/L to 3.0 g/L of an aqueous cobalt-containing substance in cobalt equivalent, 0.05 g/L to 3.0 g/L of a pyrogallol compound in pyrogallol equivalent, and at least 1.5 g/L of an aqueous trivalent chromium-containing substance in chromium equivalent, the composition being acidic and the ratio of the content of the pyrogallol compound in pyrogallol equivalent to the content of the aqueous cobalt-containing substance in cobalt equivalent being 0.015 to 10, wherein a chemical conversion film formed on the metallic surface of a member by contacting the metallic surface with the composition for chemical conversion treatment has a content of hexavalent chromium of 0.050 ?g/cm2 or less as measured by a method compliant with EN15205 after exposure to an environment having a temperature of 80° C. and a relative humidity of 100% for 72. hours.
    Type: Application
    Filed: January 29, 2010
    Publication date: June 9, 2011
    Applicant: YUKEN INDUSTRY CO., LTD.
    Inventors: Naruhiko Nojima, Shusaku Ishikawa, Tomoko Ishikawa
  • Publication number: 20110100513
    Abstract: Aqueous compositions useful as pretreatments prior to painting and to prevent the formation of white rust in the uncoated condition include an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. A method for treating a surface of a zinc-containing metal includes contacting the surface with an aqueous composition including an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. The composition may also include an agent for reducing hydrophilicity, such as a polyacrylic acid. The aqueous composition has been found to be particularly well-suited for treating a zinc-containing metal to passivate the surface, improve paint adhesion, and/or improve corrosion resistance.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 5, 2011
    Applicant: Bulk Chemicals, Inc.
    Inventors: Ted M. Schlosser, Edward M. Musingo
  • Patent number: 7914627
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises: trivalent chromium and oxalic acid in a molar ratio ranging from 0.5/1 to 1.5/1, wherein the trivalent chromium is present in the form of water-soluble complex with oxalic acid; and cobalt ions, which do not form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation; wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 29, 2011
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 7811391
    Abstract: This invention comprises an acidic aqueous solution for treating metal substrates to improve the adhesion bonding and corrosion protection of the metal surface which comprises effective amounts of water soluble trivalent chromium compounds, fluorozirconates, effective amounts of at least one corrosion inhibitors such as benzotriazole, fluorometallic compounds, zinc compounds, thickeners, surfactants, and at least about 0.001 mole per liter of the acidic solution of a polyhydroxy and/or carboxylic compound as a stabilizing agent for the aqueous solution.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 12, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig A. Matzdorf, William C. Nickerson, Jr.
  • Publication number: 20100230009
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises: trivalent chromium and oxalic acid in a molar ratio ranging from 0.5/1 to 1.5/1, wherein the trivalent chromium is present in the form of water-soluble complex with oxalic acid; and cobalt ions, which do not form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation; wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 16, 2010
    Applicant: DIPSOL CHEMICALS CO., LTD.
    Inventors: Katsuhide OSHIMA, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 7745008
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises: trivalent chromium and oxalic acid in a molar ratio ranging from 0.5/1 to 1.5/1, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which do not form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation; wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 29, 2010
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 7641721
    Abstract: Disclosed is an aqueous solution of a chromium salt, in which the oxalic acid content is 8% by weight or less relative to chromium. In the aqueous solution of the chromium salt, the total organic carbon content is 4% by weight or less relative to chromium. The chromium salt is preferably a chromium chloride, a chromium phosphate, or a chromium nitrate. The chromium chloride preferably contains a basic chromium chloride represented by the composition formula Cr(OH)xCly (wherein 0<x?2, 1?y<3, and x+y=3). The chromium phosphate is preferably one represented by the composition formula Cr(H3-3/nPO4)n (wherein n is a number satisfying 2?n?3). The chromium nitrate is preferably a basic chromium nitrate represented by the composition formula Cr(OH)x(NO3)y (wherein 0<x?2, 1?y<3, and x+y=3).
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: January 5, 2010
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Hideki Kotaki, Tomohiro Banda, Takashi Hara, Nobuo Takagi
  • Publication number: 20090242081
    Abstract: An aqueous conversion coating composition for treating metal substrates such as aluminum, aluminum alloys, zinc, zinc alloys, magnesium, magnesium alloys and steel to provide a conversion coating thereon. The conversion coating composition comprises a) a source of aluminum ions; b) a fluoro compound; c) at least one pH adjuster; d) a source of Group VIB metal ions selected from the group consisting of tungstate ions and trivalent chromium ions; and e) optionally, a preservative. The conversion coating composition provides a corrosion resistant coating on the metal surface and improves the adhesion of subsequently applied layers.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Inventors: Richard Bauer, Michael Malik
  • Publication number: 20090032146
    Abstract: For producing corrosion resistant yellow passivate layers on zinc and zinc alloy surfaces, an aqueous reaction solution is utilized that contains trivalent chromium ions, at least one acid as well as at least one heteroaromatic compound selected from the group comprising nicotinic acid, the salts and derivatives thereof.
    Type: Application
    Filed: January 23, 2007
    Publication date: February 5, 2009
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Lee Capper, Andreas Noack
  • Publication number: 20090014094
    Abstract: The present invention is directed to trivalent chromate conversion coatings for plated metals, and more particularly, to methods for reducing hexavalent chromium in trivalent chromate conversion coatings. In one embodiment, such method includes placing a metal article having a trivalent chromate conversion coating in a reducing solution. The trivalent chromate conversion coating includes hexavalent chromium and the reducing solution including a reducing agent, which reduces the hexavalent chromium so as to reduce or eliminate the hexavalent chromium on the plated metal article.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 15, 2009
    Inventors: Joseph Kuezynski, Kevin A. Splittstoesser, Timothy J. Tofil, Paul A. Vermilyea
  • Publication number: 20080210341
    Abstract: Disclosed is a treatment solution for use in the formation of a black trivalent chromium chemical conversion coating film with uniformly stabilized black wash, luster and corrosive resistance irrespective of the type of the acidic, neutral or alkaline zinc plating bath employed or the presence or absence of nickel eutectoid. Also disclosed is a method of forming the black trivalent chromium chemical conversion coating film. The treatment solution comprises a trivalent chromium ion, a chelating agent capable of forming a water-soluble complex with the trivalent chromium, at least one metal ion selected from the group consisting of a cobalt ion, a nickel ion and an iron ion, and formic acid or a salt thereof as a buffer for hydrogen ion concentration. The treatment solution can be used for forming a black hexavalent chromium-free chemical conversion coating film on zinc or a zinc alloy.
    Type: Application
    Filed: April 4, 2008
    Publication date: September 4, 2008
    Applicant: DIPSOL CHEMICALS CO. LTD.
    Inventors: Tomitaka Yamamoto, Naoki Okabe
  • Patent number: 7153348
    Abstract: A hexavalent chromium-free surface treating agent for Sn- or Al-based coated steel sheet, comprising a trivalent chromium compound (A), a water-dispersible silica (B), a lubricity imparting component (C) made of one or more waxes of polyolefin wax, fluorine-containing wax and paraffin wax, and water, a mass ratio on the solid content basis of the water-dispersible silica (B) to the lubricity imparting component (C), (B)/(C), being within a range from 5/95 to 95/5.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: December 26, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Teruaki Izaki, Masahiro Fuda, Mitsuru Nakamura, Katsuyuki Kawakami, Kensuke Mizuno
  • Patent number: 7029541
    Abstract: In a preferred embodiment of the present invention, a conversion coating composition comprising chromium (III) ions, cobalt (II) ions, and nitric acid is provided. The coating composition is substantially free of chromium (VI) ions and substantially free of an oxidizing agent. The present trivalent chromium based conversion coating provides corrosion protection equal to or greater than most hexavalent chromium conversion coatings.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: April 18, 2006
    Assignee: Pavco, Inc.
    Inventors: Leonard L. Diaddario, Jr., Michael Marzano
  • Patent number: 7018486
    Abstract: An acidic aqueous solution containing a water soluble trivalent chromium compound is provided with a additive for improving corrosion resistance and reducing precipitation of trivalent chromium over time. A suitable additive is nitrilotris (methylene) triphosphonic acid (NTMP).
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: March 28, 2006
    Assignee: United Technologies Corporation
    Inventor: Promila Bhatia
  • Patent number: 6946201
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 20, 2005
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6887321
    Abstract: A metal substrate is anodized in a phosphoric acid anodizing solution. The anodized metal substrate is thereafter contacted with a hexavalent chromium free, trivalent chromium containing acid solution to coat the anodized metal substrate. The coated anodized metal substrate can be adhesively bonded to another such treated metal substrate to form a composite article. The resulting article exhibits excellent bonding and corrosion properties.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: May 3, 2005
    Assignee: United Technologies Corporation
    Inventors: Joseph J. Parkos, Jr., Gary M. Lomasney, John W. Putnam, Mark R. Jaworowski
  • Patent number: 6858098
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises: trivalent chromium and oxalic acid in a molar ratio ranging from 0.5/1 to 1.5/1, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which do not form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation; wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: February 22, 2005
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 6719852
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises a silicon compound; trivalent chromium and oxalic acid in a molar ratio ranging from 0.5 to 1.5, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation, wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating. This solution can provide a corrosion resistant trivalent chromate conversion film excellent in the corrosion resistance after heating.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 6677053
    Abstract: A surface-treated steel sheet includes a steel sheet, an Al—Zn-base alloy plating layer formed on the steel sheet, a chemical conversion film provided on the alloy plating layer, and a concentric layer of a Cr compound that is formed on the alloy plating layer of the chemical conversion film. The surface-treated steel sheet may include a steel sheet, an zinc-base plating layer formed on the steel sheet, and a film that contains chromium and calcium and that is formed on the zinc-base plating layer.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: January 13, 2004
    Assignee: NKK Corporation
    Inventors: Takafumi Yamaji, Kenji Morita, Akira Matsuzaki, Masaaki Yamashita, Etsuo Hamada
  • Patent number: 6669764
    Abstract: Pretreated aluminum and aluminum alloys and the process and composition for pretreating said aluminum and its alloys to provide a coating with color recognition for identification purposes and to improved the corrosion-resistance, electrical conductivity, and adhesion properties which comprises pretreating said aluminum and its alloys with an effective amount of an acidic aqueous solution having a pH ranging from about 2.5 to 5.5 comprising water soluble trivalent chromium compounds, alkali metal hexafluorozirconates, divalent zinc compounds, alkali metal fluoro-compounds, and effective amounts of water soluble thickeners, surfactants or wetting agents.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: December 30, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig A. Matzdorf, William C. Nickerson, Jr.
  • Publication number: 20030230215
    Abstract: Pretreated aluminum and aluminum alloys and the process and composition for pretreating said aluminum and its alloys to provide a coating with color recognition for identification purposes and to improved the corrosion-resistance, electrical conductivity, and adhesion properties which comprises pretreating said aluminum and its alloys with an effective amount of an acidic aqueous solution having a pH ranging from about 2.5 to 5.5 comprising water soluble trivalent chromium compounds, alkali metal hexafluorozirconates, divalent zinc compounds, alkali metal fluoro-compounds, and effective amounts of water soluble thickeners, surfactants or wetting agents.
    Type: Application
    Filed: January 23, 2003
    Publication date: December 18, 2003
    Inventors: Craig A. Matzdorf, William C. Nickerson
  • Patent number: 6663700
    Abstract: Aqueous compositions for post-treating metal coated substrates such as cadmium-plated steel, and zinc-nickel coated substrates and the process for using said compositions to provide a color recognizable coating and to improve the corrosion-resistance, abrasion, electrical, and adhesion properties of the coating. The post-treatment composition comprises an acidic aqueous solution having a pH ranging from about 2.5 to 5.5 and contains effective amounts of trivalent chromium compounds, alkali metal hexafluorozirconates, at least one divalent zinc compound, alkali metal fluoro-compounds, and effective amounts of water soluble thickeners, wetting agents or surfactants.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: December 16, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig A. Matzdorf, William C. Nickerson, Jr.
  • Patent number: 6656294
    Abstract: It is an object of the present invention to provide a processing method for preventing elution of lead in a lead-containing copper alloy to prevent lead from eluting from a faucet metal, etc. made of a lead-containing copper alloy, and a drinking water service fitting made of a lead-containing copper alloy in which elution of lead has been prevented. By forming a chromate film on the surface of a lead-containing copper alloy material, it is possible to reduce elution of the lead left in a limited amount on the surface. A drinking water service fitting made of a lead-containing copper alloy is immersed in an alkaline etching solution in a pre-processing step for a nickel chromium plating step to selectively remove lead on the surface of the lead-containing copper alloy material and is then activated in a solution such as sulfuric acid and hydrochloric acid.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 2, 2003
    Assignee: Toto Ltd.
    Inventors: Masashi Kawamoto, Akira Gotou, Mituo Imamoto