Oxide Of Aluminum, Beryllium Or Magnesium Formed Patents (Class 148/285)
-
Patent number: 12154850Abstract: An interconnection structure includes a first dielectric layer, a first conductive feature, a second dielectric layer, a conductive layer, a liner layer, a third dielectric layer, a second conductive feature, and a first capping layer. The first conductive feature is disposed in the first dielectric layer. The second dielectric layer is formed on the first dielectric layer, and the second dielectric layer is in direct contact with the first dielectric layer. The conductive layer is disposed in the second dielectric layer. The liner layer is disposed between the conductive layer and the second dielectric layer. The third dielectric layer is formed on the second dielectric layer. The second conductive feature is disposed in the third dielectric layer. The first capping layer is disposed between the second conductive feature and the third dielectric layer.Type: GrantFiled: August 13, 2021Date of Patent: November 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kai-Fang Cheng, Hsiao-Kang Chang
-
Patent number: 11448042Abstract: Provided is a junction, a method for forming a junction, and a well system including a junction. The junction, in one aspect, includes a first threaded member, the first member formed of a first material, and a second threaded member threaded with the first threaded member, the second threaded member formed of a second material. In one or more aspects, the first and second threaded members define an overlapping space. In one or more other aspects, an expandable metal joint is located in at least a portion of the overlapping space, the expandable metal joint comprising a metal configured to expand in response to hydrolysis.Type: GrantFiled: September 21, 2021Date of Patent: September 20, 2022Assignee: Halliburton Energy Services, Inc.Inventors: Chad W. Glaesman, Karthik Krishnan, Michael Linley Fripp
-
Patent number: 10557671Abstract: A heat exchanger includes a flow channel operatively connecting a channel inlet to a channel outlet to channel fluid to flow therethrough. The flow channel is defined at least partially by a shape change material. The shape change material changes the shape of the flow channel based on the temperature of the shape change material. The shape change material can include a shape-memory alloy, for example. The shape-memory alloy can include at least one of a nickel-titanium alloy (NiTi), Cu—Al—(X), Cu—Sn, Cu—Zn—(X), In—Ti, Ni—Al, Fe—Pt, Mn—Cu, or Fe—Mn—Si.Type: GrantFiled: January 16, 2015Date of Patent: February 11, 2020Assignee: Hamilton Sundstrand CorporationInventor: Sergey Mironets
-
Patent number: 10060043Abstract: A method is disclosed for forming an article made of a metal matrix composite material having particles bonded to an anodizable matrix material. The method can include anodizing the anodizable matrix material to form an anodic layer on the anodizable matrix material. The method can also include machining at least a portion of the anodic layer.Type: GrantFiled: July 16, 2015Date of Patent: August 28, 2018Assignee: Raytheon Canada LimitedInventors: Alexandre Lifchits, Richard Hentzelt
-
Publication number: 20150107722Abstract: The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 0.1-22.0 mass %, inclusive, and containing Mg in the amount of 0.1-1.5 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.Type: ApplicationFiled: April 23, 2013Publication date: April 23, 2015Applicant: NISSHIN STEEL CO., LTDInventors: Tadashi Nakano, Masaya Yamamoto, Hirofumi Taketsu
-
Publication number: 20150108392Abstract: In magnetic parts such as inductors and antennas using magnetic metal powder, the complex component of a magnetic permeability, which represents a loss in a GHz band, has been high. A magnetic part formed from a soft magnetic metal powder including iron as a main component can reduce a loss factor in a kHz to GHz band. The soft magnetic metal powder has an average particle diameter of 100 nm or less, an axial ratio (=major axis length/minor axis length) of 1.5 or more, a coercive force (Hc) of 39.8 to 198.9 kA/m (500 to 2500 Oe), and a saturation magnetization of 100 Am2/kg or more.Type: ApplicationFiled: May 7, 2013Publication date: April 23, 2015Applicant: DOWA Electronics Material Co., Ltd.Inventors: Masahiro Gotoh, Takayuki Yoshida, Kazumasa Ikari
-
Patent number: 8992696Abstract: A method of bonding a metal to a substrate involves forming a plurality of nano-features in a surface of the substrate, where each nano-feature is chosen from a nano-pore and/or a nano-crevice. In a molten state, the metal is over-cast onto the substrate surface, and penetrates the nano-features. Upon cooling, the metal is solidified inside the nano-features, where the solidification of the metal forms a mechanical interlock between the over-cast metal and the substrate.Type: GrantFiled: December 2, 2011Date of Patent: March 31, 2015Assignee: GM Global Technology Operations LLCInventors: Michael J. Walker, Bob R. Powell, Jr., Aihua A. Luo
-
Publication number: 20150083276Abstract: The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 1.0-22.0 mass %, inclusive, and containing Mg in the amount of 1.5-10.0 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.Type: ApplicationFiled: April 23, 2013Publication date: March 26, 2015Inventors: Tadashi Nakano, Masaya Yamamoto, Hirofumi Taketsu
-
Patent number: 8980016Abstract: An acidic chromium-free solution for treating a metal surface containing: a vanadium cation source and/or a vanadyl cation source; an organic acid as an anion source; and at least one oxoacid as another anion source is provided. The oxoacid is selected from oxoacids of nitrogen, sulfur, phosphorus, boron, and chlorine. A metal component composed of, for example, aluminum or magnesium is brought into contact with the chromium-free solution to form a vanadium coating film of a surface of the metal component. A surface treating process using this chromium-free solution is useful for formation of a coating film having low corrosion resistance and low electric resistance.Type: GrantFiled: October 27, 2010Date of Patent: March 17, 2015Assignee: Nihon Hyomen Kagaku Kabushiki KaishaInventors: Takaaki Sato, Misa Suzuki
-
Patent number: 8932719Abstract: The object of the present invention is to strongly join an aluminum alloy part with an FRP prepreg. An object obtained by subjecting an aluminum alloy to a suitable liquid treatment so as to form a surface having large, micron-order irregularities and also fine irregularities with a period of several tens of nanometers, eliminating the presence of sodium ions from the surface and additionally forming a surface film of aluminum oxide, which is thicker than a natural oxide layer, has been found to have a powerful adhesive strength with epoxy-based adhesives. By simultaneously curing an FRP prepreg which uses the same epoxy-based adhesive in the matrix, an integral composite or structure in which FRP and aluminum alloy have been united at a joining strength of unprecedented magnitude is produced.Type: GrantFiled: March 12, 2008Date of Patent: January 13, 2015Assignee: Taisei Plas Co., Ltd.Inventors: Masanori Naritomi, Naoki Andoh
-
Publication number: 20140377658Abstract: Disclosed is a method of manufacturing an electrode for a secondary battery including an electrode mixture including an electrode active material, binder and conductive material coated on a current collector. Provided are a method including surface-treating the current collector such that an aluminum oxide (Al2O3) layer of 40 nm or less is formed on the current collector so as to enhance adhesion between the electrode mixture and the current collector, and an electrode for a secondary battery manufactured using the same.Type: ApplicationFiled: September 11, 2014Publication date: December 25, 2014Applicant: LG Chem, Ltd.Inventors: Daehong Kim, Jae Hyun Lee, Tae Jin Park
-
Patent number: 8906170Abstract: An alloy casting having a protective layer disposed on a surface of the casting is provided. The protective layer is resistant to liquid metal attack, and wherein the protective layer includes an oxide of an element present in the alloy. A method of forming a protective layer on a surface of the alloy casting is also provided. The method includes disposing the alloy in a mold, and oxidizing an element of the alloy to form a protective layer on the surface of the casting.Type: GrantFiled: June 24, 2008Date of Patent: December 9, 2014Assignee: General Electric CompanyInventors: Michael Frances Xavier Gigliotti, Jr., Stephen Francis Rutkowski, Shyh-Chin Huang, Roger John Petterson, Luana Emiliana Iorio, Andrew John Elliott
-
Patent number: 8894777Abstract: A surface treatment method of a magnesium alloy article includes, instead of forming a primer on a magnesium alloy based composite first, directly performing a hairline finish process on the magnesium alloy based composite, to form a hairline structure on a surface of the magnesium alloy based composite, and performing a chemical oxidation process on the magnesium alloy based composite, to form a glossy film covering the hairline structure on the magnesium alloy based composite, thereby forming a magnesium alloy article structure. Alternatively, another chemical oxidation process is performed before the hairline finish process, to form an oxide film on the surface of the magnesium alloy based composite.Type: GrantFiled: September 25, 2011Date of Patent: November 25, 2014Assignee: Getac Technology CorporationInventor: Chun-Hsiang Chen
-
Patent number: 8852359Abstract: A method of bonding a metal to a substrate involves forming an oxide layer on a surface of the substrate, and in a molten state, over-casting the metal on the substrate surface. The over-casting drives a reaction at an interface between the over-cast metal and the oxide layer to form another oxide. The other oxide binds the metal to the substrate surface upon solidification of the over-cast metal.Type: GrantFiled: December 2, 2011Date of Patent: October 7, 2014Assignee: GM Global Technology Operations LLCInventors: Michael J. Walker, Anil K. Sachdev, Bob R. Powell, Jr., Aihua A. Luo
-
Publication number: 20140148013Abstract: An actively heated aluminum baffle component such as a thermal control plate or baffle ring of a showerhead electrode assembly of a plasma processing chamber has an exposed outer aluminum oxide layer which is formed by an electropolishing procedure. The exposed outer aluminum oxide layer minimizes defects and particles generated as a result of differential thermal stresses experienced by the aluminum component and outer aluminum oxide layer during plasma processing compared to an identically shaped component having a Type III anodized surface.Type: ApplicationFiled: February 3, 2014Publication date: May 29, 2014Applicant: Lam Research CorporationInventors: Hong Shih, G. Grant Peng, Daxing Ren
-
Patent number: 8728252Abstract: A process for treating a non-ferrous metal component, comprising placing the component into a process chamber at an elevated temperature, biasing the component to have a potential capable of attracting ions, introducing oxygen into the chamber at a pressure such that a glow discharge comprising oxygen ions is generated, the process chamber additionally comprising a glow discharge ionization enhancing means, and activating the glow discharge ionization enhancing means thereby increasing charged species density of the glow discharge, the oxygen ions flowing towards the component and colliding the surface thereof at least some of which diffuse into the component.Type: GrantFiled: March 24, 2008Date of Patent: May 20, 2014Assignees: Tecvac Limited, The University of SheffieldInventors: Junia Cristina Avelar Batista Wilson, Elliott Ashley Fielding Spain, Jonathan Housden, Allan Matthews, Adrian Leyland
-
Publication number: 20140090639Abstract: A solar radiation absorber element for a thermal concentrating solar power plant is achieved by forming a selective coating on an outer surface of a substrate made from stainless steel, chosen from stainless steels presenting an aluminium content of more than 0.5% by weight. Formation of the selective coating includes a surface treatment step of the substrate, by polishing, and a heat treatment step of the substrate, in an oxidizing atmosphere, in a temperature range included between 550° C. and 650° C. The heat treatment in particular enables at least one intrinsically selective superficial thin layer to be formed on the outer surface of the substrate.Type: ApplicationFiled: June 7, 2012Publication date: April 3, 2014Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Gatien Fleury, Raphaël Couturier, Christophe Dubarry, Carole Mollard, Olivier Sicardy
-
Publication number: 20140048183Abstract: A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.Type: ApplicationFiled: August 13, 2013Publication date: February 20, 2014Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Yeong-Shyung Chou, Jeffry W. Stevenson
-
Patent number: 8617322Abstract: A laminated structure by internal oxidation includes an alloy coating layer structured as columnar grains. The alloy coating layer includes a first metal element and a second metal element, wherein the first metal element is oxidized more easily than the second metal element. The surface layer portion of the alloy coating layer has a plurality of oxide layers and a plurality of metal layers stacked alternately with each other. The material of the oxide layers includes the oxide of the first metal element and the material of the metal layers includes the second metal element.Type: GrantFiled: November 24, 2010Date of Patent: December 31, 2013Assignee: National Taiwan Ocean UniversityInventors: Yung-I Chen, Rong-Tan Huang, Bing-Nan Tsai
-
Patent number: 8562751Abstract: A dry cleaning method of a substrate processing apparatus includes forming a metal oxide by oxidizing a metal film adhered to the inside of a processing chamber of the substrate processing apparatus; forming a complex by reacting the metal oxide with ?-diketone; and sublimating the complex to be removed. A cleaning gas containing oxygen and ?-diketone is supplied into the processing chamber while heating the inside of the processing chamber. A flow rate ratio of oxygen to ?-diketone in the cleaning gas is set such that a formation rate of the metal oxide is lower than a formation rate of the complex.Type: GrantFiled: January 17, 2012Date of Patent: October 22, 2013Assignees: Tokyo Electron Limited, Central Glass Company, LimitedInventors: Isao Gunji, Yusaku Izawa, Hitoshi Itoh, Tomonori Umezaki, Yuta Takeda, Isamu Mori
-
Publication number: 20130261735Abstract: Stents or scaffolds made from magnesium or magnesium alloys including additives or barrier coatings that modify the corrosion rate of the stent are disclosed. Methods of forming barrier coatings that modify the corrosion rate of the stent are disclosed.Type: ApplicationFiled: March 30, 2012Publication date: October 3, 2013Applicant: Abbott Cardiovascular Systems Inc.Inventors: Stephen D. Pacetti, Yunbing Wang, Ni Ding
-
Patent number: 8540826Abstract: A process for surface treatment of aluminium foils includes steps of applying an etching solution to chemically etch at least one surface of the foil to form an etched surface, and forming an aluminium oxidized coating on the etched surface. The etching solution comprises an aqueous solution which includes hydrogen peroxide as an oxidant and sulfuric, orthophosphoric or nitric acid.Type: GrantFiled: October 4, 2010Date of Patent: September 24, 2013Assignee: University of WindsorInventors: Srimanta Ray, Jerald A. D. Lalman
-
Patent number: 8475606Abstract: Rendering a refractory coating on a metal substrate impenetrable by molten metal.Type: GrantFiled: August 10, 2007Date of Patent: July 2, 2013Inventor: C. Edward Eckert
-
Patent number: 8470097Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?,and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.Type: GrantFiled: May 15, 2012Date of Patent: June 25, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: ChangMin Chun, Mark A Greaney, Thomas Bruno, Ian A Cody, Trikur A Ramanarayanan, LeRoy A Clavenna
-
Publication number: 20130061987Abstract: The invention relates to a method for manufacturing an aluminum/metal assembly including the steps involving: thermally processing an aluminum sheet by heating said sheet to a temperature of between 80% and 100% of the melting temperature of the material of which it consists for a sufficiently long duration to create and stabilize by allotropic conversion an alpha alumina layer at the surface of said aluminum sheet, and then cooling same; providing a metal layer having a ductility less than or equal to the ductility of the aluminum sheet after cooling, said layer having surface irregularities having a depth greater than or equal to the thickness of the alpha alumina layer; and roll bonding the aluminum layer and the metal layer to produce the metal assembly.Type: ApplicationFiled: March 11, 2011Publication date: March 14, 2013Applicants: Centre National de la Recherche Scientifique (CNRS), Ecole Normale Superieure De Cachan, CNAM - Conservatoire National Des Arts Et MetiersInventors: Laurent Prevond, Nicolas Collard, Renaud Caplain, Pierre Francois
-
Publication number: 20120305140Abstract: A non-oriented electrical steel sheet includes: a base iron (1); and a tension applying type insulating film (2) of not less than 1 g/m2 nor more than 6 g/m2 on a surface of the base iron (1). An oxide layer (3) containing at least one type of oxide selected from the group consisting of Si, Al, and Cr and having a thickness of not less than 0.01 ?m nor more than 0.5 ?m is formed on the surface of the base iron (1).Type: ApplicationFiled: February 15, 2011Publication date: December 6, 2012Inventors: Shuichi Yamazaki, Takeshi Kubota, Yousuke Kurosaki, Masahiro Fujikura, Takahide Shimazu
-
Publication number: 20120261162Abstract: Provided are an electrode structure capable of suppressing a leakage current, having a high capacitance, allowing an electrical short circuit caused through contact with an electrolyte to be suppressed, and operable to be applied as an anode of a capacitor; a method for manufacturing the electrode structure; and a capacitor including the electrode structure. The method for manufacturing the electrode structure includes: a covering layer formation step of forming on a surface of an aluminum material a covering layer of a dielectric precursor including valve metal; and a reduction heating step of heating in a reducing atmosphere including no carbon the aluminum material having the covering layer formed thereon.Type: ApplicationFiled: March 30, 2011Publication date: October 18, 2012Applicant: Toyo Aluminium Kabushiki KaishaInventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue, Miho Suzuki
-
Publication number: 20120246935Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer having a surface roughness of less than 40 micro inches (1.1 ?m) and a protective layer formed thereon.Type: ApplicationFiled: May 15, 2012Publication date: October 4, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Mark A. GREANEY, Thomas BRUNO, Ashley E. COOPER, Ian A. CODY, ChangMin CHUN
-
Patent number: 8268096Abstract: A method for producing colored layers on zinc, aluminum, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.Type: GrantFiled: September 24, 2010Date of Patent: September 18, 2012Assignee: Henkel AG & Co. KGaAInventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
-
Publication number: 20120227869Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: ApplicationFiled: May 18, 2012Publication date: September 13, 2012Inventors: Weifeng Fei, Suresh C. Kuiry, Sudipta Seal
-
Patent number: 8252128Abstract: A population of extrusion billets has a specification such that every billet is of an alloy of composition (in wt. %): Fe<0.35; Si 0.20-0.6; Mn<0.10; Mg 0.25-0.9; Cu<0.015; Ti<0.10; Cr<0.10; Zn<0.03; balance Al of commercial purity. After ageing to T5 or T6 temper, extruded sections can be etched and anodised to give extruded matt anodised sections having improved properties.Type: GrantFiled: March 14, 2008Date of Patent: August 28, 2012Assignee: Alcan International LimitedInventors: Nicholas Charles Parson, Barry Roy Ellard, Graeme John Marshall
-
Publication number: 20120064251Abstract: A method of preparing a magnesium alloy substrate for an electroless electro-deposition surface treatment includes cleaning the magnesium alloy substrate in a wet solution, whereby a magnesium hydroxide layer is formed on an outer surface of the magnesium alloy substrate, and heating the magnesium alloy substrate to a temperature sufficient to convert the magnesium hydroxide layer to a magnesium oxide layer.Type: ApplicationFiled: November 24, 2010Publication date: March 15, 2012Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.Inventor: Guangling Song
-
Publication number: 20110287926Abstract: The present invention relates to surface treatments of aluminum foils and aluminum foil alloys. The process for surface treatment includes steps of applying an etching solution to chemically etch at least one surface of the foil to form an etched surface, and forming an aluminium oxidized coating on the etched surface. The present invention also relates to a method of producing an immobilized transition metal nanofibre using an electrospinning apparatus having a spinning tip, the method including the steps of, mixing an organo-metallic salt of a transition metal with a low boiling solvent mixture and polymer solution, the polymer solution having an average viscosity selected at between about 110 cp to 180 cp, preferably 130 cp to 160 cp, providing the spinning tip at a location spaced from a support surface, electrospinning the resultant mixture from the spinning tip onto a support surface in an environment substantially isolated from external air currents.Type: ApplicationFiled: October 4, 2010Publication date: November 24, 2011Inventors: Jerald A. D. Lalman, Srimanta Ray
-
Patent number: 8043978Abstract: Provided is a novel electronic device that comprises graphite, graphene or the like. An electronic device having a substrate, a layer comprising a 6-member ring-structured carbon homologue as the main ingredient, a pair of electrodes, a layer comprising aluminium oxide as the main ingredient and disposed between the pair of electrodes, and a layer comprising aluminium as the main ingredient, wherein the layer comprising aluminium oxide as the main ingredient is disposed between the layer comprising a 6-member ring-structured carbon homologue as the main ingredient and the layer comprising aluminium as the main ingredient so as to be in contact with the two layers.Type: GrantFiled: August 19, 2008Date of Patent: October 25, 2011Assignee: RikenInventors: Hisao Miyazaki, Kazuhito Tsukagoshi, Syunsuke Odaka, Yoshinobu Aoyagi
-
Patent number: 8021497Abstract: The invention relates to a method for producing a hardened steel part having a cathodic corrosion protection, whereby a) a coating is applied to a sheet made of a hardenable steel alloy in a continuous coating process; b) the coating is essentially comprised of zinc; c) the coating additionally contains one or more oxygen-affine elements in a total amount of 0.1% by weight to 15% by weight with regard to the entire coating; d) the coated steel sheet is then, at least in partial areas and with the admission of atmospheric oxygen, brought to a temperature necessary for hardening and is heated until it undergoes a microstructural change necessary for hardening, whereby; e) a superficial skin is formed on the coating from an oxide of the oxygen-affine element(s), and; f) the sheet is shaped before or after heating, and; g) the sheet is cooled after sufficient heating, whereby the cooling rate is calculated in order to achieve a hardening of the sheet alloy.Type: GrantFiled: June 9, 2004Date of Patent: September 20, 2011Assignee: voestalpine Stahl GmbHInventors: Martin Fleischanderl, Siegfried Kolnberger, Josef Faderl, Gerald Landl, Anna Elisabeth Raab, Werner Brandstätter
-
Publication number: 20110064185Abstract: The invention relates to a final, ready to use, spacer grid for a nuclear boiling water reactor. The final spacer grid comprises: i) a spacer grid structure made of an alloy that has been formed and assembled such that it constitutes a spacer grid, and ii) an outer oxide coating on the surface of the spacer grid structure. Said alloy is a Ni base alloy that consists of the following: (table) The invention also relates to a method of manufacturing the final spacer grid according to the invention.Type: ApplicationFiled: May 20, 2009Publication date: March 17, 2011Applicant: WESTINGHOUSE ELECTRIC SWEDEN ABInventors: Elena Calota, Lars Hallstadius, Mats Dahlback, Carina Onneby, Britta Helmersson
-
Publication number: 20100319813Abstract: Bare aluminum baffles are adapted for resist stripping chambers and include an outer aluminum oxide layer, which can be a native aluminum oxide layer or a layer formed by chemically treating a new or used bare aluminum baffle to form a thin outer aluminum oxide layer.Type: ApplicationFiled: September 1, 2010Publication date: December 23, 2010Applicant: Lam Research CorporationInventors: Fred D. Egley, Michael S. Kang, Anthony L. Chen, Jack Kuo, Hong Shih, Duane Outka, Bruno Morel
-
Patent number: 7850791Abstract: Alloys containing aluminium are characterised by an outstanding oxidation resistance at high temperatures, that is based on, inter alia, the formation of a thick and slow-growing aluminium oxide layer on material surfaces. If the formation of the aluminium oxide layer reduces the aluminium content of the alloy so far that a critical aluminium concentration is not reached, no other protective aluminium oxide layer can be formed. This leads disadvantageously to a very rapid breakaway oxidation, and the destruction of the component. This effect is stronger at temperatures above 800° C. due to the fact that, often at this point, metastable Al2O3 modifications, especially ?- or ?-Al2O3, are formed instead of ?-Al2O3 that is generally formed at high temperatures. The above-mentioned oxide modifications are disadvantageously characterised by significantly higher growth rates.Type: GrantFiled: November 20, 2004Date of Patent: December 14, 2010Assignee: Forschungszentrum Julich GmbHInventor: Willem J. Quadakkers
-
Patent number: 7829151Abstract: The invention relates to a method for modifying piece surfaces consisting in bringing pieces into contact with at least one type of a modifying agent in such a way that the modification of the surface is carried out.Type: GrantFiled: March 17, 2004Date of Patent: November 9, 2010Assignee: BEHR GmbH & Co. KGInventors: Snjezana Boger, Peter Englert, Mathias Pfitzer, Ingo Trautwein, Sabine Sedlmeir
-
Patent number: 7828911Abstract: A method for producing coloured layers on zinc, aluminium, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80 ° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.Type: GrantFiled: May 4, 2006Date of Patent: November 9, 2010Assignee: Henkel AG & Co. KGaAInventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
-
Patent number: 7673541Abstract: Colored razor blades are provided. Methods for manufacturing such blades are also provided, including methods involving depositing an oxide coating prior to heat treatment of the blade material and heat treating under conditions selected to enhance the color of the coating.Type: GrantFiled: June 3, 2004Date of Patent: March 9, 2010Assignee: The Gillette CompanyInventors: Kenneth J. Skrobis, Alfred Porcaro, Ronald J. Swanson, Eric Liu
-
Patent number: 7641743Abstract: Methods and compositions that serve to both darken a zinc or other active! metal surface and impart corrosion-resistant properties thereto, are disclosed. The compositions include an aqueous solution containing about 0.1 percent to about 5 percent ammonium chloride and about 0.1 percent to about 5 percent ammonium molybdate. The compositions utilize particular ratios of concentrations of ammonium chloride and ammonium molybdate.Type: GrantFiled: June 4, 2004Date of Patent: January 5, 2010Assignee: Metal Coatings International Inc.Inventors: Michelle R. Pearce, Brian G. Straka, Donald J. Guhde, Terry E. Dorsett
-
Patent number: 7629023Abstract: A rust inhibitor which ensures the simplicity of application typical for a coating process and can demonstrate excellent characteristics similar to those obtained with a metal spraying method. The rust inhibitor is manufactured by admixing zinc and aluminum as fine powders of inorganic metals, which are manufactured with a stamping mill to have a flaky shape, to a modified silicone resin solution. A silane-type silicone resin is used for the modified silicone resin solution. For example, a mixed solution of an organosilane-type silicone resin and an oligomer-type silane coupling agent and the like is used.Type: GrantFiled: September 30, 2002Date of Patent: December 8, 2009Assignee: Primet Technology Inc.Inventors: Yuko Kurimoto, Kazuo Kobayashi
-
Publication number: 20090139397Abstract: Method for producing at low cost bellows which show high durability even when used in a quite reactive atmosphere. A method for manufacturing bellows includes the steps of: I: forming an untreated bellows from a flat base plate, the base plate including 15 to 30 wt % of Cr, 5 to 40 wt % of Ni, 0.9 to 6 wt % of Al, less than 1 wt % of Mo, less than 0.1 wt % of Mn, less than 0.1 wt % of C, less than 0.1 wt % of S, less than 0.1 wt % of P and a balance of Fe and an unavoidable impurity (relative to 100 wt % of the base plate); and II: heating the untreated bellows at a temperature of 750 to 895° C. in an atmosphere which contains water and hydrogen and in which the volume ratio of hydrogen to water (H2/H2O) is in the range of 2×103 to 1×1012, thereby forming an Al2O3 passivation film on a surface of the untreated bellows.Type: ApplicationFiled: December 3, 2008Publication date: June 4, 2009Applicants: NIPPON VALQUA INDUSTRIES, LTD., TOHOKU UNIVERSITYInventors: Tsutomu Yoshida, Tadahiro Ohmi, Yasuyuki Shirai, Masafumi Kitano
-
Patent number: 7422793Abstract: Rinsing or sealing solutions comprising a rare earth element and a valence stabilizer for barrier films. The treated films contain a rare earth/valence stabilizer complex. The rare earth element is selected from cerium, praseodymium, terbium, or combinations thereof, and at least one rare earth element is in the tetravalent oxidation state. The rinsing or sealing solution may also contain an optional preparative or solubility control agent. The oxidized rare earth element is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. A number of rare earth/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.Type: GrantFiled: July 23, 2003Date of Patent: September 9, 2008Assignee: University of DaytonInventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
-
Patent number: 7407711Abstract: Conversion coatings comprising a rare earth element and a valence stabilizer combined to form a rare earth/valence stabilizer complex are described for substrate metals. The rare earth element is selected from cerium, praseodymium, terbium, or combinations thereof, and at least one rare earth element is in the tetravalent oxidation state. The coating bath may also contain a preparative or solubility control agent. The oxidized cerium, praseodymium or terbium is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. A number of cerium, praseodymium, or terbium/valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium systems.Type: GrantFiled: July 23, 2003Date of Patent: August 5, 2008Assignee: University of DaytonInventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
-
Patent number: 7338719Abstract: MCrAl layers according to prior art often display chipping of the thermally grown aluminum oxide layer (TGO) as a result of thermally induced stresses, which significantly reduces the oxidation behavior or the bonding behavior of ceramic heat insulating layers. An inventive MCrAl layer is designed in such a way that the TGO created thereon is microporous and thus allows expansion. The microporosity of the TGO is ensured by adding elements into the MCrAl layer in a targeted manner.Type: GrantFiled: May 21, 2003Date of Patent: March 4, 2008Assignees: Siemens Aktiengesellschaft, Forschungszentrum Julich GmbHInventors: Willem J. Quadakkers, Werner Stamm
-
Patent number: 7270718Abstract: The invention provides a method for manufacturing a soft magnetic powder material covered by oxide layers at surfaces of the powder, by using a soft magnetic alloy powder containing a soft magnetic powder material and a second element such as Si having an oxidizing reactivity higher than iron, and heating the soft magnetic alloy powder in an atmosphere of a weak oxidizing gas by mixing a weak oxidizing gas in an inert gas, and oxidizing selectively the second element at surface layers of the powder while restraining an oxidation of iron to form thin oxide layers with high electrical resistance.Type: GrantFiled: November 19, 2004Date of Patent: September 18, 2007Assignee: DENSO CorporationInventors: Yoshiaki Nishijima, Yurio Nomura, Kouichi Yamaguchi, Yuuichi Ishikawa, Hidekazu Hayama
-
Patent number: 6933053Abstract: In accordance with one aspect of the present invention, a process for forming a specific reactive element barrier on a titanium and aluminum containing substrate is provided. The process includes creating a dry air atmosphere with a concentration of water vapor below about 750 ppm at a temperature above about 550° C. contiguous to a surface of the substrate on which the barrier layer is to be formed. The temperature is maintained above 550° C. and the water vapor concentration is maintained below about 100 ppm while the water vapor in the dry air atmosphere is reacted with specific reactive elements at the substrate surface. The reaction forms a specific reactive element oxide barrier layer which is strongly bonded to the substrate surface. The barrier layer includes an aluminum oxide layer at the substrate/barrier layer interface and a second oxide layer at a barrier layer/atmosphere interface.Type: GrantFiled: March 18, 2003Date of Patent: August 23, 2005Inventor: Donald L. Alger
-
Patent number: 6881452Abstract: A thermal barrier coating system having an improved life as a result of a preoxidation treatment applied to a single phase platinum aluminide bond coat. After coating the substrate to form a diffusion platinum aluminum bond coat, the surface finish of the bond coat was grit blasted with an inert grit of preselected size at a preselected pressure to achieve a predetermined surface finish. After the grit blasting, but before application of the ceramic top coat of yttria-stabilized zirconia (YSZ), the coating was preoxidized to form a thin alumina scale by heat treating the diffusion platinum aluminide bond coat at an elevated temperature at a preselected partial pressure of oxygen.Type: GrantFiled: July 6, 2001Date of Patent: April 19, 2005Assignee: General Electric CompanyInventor: Irene Spitsberg