Contains An Atom Of Arsenic Or Metal Atom Other Than Alkali Metal Patents (Class 148/273)
  • Patent number: 10487413
    Abstract: A method of treating a surface of an aluminum busbar includes pre-conditioning the surface of the busbar, anodizing one portion of the surface of the busbar, and plating another portion of the surface of the busbar with at least one metal. A fixture used to secure a busbar for a treatment process is also disclosed.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 26, 2019
    Assignee: SCHNEIDER ELECTRIC IT CORPORATION
    Inventors: Kristian Silberbauer, Claus Aabjerg Andersen
  • Patent number: 10005912
    Abstract: An inorganic chromium-free metal surface treatment agent contains a compound X containing a metal X1, ionic species of which containing the metal X1 become cations in an aqueous solution, and a compound Y containing a metal Y1, ionic species of which containing the metal Y1 become anions in an aqueous solution, a total content of the compound X being from 0.01 to 10% by mass, a total content of the compound Y being from 0.01 to 10% by mass, a molar ratio of the metal X1 in the cation and the metal Y1 in the anion being from 0.1 to 5, the metal X1 being at least one member selected from the group consisting of Ti, Zr and Al, the metal Y1 being at least one member selected from the group consisting of Ti, Zr, Si, B and Al, and the metal surface treatment agent containing substantially no organic resin.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 26, 2018
    Assignee: Chemetall GmbH
    Inventors: Yusuke Miura, Toshiaki Shimakura
  • Patent number: 10000858
    Abstract: To provide a bath for surface treatment capable of forming a surface-treating film having excellent corrosion resistance by a high-speed electrolytic treatment, and a method of producing a surface-treated steel plate having excellent corrosion resistance and closely adhering property to the coating maintaining good productivity. A bath for surface treatment used for forming a surface-treating film on the surface of a steel plate by cathodic electrolysis, the bath for surface treatment containing Zr and/or Ti, and a polycarboxylic acid.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: June 19, 2018
    Assignees: TOYO SEIKAN GROUP HOLDINGS, LTD., NIPPON PAINT SURF CHEMICALS CO., LTD., TOYO KOHAN CO., LTD.
    Inventors: Wataru Kurokawa, Seitaro Kanazawa, Shinichi Taya, Kunihiro Yoshimura, Naomi Iida, Miwa Iida, Masahiko Matsukawa
  • Patent number: 9976927
    Abstract: A method for checking a connection seal between two elements of a part, includes dipping the part to be checked in a penetrant having a compound suitable for reacting to light excitation; cutting the part at the connection to be checked; and checking for the presence of penetrant under a light capable of exciting the penetrant.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: May 22, 2018
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Joël Yvan Marcel Robert Berton, Pascal Cendrier
  • Patent number: 9573162
    Abstract: A method of improving corrosion resistance of a metal substrate comprising a zinc surface coated with zirconium oxide conversion coating by, prior to conversion coating, contacting the zinc surface with a composition comprising: a) iron(III) ions, b) a source of hydroxide ion; c) at least one complexing agent selected from organic compounds which have at least one functional group —COOX, wherein X represents either a H or an alkali and/or alkaline earth metal; d) 0.0 to about 4 g/l cobalt (II) ions; and optionally e) a source of silicate: wherein the composition has a pH of at least 10.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 21, 2017
    Assignee: Henkel AG & Co., KGaA
    Inventors: Edis Kapic, Bruce H. Goodreau, Alvaro Bobadilla, Michael Febbraro
  • Patent number: 9039821
    Abstract: The present invention relates to methods and compositions for coating aluminum substrates. In an embodiment, the invention includes a method of applying a coating on an aluminum substrate including contacting the aluminum substrate with a first solution. The first solution can include a zinc metal salt, a sugar acid or alkali metal salt thereof, and an alkali metal hydroxide. The method can also include contacting the aluminum substrate with a second solution. The second solution can include a molybdate salt, an alkanolamine, and a fluorine acid. Other embodiments are also included herein.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: May 26, 2015
    Assignee: BIRCHWOOD LABORATORIES LLC
    Inventors: William V. Block, David J. Halverson, John T. Nguyen
  • Patent number: 8956734
    Abstract: Provided is a black resin steel plate having superior drawing ability and glossiness and particularly to a black resin steel plate in which the coefficient of friction of a black resin film is adjusted so as to block the transfer of a resin layer due to a reduction in thickness of the resin layer, thereby improving blackness and drawing ability, and to a method of manufacturing the same.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 17, 2015
    Assignee: Posco
    Inventors: Yon Kyun Song, Chang Hoon Choi, Yeon Ho Kim, Jae Dong Cho
  • Publication number: 20150024222
    Abstract: A process for passivation of strip steel plate, having the following steps: electrochemical treatment of the black plate by passing the black plate through an electrolyte to form an inert steel surface; rinsing the black plate; and application of an aqueous chromium-free treatment solution to at least one surface of the black plate to form a conversion layer that protects against corrosion and an adhesion layer for paints and organic coating materials. The black plate treated in accordance with this process is characterized by high corrosion resistance and has good bonding capacity for paints and organic coatings and therefore is very suitable as a substitute for tin-free steel (TFS or ECCS) and tinplate for the production of packagings, in particular cans. In contrast to the traditional manufacturing and passivation processes for tin-free steel and tinplate, no chromium VI, which is environmentally hazardous and hazardous to health, is used in this process.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Reiner SAUER, Andrea MARMANN, Helmut OBERHOFFER, Tatjana KASDORF, Gerhard MENZEL, Dirk MATUSCH, Rainer GOERTZ
  • Publication number: 20150024137
    Abstract: An apparatus and method for the application of an aqueous treatment solution onto the surface of a steel strip that is moved, at a prespecified strip speed, in a direction of movement of the strip, with the following steps: drying of the moving steel strip with a gas flow; application of the aqueous solution on at least one surface of the steel strip with a rotary sprayer with several spray rotors that are situated next to one another, transverse to the direction of movement of the strip, to which the aqueous treatment solution is supplied and which are rotated by a drive, so as to spray the treatment solution, as a result of centrifugal force, in the form of a spray jet, onto the surface of the steel strip and, there, to form a wet film of the aqueous treatment solution; equalization of the applied wet film of the aqueous treatment solution by driven smoothing rollers; and drying of the applied wet film of the aqueous treatment solution.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Inventors: Andrea Marmann, Michael Wild, Paul Michels
  • Publication number: 20150020925
    Abstract: A method for surface treatment of a part made of aluminum, magnesium, or one of the alloys thereof, to protect the part from corrosion. The method comprises consecutively immersing the part in a first aqueous bath containing a corrosion-inhibiting metal salt and an oxidizing compound, and a second aqueous bath containing an oxidizing compound and a corrosion-inhibiting rare-earth salt. The method can be carried out for the chemical conversion of aluminum or the alloys thereof, and of magnesium or the alloys thereof, on parts that have not been previously treated, or after anodizing the part to seal the anodic layer.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 22, 2015
    Applicant: MECAPROTEC INDUSTRIES
    Inventors: Pierre Bares, Cedric Stephan, Celine Gazeau
  • Publication number: 20130244053
    Abstract: Provided is a black resin steel plate having superior drawing ability and glossiness and particularly to a black resin steel plate in which the coefficient of friction of a black resin film is adjusted so as to block the transfer of a resin layer due to a reduction in thickness of the resin layer, thereby improving blackness and drawing ability, and to a method of manufacturing the same.
    Type: Application
    Filed: November 4, 2011
    Publication date: September 19, 2013
    Applicant: POSCO
    Inventors: Yon Kyun Song, Chang Hoon Choi, Yeon Ho Kim, Jae Dong Cho
  • Patent number: 8414711
    Abstract: A workpiece including aluminum or an aluminum alloy on a surface thereof is subjected to surface treatment including the steps of immersing in an acidic or alkaline aluminum oxide film-removing solution containing a salt or oxide of a metal capable of substitution with aluminum and forming a substituted metal layer and contained in the removing solution on a surface of the aluminum or aluminum alloy while removing an aluminum oxide film on aluminum or aluminum alloy surface, forming a substituted zinc film by zinc substitution treatment without removing the substituted metal layer, removing the substituted metal layer and substituted zinc film with an oxidizing liquid, and subjecting again to zinc substitution treatment, forming a substituted zinc film.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 9, 2013
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Hiroki Uchida, Kazuki Yoshikawa, Toshiaki Shibata
  • Publication number: 20120024428
    Abstract: Provided is a chromium-free chemical conversion treatment technique that makes it possible to form a conversion layer excellent in corrosion resistance and appearance without using fluorine and hydrogen peroxide. The chemical conversion treatment liquid is for forming a conversion layer on zinc or zinc alloy and free of chromium, hydrogen peroxide and fluorine, includes 0.5 g/L to 38 g/L of magnesium, 0.5 g/L to 3.5 g/L of silicon, and 0.36 g/L or more of nitrate ion, contains the silicon as a water-soluble silicate, optionally further includes cobalt at a concentration of 5 g/L or less, and has an aluminum content of 0.08 g/L or less.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicants: MORIMURA BROS., INC., MURATA CO., LTD.
    Inventors: Yusuke OHTANI, Megumi Sugioka, Takashi Hasegawa
  • Publication number: 20110094631
    Abstract: Improved compositions and processes for zincating magnesium and magnesium alloy substrates. An aqueous zincating composition having a pH of from about 8 to about 11 and including zinc ions, a complexing agent, fluoride ions and a reducing agent. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including immersing the substrate in the non-electrolytic aqueous zincating composition for a time sufficient to deposit a zincate on the substrate. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including preparing a aqueous non-electrolytic composition comprising zinc ions, a complexing agent, fluoride ions and a pH in the range from about 8 to about 11; adding to the composition an amount of a reducing agent sufficient to improve deposition of zincate on the magnesium or magnesium alloy substrate; and immersing the substrate in a composition for a time sufficient to deposit the zincate on the substrate.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 28, 2011
    Inventors: Jacob Grant Wiles, Nayan H. Joshi
  • Patent number: 7819989
    Abstract: A composition for surface treatment of aluminium, aluminum alloys, magnesium or magnesium alloys and the treating solutions being diluted to the desired concentration are defined. The composition contains (1) compound A containing at least one metal element selected from the group consisting of Hf(IV), Ti(IV) and Zr(IV), (2) a fluorine-containing compound of sufficient amount to make fluorine exist in the composition in an amount of at least 5 times the molarity of the total molarity of the metal contained in the above-mentioned compound A, (3) at least one metal ion B selected from the group of alkaline earth metals, (4) at least one metal ion C selected from the group consisting of Al, Zn, Mg, Mn and Cu, and (5) nitric ion and the mol concentration of compound A is 0.1-50 mmol/L as the metal element of Hf(IV), Ti(IV) and Zr(IV). A metal treated with the treating method of the present invention solution has an excellent resistance to various corrosive environments.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: October 26, 2010
    Assignees: Nihon Parkerizing Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Ishikura, Michiro Kurosawa, Takaomi Nakayama, Hiroyuki Sato, Tadashi Matsushita, Eisaku Okada, Fumiya Yoshida, Katsuhiro Shiota
  • Patent number: 7468108
    Abstract: A capacitor electrode forming method includes chemisorbing a layer of at least one metal precursor at least one monolayer thick on a substrate, the layer including non-metal components from the precursor. The chemisorbed layer can be treated with an oxidant and the non-metal components removed to form a treated layer of metal. A capacitor electrode can be formed including the treated layer and, optionally, additional treated layers. Preferably, treating the layer does not substantially oxidize the metal and the treated layers exhibit the property of inhibiting oxygen diffusion. The chemisorbing and the treating can be performed at a temperature below about 450° C. or preferably below about 350° C.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: December 23, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 7452427
    Abstract: A conversion coating composition for coating a metal substrate is provided which imparts corrosion resistance to the underlying metal substrate. The conversion coating composition comprises an aqueous carrier and first and second rare earth element salts. A complete coating system employing the conversion coating composition is also provided as well as methods for conversion coating a metal substrate with the rare earth element conversion coating compositions of the present invention.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 18, 2008
    Assignee: Deft, Inc.
    Inventor: Eric L. Morris
  • Patent number: 7311786
    Abstract: A method for passivating sulfidic iron-containing rock comprising: contacting sulfidic iron-containing rock with a magnesium-containing substance, a manganese-containing substance, and a calcium-containing substance; and adjusting the pH of the system to below about 11, is provided. The method can be used to prevent acid rock drainage of metal-bearing rocks or to produce a pretreated ore or rock which can be contacted with a lixiviating agent to extract metals from the pretreated ore or rock.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: December 25, 2007
    Assignee: University and Community College System of Nevada on Behalf of The University of Nevada, Reno
    Inventors: Maurice C. Fuerstenau, Manoranjan Misra, Stefan Beck
  • Patent number: 7294211
    Abstract: Conversion coatings based on cobalt are described for substrate metals such as aluminum, zinc, magnesium, titanium, cadmium, silver, copper, tin, lead, cobalt, zirconium, beryllium, or indium, their alloys, or items coated with these metals. The conversion coating contains a trivalent or tetravalent cobalt/valence stabilizer complex. The coating bath may also contain a preparative agent or solubility control agent. The oxidized cobalt is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. Cobalt/valence stabilizer combinations are chosen based on the well-founded principles of cobalt coordination chemistry. A number of cobalt/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: November 13, 2007
    Assignee: University of Dayton
    Inventors: Jeffrey Allen Sturgill, Andrew Wells Phelps, Joseph Thomas Swartzbaugh
  • Patent number: 7235142
    Abstract: Rinsing or sealing solutions based on cobalt are described for barrier films such as anodic coatings, phosphate coatings, or “black oxide” coatings. The treated films contain a trivalent or tetravalent cobalt/valence stabilizer complex. The rinsing or sealing bath may also contain an optional preparative agent or an optional solubility control agent. The oxidized cobalt is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. Cobalt/valence stabilizer combinations are chosen based on the well-founded principles of cobalt coordination chemistry. A number of cobalt/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: June 26, 2007
    Assignee: University of Dayton
    Inventors: Jeffrey Allen Sturgill, Andrew Wells Phelps, Joseph Thomas Swartzbaugh
  • Patent number: 7105065
    Abstract: A capacitor electrode forming method includes chemisorbing a layer of at least one metal precursor at least one monolayer thick on a substrate, the layer including non-metal components from the precursor. The chemisorbed layer can be treated with an oxidant and the non-metal components removed to form a treated layer of metal. A capacitor electrode can be formed including the treated layer and, optionally, additional treated layers. Preferably, treating the layer does not substantially oxidize the metal and the treated layers exhibit the property of inhibiting oxygen diffusion. The chemisorbing and the treating can be performed at a temperature below about 450° C. or preferably below about 350° C.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 7048807
    Abstract: A cerium-based coating for corrosion resistance is applied by exposing a cleaned aluminum-based component to a corrosion-inhibiting cerium solution containing cerium ions in the presence of an oxidizing agent. The coating deposits spontaneously without an external source of electrons.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: May 23, 2006
    Assignee: The Curators of the University of Missouri
    Inventors: James O. Stoffer, Thomas J. O'Keefe, Matthew O'Keefe, Eric L. Morris, Scott Hayes, Paul Yu, Alex Williams, Berny F. Rivera Vasquez, Xuan Lin
  • Patent number: 7045024
    Abstract: A method employing oxide film conversion coatings prepared using ferrate (VI) as the oxidizing agent is disclosed. Metal substrates or surfaces, such as aluminum, aluminum alloys or other metals, are contacted with an aqueous solution comprising ferrate (VI) anions to form a corrosion resistant conversion coating on the surface thereof. The ferrate anion concentration is preferably between about 0.0166% and about 1.66% by weight. The coating process is carried out by dipping, spraying, or painting at temperatures ranging from 25° C. to 100° C. for a period of time ranging from about 1 second to about 5 minutes.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: May 16, 2006
    Assignee: Lynntech Coatings, Ltd.
    Inventors: Zoran Minevski, Jason Maxey, Carl Nelson, Cahit Eylem
  • Patent number: 7030183
    Abstract: A plating solution containing zinc, an electrically conductive salt, an adsorbent, and at least one of mono- to hexavalent metal ions. A treatment using either a solution which contains, all per liter, 2–60 g Zn, 40–300 g caustic alkali, 0.01–50 g adsorbent, 0.002–10 g Fe, 0.002–10 g Co, 0.05–30 g Mn, 0.001–2 g Cu, 0.005–10 g Ni, 0.002–3 g of at least one chosen from among Mo, W, V, Ti, Al, Ca, Ba, and Sn, and 0.01–30 g aliphatic amine or aliphatic amine polymer or a solution which contains, all per liter, 2–40 g Zn, 40–170 g caustic alkali, 0.01–50 g adsorbent, either 0.001–3 g Fe and 0.001–3 g Co or 0.005–5 g Fe and 0.005–5 g Ni, and 0.01–30 g aliphatic amine or aliphatic amine polymer.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 18, 2006
    Assignee: Nihon Hyomen Kagaku Kabushiki Kaisha
    Inventors: Masaaki Yamamuro, Mitsuomi Katori
  • Patent number: 7008606
    Abstract: A method is provided for passivating sulfidic iron-containing rock comprising contacting sulfidic iron-containing rock with one or more members of the group consisting of magnesium oxide, magnesium hydroxide, magnesium chloride, magnesium nitrate and magnesium carbonate, thereby reducing the acid generation potential of rock.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: March 7, 2006
    Assignee: The Board of Regents of the University and Community College System of Nevada
    Inventors: Manoranjan Misra, Rajendra Mehta, Songyuan Chen
  • Patent number: 6991688
    Abstract: A method for forming a zinc oxalate coating on the surface of a strip or sheet of metal covered with a zinc or zinc alloy coating other than zinc/iron coatings, with the aid of an aqueous solution consisting of oxalic acid having a concentration of between 5.10?3 and 0.1 mole/l, and at least one compound and/or ion of an oxidant zinc metal having a concentration of between 10?6 and 10?2 mole/l, and possibly a wetting agent. The inventive method enables sheet metal to be treated at very high speeds without using large amounts of oxidant. It facilitates management of treatment baths. The invention can be used in the lubrication of sheet metal, especially for die stamping.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: January 31, 2006
    Assignee: Usinor
    Inventors: Jacques Petitjean, Geneviève Klam
  • Patent number: 6951691
    Abstract: This invention relates to a surface treatment method comprising the steps of providing a treating solution containing a specific ammonium compound or aqueous ammonia, and magnesium silicofluoride, heating the treating solution to a temperature of 70 to 100° C., and soaking aluminum or an aluminum alloy in the treating solution; a piston having a surface coated with a film consisting of a mixture of NH4MgAlF6 and MgAlF5.1.5H2O or a mixture of NH4MgAlF6 and MgAl2F8.2H2O; and a sliding member made of aluminum or the like wherein the whole surface of the sliding member or the sliding surface thereof is coated with a film which consists of either of the aforesaid mixtures, has a cubic crystal structure, and shows no crystalline orientation.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 4, 2005
    Assignee: Suzuki Motor Corporation
    Inventors: Masaya Nomura, Yoshinobu Ozaki
  • Patent number: 6946201
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 20, 2005
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6878217
    Abstract: The chemical conversion film containing, at least as the constituent components thereof, (a) at least one of the metals selected from molybdenum, zirconium, vanadium, and tungsten; (b) a rare earth metal constituting the magnet; and (c) oxygen, which is formed on the surface of a rare earth metal-based permanent magnet according to the present invention, contains a composite metal oxide provided on the surface of the R-rich phase having a lower oxidation-reduction potential through a preferential reaction of the metallic ions that are present in the form of complex ions or oxide ions, such as of molybdenum, contained in the treatment solution, with the rare earth metals that elute from the magnet. Thus formed composite metal oxide reduces the difference in corrosion potential as to realize a uniform surface potential, and effectively suppresses the corrosion based on potential difference.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 12, 2005
    Assignee: Neomax Co. Ltd.
    Inventors: Atsushi Kikugawa, Fumiaki Kikui
  • Patent number: 6863743
    Abstract: The present invention provides a conversion coating solution containing polymetalates and/or heteropolymetalates to oxidize the surface of various metal substrates. The polymetalates have the general formula MxOyn?, where M is selected from the group comprising Mo, V and W. The heteropolymetalates have the general formula BMxOyn?, where B is a heteroatom selected from P, Si, Ce, Mn or Co, and M is again selected from Mo, V, W or combinations thereof. The concentration of polymetalates and/or heteropolymetalates anions is preferably between about 1% and about 5% by weight. Examples of typical anions used include, but are not limited to, (PMo12O40)3?, (PMo10V2O40)5?, (MnPW11O39)5?, (PW12O40)3?, (SiMo12O40)4?, (SiW12O40)4?, (Mo7O24)6?, (CeMo12O42)8? and mixtures thereof.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 8, 2005
    Assignee: Lynntech Coatings, Ltd.
    Inventors: Zoran Minevski, Cahit Eylem, Jason Maxey, Carl Nelson
  • Patent number: 6841009
    Abstract: Disclosed is a reaction vessel used for oxidizing and decomposing equipment suitable for processing with supercritical water, and methods of manufacturing the reaction vessel. The reaction vessel comprises an oxide film containing a platinum group metal oxide for example having a fine crystalline structure, and a high corrosion resistance in both oxidizing and reducing atmosphere. The film is formed on a surface of the vessel by performing a pyrolysis reaction in an atmosphere containing water vapor. The oxide film is comprised of at least one platinum group metal oxide selected from Ir, Ru or Rh oxide, and at least one oxide of a metal selected from Ti and Ta.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: January 11, 2005
    Assignee: Furuyametal Co., Ltd.
    Inventors: Takahito Furuya, Takayuki Shimamune
  • Patent number: 6821633
    Abstract: In at least one aspect, the invention relates to an entirely or substantially chromium-free conversion coating composition and process for conversion coating metal surfaces that provides corrosion resistance. In at least another aspect, the present invention relates to an article having a metal surface that is at least partially coated with an entirely or substantially chromium-free conversion coating that provides corrosion resistance. In certain embodiments, the conversion coating composition comprises water and (A) dissolved fluorometallate anions selected from the group consisting of TiF6−2, ZrF6−2, HfF6−2, SiF6−2, AlF6−3, GeF6−2, SnF6−2, BF4−, and mixtures thereof and (B) a water-soluble polymer which is a Mannich adduct of poly(4-vinyl phenol) and N-methyl ethanolamine. In other embodiments, the composition also comprises (C) a water-soluble polymer which is a Mannich adduct of poly(4-vinyl phenol) and N-methyl glucamine.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: November 23, 2004
    Assignee: Henkel Kommanditgesellschaft auf Aktien (Henkel KGaA)
    Inventors: Jianping Liu, Patrick A. Scalera, Shawn E. Dolan
  • Publication number: 20040187968
    Abstract: An aluminum-containing material deposition method includes depositing a first precursor on a substrate in the substantial absence of a second precursor. The first precursor can contain a chelate of Al(NR1R2)x(NR3(CH2)zNR4R5)y or Al(NR1R2)x(NR3(CH2)zOR4)y; where x is 0, 1, or 2; y is 3−x; z is an integer 2 to 8; and R1 to R5 are independently selected from among hydrocarbyl groups containing 1 to 10 carbon atoms with silicon optionally substituted for one or more carbon atoms. The method includes depositing the second precursor on the first deposited precursor, the second precursor containing a nitrogen source or an oxidant. A deposition product of the first and second precursors includes at least one of an aluminum nitride or an aluminum oxide. The deposition method can be atomic layer deposition where the first and second precursors are chemisorbed or reacted as monolayers. The first precursor can further be non-pyrophoric.
    Type: Application
    Filed: April 13, 2004
    Publication date: September 30, 2004
    Inventor: Brian A. Vaartstra
  • Patent number: 6794046
    Abstract: An article made of magnesium or its alloys, some or all of whose surface has a conversion coating, the conversion coating comprising MgO, Mn2O3 and MnO2 plus at least one oxide from the group consisting of vanadium, molybdenum and tungsten; and also a process for producing such an article, and its use.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: September 21, 2004
    Assignee: AHC Oberflachenechnik GmbH & Co. OHG
    Inventors: Peter Kurze, Ulrike Kruger, Marco Kohler, Dora B{overscore (a)}nerjee
  • Patent number: 6773516
    Abstract: An aqueous acidic solution for forming a rare earth element containing conversion coating on the surface of a metal, said solution being chromate-free and including effective quantities of at least one rare earth element (as herein defined) containing species, an oxidant and at least one accelerator, comprising a metal selected from Groups VA and VIA of the Periodic Table.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: August 10, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Simon Gerard Hardin, Klaus Werner Wittel, Anthony Ewart Hughes, Karen Joy Hammon Nelson
  • Patent number: 6764553
    Abstract: Corrosion resistant, hydrophilic coatings on the surface of aluminum and aluminum alloys may be formed using aqueous compositions containing fluorometallates such as H2TiF6 or H2ZrF6 and vanadium compounds such as decavanadates. To minimize the odor evolved from the conversion coatings it is preferred for a specified oxide, hydroxide, carbonate, or alkoxide to also be present in or added to the aqueous composition.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: July 20, 2004
    Assignee: Henkel Corporation
    Inventor: Shawn E. Dolan
  • Patent number: 6755918
    Abstract: The present invention discloses a method for treating magnesium alloys by chemical conversion. This method can improve corrosion resistance and paint adhesion of magnesium alloys, and produces an admirable appearance. Additionally, the method of the present invention is more environmentally friendly than conventional processes, because non-chromate chemicals are used in acid pickling and chemical conversion. Furthermore, the method of the present invention can be widely applied to the magnesium alloys manufactured by casting and rolling.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: June 29, 2004
    Inventors: Ming-Der Ger, Kuang-Hsuan Yang, Yuh Sung, Wen-Hwa Hwu, Yu-Chuan Liu
  • Patent number: 6755917
    Abstract: An aqueous acidic solution for forming a conversion coating on the surface of a metallic material, said solution containing at least one rare earth element (as herein defined) containing species, an accelerator additive selected from the group consisting of metals of Group IB, IIB, IVA, VA, VIA and VIII of the Periodic Table, a peroxidic species and at least one acid selected from the group of mineral acids, carboxylic acids, sulphonic acids and phosphonic acids, wherein said solution contains no more than 20 mg/liter each of fluoride and of phosphate, and the solution is essentially free of chromate.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: June 29, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Simon Gerard Hardin, Klaus Werner Wittel, Anthony Ewart Hughes, Karen Joy Hammon Nelson
  • Patent number: 6753095
    Abstract: The aim of the present invention is to provide a phosphate treated zinc coated steel sheet with excellent workability. A steel sheet coated with a zinc based alloy has a phosphate treated coating on the surface thereof. The phosphate treated coating comprises mainly granulated crystals, specifically, crystals in which the average ratio of the major axis to the minor axis is not less than 1.00 and not more than 2.90. Moreover, the method for producing the phosphate treated coating uses a phosphate treatment solution in which the amount of Mg ions is ≧6 g/l and the amount of Zn ions is ≧0.5 g/l, or a phosphate treatment solution in which the amount of Mg ions is ≧10 g/l, the amount of Zn ions is 0≦ and <0.5 g/l, and the amount of nitric acid ions is ≧40 g/l.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: June 22, 2004
    Assignee: Nippon Steel Corporation
    Inventors: Hidetoshi Shindou, Kiyokazu Isizuka, Keiichi Sanada, Kazuo Takahashi, Teruaki Yamada, Daisuke Ito, Shigekazu Ooba
  • Patent number: 6749694
    Abstract: An aqueous composition for pretreating and depositing a coating on metal substrates is provided. The coating composition includes from about 1,500 to about 55,000 ppm based on the aqueous composition of a Group IIA dissolved metal ion, from about 100 to about 200,000 ppm based on the aqueous composition of a dissolved complex metal fluoride ion wherein the metal atom is selected from Group IIIA, Group IVA, Group IVB metals, Group VA, Group VB metals; and water. The composition is substantially free of Group IIA metal fluoride precipitate. This is desirably achieved by including in the aqueous composition a complex metal salt which is different than the salt associated with the complex metal fluoride ion, with the complex metal salt being capable of complexing free fluoride ions to prevent a precipitation reaction with the Group IIA metal ion. A method of preparing such an aqueous coating composition is further provided.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 15, 2004
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Jeffrey Allen Greene, Donald Robb Vonk
  • Patent number: 6746547
    Abstract: The invention features and methods and compositions for oxide production on a Copper substrate, e.g., a Copper or Copper alloy substrate, to provide for improved adhesion of Copper substrate to polymeric material, e.g., such as used in manufacture of printed circuit boards. The oxide-producing compositions of the invention, which may be either acidic or ammoniacal, comprise 1) a source of Cu++ (Cupric) ions; 2) a source of a primary electrolyte that is non-interactive with Copper ions; 3) a Cuprous ligand, e.g., a halide ion, preferably chloride, which also serves as a secondary electrolyte; and 4) an optional organic. Acidic oxide-producing compositions comprise a strong acid as the primary electrolyte. The primary electrolyte of ammoniacal oxide-producing compositions is a non-interactive, ammonium salt of acid, which provides a highly soluble Cupric ammonium salt. The secondary electrolyte of the oxide-producing compositions is selected so as to be compatible with the primary electrolyte.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: June 8, 2004
    Assignee: RD Chemical Company
    Inventors: Joseph Cole, Rudolf P. Sedlak
  • Patent number: 6719852
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises a silicon compound; trivalent chromium and oxalic acid in a molar ratio ranging from 0.5 to 1.5, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation, wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating. This solution can provide a corrosion resistant trivalent chromate conversion film excellent in the corrosion resistance after heating.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 6692583
    Abstract: A conversion coating composition and a method of applying the conversion coating composition to magnesium and magnesium alloy articles prior to painting to prevent corrosion. The conversion coating composition comprises a source of vanadate ions, a material comprising phosphorus, and nitric acid or a source of nitrate ions. In addition, the composition may also contain boric acid or a source of borate ions and a source of fluoride ions or a source of fluoroborate ions.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: February 17, 2004
    Inventors: Jon Bengston, Mark Wojtaszek, Gerald Wojcik, Massimo Dimarco
  • Publication number: 20040025973
    Abstract: A protective coating is formed on a metallic surface by contacting the surface with an aqueous solution of fluoromet-allate followed by an aqueous solution containing vanadate ions. The process does not require the use of any organic substances, but provides a corrosion resistant surface having good heat conductivity.
    Type: Application
    Filed: August 25, 2003
    Publication date: February 12, 2004
    Inventors: Shawn E. Dolan, Lawrence R. Carlson
  • Publication number: 20040020568
    Abstract: Conversion coatings comprising a rare earth element and a valence stabilizer combined to form a rare earth/valence stabilizer complex are described for substrate metals. The rare earth element is selected from cerium, praseodymium, terbium, or combinations thereof, and at least one rare earth element is in the tetravalent oxidation state. The coating bath may also contain a preparative or solubility control agent. The oxidized cerium, praseodymium or terbium is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. A number of cerium, praseodymium, or terbium/valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium systems.
    Type: Application
    Filed: July 23, 2003
    Publication date: February 5, 2004
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
  • Publication number: 20040020567
    Abstract: A conversion coating solution comprises at least one precursor agent, at least one activator agent, and water solvent, wherein on provision to a solution suitable for the deposition of a substantially metallic coating, provides an in-situ conversion coating to the surface of the substantially metallic coating.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Inventor: Kevin Richard Baldwin
  • Patent number: 6677053
    Abstract: A surface-treated steel sheet includes a steel sheet, an Al—Zn-base alloy plating layer formed on the steel sheet, a chemical conversion film provided on the alloy plating layer, and a concentric layer of a Cr compound that is formed on the alloy plating layer of the chemical conversion film. The surface-treated steel sheet may include a steel sheet, an zinc-base plating layer formed on the steel sheet, and a film that contains chromium and calcium and that is formed on the zinc-base plating layer.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: January 13, 2004
    Assignee: NKK Corporation
    Inventors: Takafumi Yamaji, Kenji Morita, Akira Matsuzaki, Masaaki Yamashita, Etsuo Hamada
  • Patent number: 6669786
    Abstract: Disclosed are processes and compositions of solutions for chromate-replacement coatings for aluminum and aluminum alloys. A preferred method includes forming a boehmite coating layer that includes Al (III) ions on an aluminum surface, and applying an ionic conversion coating solution to the coating layer. The ionic conversion coating solution comprises hexavalent and trivalent ions. The trivalent ions are selected from the group consisting of Ce, Ga, Mn, Sc, Ti, Te and V. The hexavalent ions are selected from the group consisting of Mn, Mo, Se and W. It is contended that the resulting coatings provide corrosion resistance and self-healing effect in any defects present in the coatings.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: December 30, 2003
    Assignee: Concurrent Technologies Corporation
    Inventor: Krishnaswamy Sampath
  • Publication number: 20030234063
    Abstract: Conversion coatings based on cobalt are described for substrate metals such as aluminum, zinc, magnesium, titanium, cadmium, silver, copper, tin, lead, cobalt, zirconium, beryllium, or indium, their alloys, or items coated with these metals. The conversion coating contains a trivalent or tetravalent cobalt/valence stabilizer complex. The coating bath may also contain a preparative agent or solubility control agent. The oxidized cobalt is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. Cobalt/valence stabilizer combinations are chosen based on the well-founded principles of cobalt coordination chemistry. A number of cobalt/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Application
    Filed: January 4, 2002
    Publication date: December 25, 2003
    Inventors: Jeffrey Allen Sturgill, Andrew Wells Phelps, Joseph Thomas Swartzbaugh
  • Publication number: 20030209293
    Abstract: The present invention relates to a metal surface treatment agent that characteristically contains (A) at least 1 vanadium compound and (B) at least one metal compound containing at least 1 metal selected from the group consisting of zirconium, titanium, molybdenum, tungsten, manganese, and cerium. The present invention also relates to a metal surface treatment method using the foregoing treatment agent and the corresponding surface-treated metals.
    Type: Application
    Filed: April 7, 2003
    Publication date: November 13, 2003
    Inventors: Ryousuke Sako, Keiichi Ueno