Directionally Solidified Patents (Class 148/404)
  • Patent number: 9828661
    Abstract: The present invention relates to a nickel-based super heat resistant alloy and a method of manufacturing the same. In the nickel-based super heat resistant alloy according to the present invention, an amount of solid solution strengthening elements (chromium, cobalt, molybdenum, or tantalum) is adjusted to improve a mechanical property, such as a creep property, at high temperatures, and aluminum or titanium is included in a predetermined amount to improve a corrosion property. The nickel-based super heat resistant alloy has excellent elongation, strength, and creep properties at normal temperature and high temperatures, and thus it is possible to manufacture parts of, by way of non-limiting example, a thermoelectric power plant, an aircraft, or a very high temperature reactor in various shapes on a large scale.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: November 28, 2017
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Dong-Jin Kim, Hong Pyo Kim, Yun-Soo Lim, Sung-Woo Kim, Byung-Hak Moon, Sujin Jung
  • Patent number: 9816161
    Abstract: Provided is a Ni-based single crystal superalloy containing 6% by mass or more and 12% by mass or less of Cr, 0.4% by mass or more and 3.0% by mass or less of Mo, 6% by mass or more and 10% by mass or less of W, 4.0% by mass or more and 6.5% by mass or less of Al, 0% by mass or more and 1% by mass or less of Nb, 8% by mass or more and 12% by mass or less of Ta, 0% by mass or more and 0.15% by mass or less of Hf, 0.01% by mass or more and 0.2% by mass or less of Si, and 0% by mass or more and 0.04% by mass or less of Zr, and optionally containing at least one element selected from B, C, Y, La, Ce, and V, with a balance being Ni and inevitable impurities.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: November 14, 2017
    Assignees: MITSUBISHI HITACHI POWER SYSTEMS, LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kyoko Kawagishi, Hiroshi Harada, Tadaharu Yokokawa, Yutaka Koizumi, Toshiharu Kobayashi, Masao Sakamoto, Michinari Yuyama, Masaki Taneike, Ikuo Okada, Sachio Shimohata, Hidetaka Oguma, Ryota Okimoto, Keizo Tsukagoshi, Yoshitaka Uemura, Junichiro Masada, Shunsuke Torii
  • Patent number: 9765633
    Abstract: A blade cascade for a turbomachine, having a number of blades (11, . . . 14; 21, . . . 25; 31, . . . 37) which include a monocrystalline material, each blade having a crystal orientation value (|?|), which is dependent on a crystal orientation of the monocrystalline material of the blade; the crystal orientation values of first blades (11, . . . 14) being less than a first limiting value and the crystal orientation values of second blades (21, . . . 25; 31, . . . 37) being at least equal to the first limiting value; and the blade cascade having at least one first sector (1), which includes at least three successive first blades (14, 12, 11, 13), and having at least one second sector (2+3; 2?+3?; 2?+3?), which includes at least three successive second blades (22, 21, 23, 24, 25; 31, 34, 36, 37, 33, 32, 35).
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: September 19, 2017
    Assignee: MTU Aero Engines AG
    Inventor: Andreas Hartung
  • Patent number: 9650900
    Abstract: An engine component includes a body; and a plurality of cooling holes formed in the body, at least one of the cooling holes having a multi-lobed shape with at least a first lobe, a second lobe, and a third lobe.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 16, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Malak Fouad Malak, Rajiv Rana, Luis Tapia, David Chou, Jong Liu
  • Patent number: 9518311
    Abstract: A nickel-base superalloy for single crystal casting of components exhibiting excellent creep and rupture properties at high temperature and stresses, and which exhibits excellent phase stability contains 5.60% to 5.80% by weight of aluminum; 9.4% to 9.8% by weight of cobalt; 3.2% to 3.9% by weight of chromium; 7.8% to 8.5% by weight of tantalum; 5.3% to 5.7% by weight of tungsten; 0.50% to 0.70% by weight of molybdenum; 4.3% to 4.9% by weight of rhenium; 0.75% to 0.90% by weight of titanium; 0.08% to 0.15% by weight of hafnium; less than 1.1% by weight of tramp elements other than aluminum, cobalt, chromium, tantalum, tungsten, molybdenum, rhenium, titanium and nickel; and balance nickel.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: December 13, 2016
    Assignee: Cannon-Muskegon Corporation
    Inventors: Kenneth Harris, Jacqueline B. Wahl
  • Patent number: 9393620
    Abstract: A gas turbine airfoil having internal cooling passages is formed by additive manufacturing. Layers of superalloy powder are fused by an energy beam using a two-dimensional pattern providing unmelted areas forming passageways therein. Layers of the powder are added and fused using sufficient two-dimensional patterns to form the entire airfoil with the desired pattern of internal cooling passages. After completion of the formation of the airfoil, it may be hot isostatic pressed, directionally recrystallized, bond coated, and covered with a thermal barrier layer.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 19, 2016
    Assignee: United Technologies Corporation
    Inventors: Daniel A. Bales, Agnes Klucha, Gregory M. Dolansky
  • Patent number: 9150945
    Abstract: A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than ±15 atomic %.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 6, 2015
    Assignee: UT-BATTELLE, LLC
    Inventor: Hongbin Bei
  • Patent number: 9061947
    Abstract: Articles are described that include a substrate having thereon a coating that has two or more non-oxide compounds. A first one of the two or more non-oxide compounds is a non-oxide ceramic compound, and the two or more non-oxide compounds are present in relative amounts with respect to each other to form a eutectic composition mixture. The coating includes at least two discrete phases arranged in an interpenetrating three-dimensional microstructure.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 23, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Gautham Ramachandran, Sanjay Prasad, Scott W. Smith
  • Patent number: 8926897
    Abstract: A nickel-base superalloy having excellent oxidation resistance is provided. It is useful as high-temperature members such as turbine blades and turbine vanes for jet engines or gas turbines. The nickel-base superalloy has a composition containing Co: 0.1 to 15% by weight, Cr: 0.1 to 10% by weight, Mo: 0.1 to 4.5% by weight, W: 0.1 to 15% by weight, Al: 2 to 8% by weight, Ta+Nb+Ti: 0 to 16% by weight, Hf: 0 to 5% by weight, Re: 0.1 to 16% by weight, Ru: 0.1 to 16% by weight, Si: 0.2 to 5% by weight and a balance made of Ni and unavoidable impurities.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: January 6, 2015
    Assignee: National Institute for Materials Science
    Inventors: Hiroshi Harada, Kyoko Kawagishi, Toshiharu Kobayashi, Yutaka Koizumi, Atsushi Sato
  • Patent number: 8876471
    Abstract: In accordance with an exemplary embodiment, a turbine stator component includes a first endwall; a second endwall; a first stator airfoil coupled between the first and second endwalls; and a second stator airfoil adjacent to the first airfoil and coupled between the first and second endwalls. The first stator airfoil has first crystallographic primary and secondary orientations. The second stator airfoil has second crystallographic primary and secondary orientations, the first crystallographic primary and secondary orientations being different from the second crystallographic primary and secondary orientations.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: November 4, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mark C. Morris, Harry Lester Kington, James Neumann
  • Patent number: 8852363
    Abstract: The invention offers a magnesium alloy sheet material having excellent plastic processibility and rigidity and a magnesium alloy formed body having excellent rigidity. The sheet material has magnesium alloy that forms the matrix containing hard particles. The region from the surface of the sheet material to a position away from the surface by 40% of the thickness of the sheet material is defined as the surface region, and the remaining region as the center region. Hard particles existing in the center region have a maximum diameter of more than 20 ?m and less than 50 ?m, and hard particles existing in the surface region have a maximum diameter of 20 ?m or less. Because the hard particles existing at the surface side are fine particles, they are less likely to become the starting point of cracking or another defect at the time of plastic processing. Because the hard particles existing in the center region are coarse, they can increase the rigidity of the sheet material.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatada Numano, Nozomu Kawabe, Yukihiro Oishi, Nobuyuki Mori, Nobuyuki Okuda, Ryuichi Inoue
  • Publication number: 20140290804
    Abstract: To carry out a rotational casting method of preparing a silicon eutectic alloy composition, silicon and one or more metallic elements M are melted together to form a eutectic alloy melt comprising the silicon and the one or more metallic elements M. A mold containing the eutectic alloy melt is rotated about a longitudinal axis thereof at a speed sufficient to form a rotating volume of the eutectic alloy melt in contact with an inner surface of the mold. Heat is directionally removed from the rotating volume of the eutectic alloy melt to directionally solidify the eutectic alloy melt, and a eutectic alloy composition, which includes the silicon, the one or more metallic elements M, and a eutectic aggregation of a first phase comprising the silicon and a second phase of formula MSi2, where the second phase is a disilicide phase, is formed.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Zachary Bauer, Jeremy Beebe, Matthew Gave, Daren Roehl, Vasgen Shamamian, Randall Siegel, Joseph Sootsman, James Young
  • Patent number: 8431073
    Abstract: A nickel base gamma prime strengthened superalloy with a unique blend of adequate hot corrosion resistance, high oxidation resistance, high coating compatibility, adequate phase stability, adequate creep resistance and low density is disclosed. The composition includes: Up to 20 wt % Co, between 12 and 14 wt % Cr, between 1 and 2 wt % Mo, between 1.4 and 2.8 wt % W, between 5.1 and 5.9 wt % Al, between 1.1 and 1.6 wt % Ti, between 3 and 7 wt % Ta, between 0.01 and 0.3 wt % of C+Zr+B, between 0.05 and 1 wt % Hf, between 0.05 and 1 wt % Si, and between 0.01 and 0.2 wt % of the sum of rare earths such as Sc, Y, the actinides and the lanthanides. The composition is intended for use in hot components such as gas turbine blades, and the hot components are preferably produced by clean casting.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 30, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Magnus Hasselqvist
  • Patent number: 8366838
    Abstract: A single crystal alloy for high AN2 applications has a composition consisting essentially of from 4.0 to 10 wt % chromium, from 1.0 to 2.5 wt % molybdenum, up to 5.0 wt % tungsten, from 3.0 to 8.0 wt % tantalum, from 5.5 to 6.25 wt % aluminum, from 6.0 to 17 wt % cobalt, up to 0.2 wt % hafnium, from 4.0 to 6.0 wt % rhenium, from 1.0 to 3.0 wt % ruthenium, and the balance nickel. Further, these single crystal alloys have a total tungsten and molybdenum content in the range of from 1.0 to 7.5 wt %, preferably from 2.0 to 7.0 wt %, a total refractory element content in the range of from 9.0 to 24.5 wt %, preferably from 13 to 22 wt %, a ratio of rhenium to a total refractory element content in the range of from 0.16 to 0.67, preferably from 0.20 to 0.45, a density in the range of from 0.300 to 0.325 lb/in3, and a specific creep strength in the range from 106×103 to 124×103 inches.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Venkatarama K. Seetharaman, Alan D. Cetel
  • Patent number: 8226780
    Abstract: This ferrite-austenite stainless steel sheet includes: in terms of mass %, C: 0.1% or less; Cr: 17 to 25%; Si: 1% or less; Mn: 3.7% or less; Ni: 0.6 to 3%; Cu: 0.1 to 3%; and N: 0.06% or more and less than 0.15%, with the remainder being Fe and inevitable impurities, wherein the steel sheet has a two-phase structure consisting of a ferrite phase and an austenite phase, a volume fraction of the austenite phase is in a range of 15 to 70%, and in a sheet plane (ND) of a center of a sheet thickness, grains of the ferrite phase having a crystal orientation satisfying ND//{111}±10° and grains of the ferrite phase having a crystal orientation satisfying ND//{101}±10° are present in a total content of 10% by area or more.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 24, 2012
    Assignees: Nippon Steel, Sumikin Stainless Steel Corporation
    Inventors: Masaharu Hatano, Akihiko Takahashi, Eiichiro Ishimaru, Ken Kimura
  • Patent number: 8186995
    Abstract: A fire-starter device for survival or emergency use has a handle portion and case portion that twist together, to sheath a mischmetal flint rod inside the case, and a seal ring protects the flint rod from environmental moisture. The case has a steel strike plate and a guide channel. The mischmetal flint rod favorably has a composition of cerium—50%, lanthanum—26%, magnesium—10%, praseodymium—3%, neodymium—1%, and iron—10%.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 29, 2012
    Inventor: Andrew C. Putrello, Jr.
  • Patent number: 7892370
    Abstract: The invention relates to a heat treatment method for monocrystalline or directionally solidified structural components. Said method comprises a heat treatment which results in dissolving at least one crystalline phase of the material of the structural component, referred to in the following as component material. The inventive method is characterized by carrying out the heat treatment by heating the structural component to a dissolution temperature required for dissolving the crystalline phase only in at least one first component area in which the stresses within the component material do not exceed a predetermined value. In at least one second component area in which the stresses within the component material exceed the predetermined value the material is only heated to a temperature below the dissolution temperature.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Ott, Uwe Paul
  • Patent number: 7871247
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 18, 2011
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Publication number: 20100108206
    Abstract: A method for improving the strength, creep and failure resistance of a single crystal component, such as a turbine engine component, is provided. The method comprises the steps of forming a component, such as a turbine engine component, having a single crystal microstructure with a plurality of ?? cuboids forming a limited amount of oriented platens in a particular direction prior to the component being placed into service to delay coalescence of the platens relative to the applied load.
    Type: Application
    Filed: February 3, 2006
    Publication date: May 6, 2010
    Inventors: Alexander Staroselsky, Carroll V. Sidwell
  • Patent number: 7704332
    Abstract: A single crystal alloy for high AN2 applications has a composition consisting essentially of from 4.0 to 10 wt % chromium, from 1.0 to 2.5 wt % molybdenum, up to 5.0 wt % tungsten, from 3.0 to 8.0 wt % tantalum, from 5.5 to 6.25 wt % aluminum, from 6.0 to 17 wt % cobalt, up to 0.2 wt % hafnium, from 4.0 to 6.0 wt % rhenium, from 1.0 to 3.0 wt % ruthenium, and the balance nickel. Further, these single crystal alloys have a total tungsten and molybdenum content in the range of from 1.0 to 7.5 wt %, preferably from 2.0 to 7.0 wt %, a total refractory element content in the range of from 9.0 to 24.5 wt %, preferably from 13 to 22 wt %, a ratio of rhenium to a total refractory element content in the range of from 0.16 to 0.67, preferably from 0.20 to 0.45, a density in the range of from 0.300 to 0.325 lb/in3, and a specific creep strength in the range from 106×103 to 124×103 inches.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: April 27, 2010
    Assignee: United Technologies Corporation
    Inventors: Venkatarama K. Seetharaman, Alan D. Cetel
  • Publication number: 20100071812
    Abstract: A process capable of producing large metallic castings having lengths of one hundred centimeters or more and a unidirectional crystal structure substantially free of freckle defects. The process includes pouring a molten metal alloy into a preheated mold within a heating zone, withdrawing the mold from the heating zone, through a heat shield, and into a cooling zone to directionally solidify the molten metal alloy, and then cooling the mold to produce the casting and the unidirectional crystal structure thereof. The heat shield operates as a barrier to thermal radiation between the heating zone and the cooling zone, and the mold is withdrawn at a rate that, in combination with the heat shield, maintains a thermal gradient to solidify the molten metal alloy and form primary dendrite arms having an average spacing therebetween of about 150 to about 500 micrometers.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 25, 2010
    Applicant: General Electric Company
    Inventors: Jon Conrad Schaeffer, Stephen Joseph Balsone, Andrew J. Elliott
  • Patent number: 7473326
    Abstract: A Ni-base directionally solidified superalloy and a Ni-base single-crystal superalloy, which have superior creep strength at a high temperature, consists essentially of from 5.0 percent by weight to 7.0 percent by weight of Al, from 4.0 percent by weight to 16.0 percent by weight of Ta+Nb+Ti, from 1.0 percent by weight to 4.5 percent by weight of Mo, from 4.0 percent by weight to 8.0 percent by weight of W, from 3.0 percent by weight to 8.0 percent by weight of Re, 2.0 percent by weight or less of Hf, 10.0 percent by weight or less of Cr, 15.0 percent by weight or less of Co, from 1.0 percent by weight to 4.0 percent by weight of Ru, 0.2 percent by weight or less of C, 0.03 percent by weight or less of B, and Ni and inescapable impurities as a balance. The superalloys can be used for a turbine blade, a turbine vane and the like of a jet engine, an industrial gas turbine and the like.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: January 6, 2009
    Assignees: National Institute for Materials Science, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Toshiharu Kobayashi, Yutaka Koizumi, Tadaharu Yokokawa, Hiroshi Harada, Yasuhiro Aoki, Shouju Masaki
  • Patent number: 7465365
    Abstract: A method for forming a nanocomposite material and articles made with the nanocomposite material are presented.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventor: Thomas Martin Angeliu
  • Publication number: 20080289727
    Abstract: A method for forming a nanocomposite material and articles made with the nanocomposite material are presented.
    Type: Application
    Filed: June 8, 2005
    Publication date: November 27, 2008
    Inventor: Thomas Martin Angeliu
  • Patent number: 7338259
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: March 4, 2008
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Patent number: 7250088
    Abstract: A method and an apparatus for manufacturing a directionally solidified columnar grained article with a reduced amount of secondary misorientation of the columnar grains. The method employs a casting assembly comprising a mold with a cavity, a selector section at a lower end of the mold, a heating chamber and a cooling chamber. The mold is fed with a liquid metal and moved from the heating chamber to the cooling chamber where the columnar grained article is solidified. The article is solidified with at least two dendrites or grains emerging from the selector section and entering the main cavity of the shell mold. Further, the selector section is configured so that no dendrite or grain grows from the bottom of the selector section into the shell mold cavity along a continuous path of purely vertical growth.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 31, 2007
    Assignee: Alstom
    Inventor: John Fernihough
  • Patent number: 6918969
    Abstract: A cast steel with excellent workability, characterized in that not less than 60% of the total cross section thereof is occupied by equiaxed crystals, the diameters (mm) of which satisfy the following formula: D<1.2X1/3+0.75, wherein D designates each diameter (mm) of equiaxed crystals in terms of internal structure in which the crystal orientations are identical, and X the distance (mm) from the surface of the cast steel. The cast steel and the steel material obtained by processing the cast steel have very few surface flaws and internal defects.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: July 19, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Zeze, Takashi Morohoshi, Ryusuke Miura, Shintaro Kusunoki, Yasuhiro Kinari, Masayuki Abe, Hiroshi Sugano, Kenichiro Miyamoto, Masaharu Oka, Yuji Koyama
  • Patent number: 6905558
    Abstract: A billet produced by continuous casting having little central segregation, in particular a billet of high carbon steel produced by continuous casting, and a manufacturing method therefor are provided. In the continuous casting billet, the size of the dendritic equiaxed crystal in a billet central portion is reduced to be not more than 6 mm. For this purpose, electromagnetic stirring is performed so that the inclining angle of the primary dendrite within 10 mm of a billet surface layer is increased to be not less than 10°. Furthermore, the mechanical soft reduction is performed during continuous casting so that the diameter of the center porosity in the billet central portion is reduced to be not more than 4 mm. Thereby, in particular in the manufacturing of the continuous casting billet having a carbon content of not less than 0.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: June 14, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Shigenori Tanaka, Toyoichiro Higashi, Masahiro Doki, Jun Fukuda, Hiroshi Ohba, Mitsuo Uchimura
  • Patent number: 6841013
    Abstract: A metallic nanowire having an aspect ratio of at least 100 and a diameter less than 200 nanometers composed of at least one of bismuth, indium, tin, lead, zinc, antimony and alloys of the same and a method of making the same from a thin film composite.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: January 11, 2005
    Assignee: General Motors Corporation
    Inventors: Anita Miriam Weiner, Curtis A. Wong, Yang-Tse Cheng, Michael P. Balogh, Michael J. Lukitsch
  • Publication number: 20040234808
    Abstract: A gas turbine component consists of a superalloy base material with a single crystal structure and a protective MCrAlY-coating (6). The MCrAlY-coating (6) has a g/g′ single crystal structure, which is epitaxial with the base material. It has be determined the critical factors for the successful epitaxial and crack-free growth of the MCrAlY-coating (6).
    Type: Application
    Filed: March 19, 2004
    Publication date: November 25, 2004
    Inventors: Alexander Schnell, Cyrille Bezencon, Matthias Hoebel, Abdus Suttar Khan, Maxim Konter, Wilfried Kurz
  • Patent number: 6800148
    Abstract: The present invention contemplates a multi-airfoil vane segment produced as a single crystal casting from a rhenium containing directionally solidified alloy. The single crystal casting containing grain boundary strengtheners.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: October 5, 2004
    Assignee: Rolls-Royce Corporation
    Inventors: Donald J. Frasier, Philip S. Burkholder
  • Publication number: 20040016318
    Abstract: A method for forming a nanocomposite material and articles made with the nanocomposite material are presented.
    Type: Application
    Filed: July 23, 2002
    Publication date: January 29, 2004
    Applicant: General Electric Company
    Inventor: Thomas Martin Angeliu
  • Patent number: 6637500
    Abstract: Concepts for fabricating improved cores for investment casting are described. The cores are composite which include refractory metal elements and ceramic elements. The refractory metal elements are provided to enhance the mechanical properties of the core and/or to permit the fabrication of cores having shapes and geometries that could not otherwise be achieved. In one embodiment, the entire core may be made of refractory metal components. The cores may be used to investment cast gas turbine superalloy components.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: October 28, 2003
    Assignee: United Technologies Corporation
    Inventors: Dilip N. Shah, James Thompson Beals, John Joseph Marcin, Jr., Stephen Douglas Murray
  • Patent number: 6632299
    Abstract: A nickel-base superalloy that exhibits outstanding mechanical properties under high temperature and high strain conditions when cast in an equiaxed and/or directionally solidified, columnar grain structure, and which exhibits increased grain boundary strength and ductility while maintaining microstructural stability includes, in percentages by weight, 5-6 chromium, 9-9.5 cobalt, 0.3-0.7 molybdenum, 8-9 tungsten, 5.9-6.3 tantalum, 0.05-0.25 titanium, 5.6-6.0 aluminum, 2.8-3.1 rhenium, 1.1-1.8 hafnium, 0.10-0.12 carbon, 0.010-0.024 boron, 0.011-0.020 zirconium, with the balance being nickel and incidental impurities. The superalloys of this invention are useful for casting gas turbine engine components exhibiting significantly improved low cycle fatigue life, improved airfoil high temperature stress rupture life, significantly reduced life cycle cost, and longer useful life.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: October 14, 2003
    Assignee: Cannon-Muskegon Corporation
    Inventor: Kenneth Harris
  • Publication number: 20030183306
    Abstract: A new class of light or reactive elements and monophase &agr;′-matrix magnesium- and aluminum-based alloys with superior engineering properties, for the latter being based on a homogeneous solute distribution or a corrosion-resistant and metallic shiny surface withstanding aqueous and saline environments and resulting from the control during synthesis of atomic structure over microstructure to net shape of the final product, said &agr;′-matrix being retained upon conversion into a cast or wrought form. The manufacture of the materials relies on the control of deposition temperature and in-vacuum consolidation during vapor deposition, on maximized heat transfer or casting pressure during all-liquid processing and on controlled friction and shock power during solid state alloying using a mechanical milling technique.
    Type: Application
    Filed: October 7, 2002
    Publication date: October 2, 2003
    Applicant: Franz HEHMANN
    Inventors: Franz Hehmann, Michael Weidemann
  • Publication number: 20030150534
    Abstract: The present invention contemplates a multi-airfoil vane segment produced as a single crystal casting from a rhenium containing directionally solidified alloy. The single crystal casting containing grain boundary strengtheners.
    Type: Application
    Filed: February 24, 2003
    Publication date: August 14, 2003
    Inventors: Donald J. Frasier, Philip S. Burkholder
  • Publication number: 20030111138
    Abstract: Corrosion and oxidation resistant, high strength, directionally solidified superalloy alloys and articles are described. The articles have a nominal composition in weight percent of about 12% Cr, 9% Co, 1.9% Mo, 3.8% W, 5% Ta, 3.6% Al, 4.1% Ti, 0.015% B, 0.1% C, up to about 0.02 Zr, balance essentially nickel, and include no intentional additions of hafnium or zirconium, and also have a small amounts of tantalum carbide. The resultant articles have good hot corrosion resistance and superior oxidation resistance and creep properties. The articles are preferably columnar grain, but may also be single crystal.
    Type: Application
    Filed: December 18, 2001
    Publication date: June 19, 2003
    Inventor: Alan D. Cetel
  • Publication number: 20030103862
    Abstract: A nickel base superalloy suitable for the production of a large, crack-free nickel-base superalloy gas turbine bucket suitable for use in a large land-based utility gas turbine engine, comprising, by weight percents:
    Type: Application
    Filed: May 31, 2002
    Publication date: June 5, 2003
    Applicant: General Electric Company
    Inventors: Gregory Keith Bouse, Michael Francis Henry, Jon Conrad Schaeffer
  • Publication number: 20030075247
    Abstract: The object of the present invention is to provide an Ni-based single crystal super alloy capable of improving strength by preventing precipitation of a TCP phase at high temperatures. This object is achieved by an Ni-based single crystal super alloy having a composition consisting of 5.0-7.0 wt % Al, 4.0-8.0 wt % Ta, 2.9-4.5 wt % Mo, 4.0-8.0 wt % W, 3.0-6.0 wt % Re, 0.01-0.50 wt % Hf, 2.0-5.0 wt % Cr, 0.1-15.0 wt % Co and 1.0-4.0 wt % Ru in terms of its weight ratio, with the remainder consisting of Ni and unavoidable impurities.
    Type: Application
    Filed: May 30, 2002
    Publication date: April 24, 2003
    Inventors: Yutaka Koizumi, Toshiharu Kobayashi, Tadaharu Yokokawa, Hiroshi Harada, Yasuhiro Aoki, Mikiya Arai, Shoju Masaki, Ryoji Kakiuchi, Kazuyoshi Chikugo
  • Publication number: 20020182100
    Abstract: A nickel-based alloy for producing, by casting, components which have solidified in single crystal form, contains rhenium and tungsten, as well as aluminium, chromium and cobalt. The rhenium content is at least 2.3% by weight, and the weight ratio of the tungsten content to the rhenium content is at least 1.1 to at most 1.6.
    Type: Application
    Filed: January 10, 2002
    Publication date: December 5, 2002
    Inventors: Uwe Glatzel, Thomas Mack, Silke Woellmer, Jurgen Wortmann
  • Patent number: 6451135
    Abstract: There is provided copper targets for sputtering capable of forming a deposition film with low electric resistance indispensable for high-speed operation elements and also with excellent thickness uniformity, and such thin copper films. A high-purity copper sputtering target is characterized by comprising up to 0.1 ppm each Na and K, up to 1 ppm each Fe, Ni, Cr, Al, Ca, Mg, up to 5 ppm each carbon and oxygen, up to 1 ppb each U and Th, and, excluding gaseous constituents, more than 99.999% copper. Preferably the average grain size on the sputter surface is 250 &mgr;m or below, with its dispersion thin plus or minus 20%. I(111)/I(200) of X-ray diffraction peak intensity on the sputter plane is at least 2.4 with its dispersion within plus or minus 20%.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: September 17, 2002
    Assignee: Japan Energy Corporation
    Inventors: Kazushige Takahashi, Osamu Kano
  • Patent number: 6436208
    Abstract: A process of preparing aligned, in-situ, two-phase single crystal alloys of titanium, aluminum and niobium which comprises growing the alloys at rates of about 3.0 mm. to about 6.0 mm. per hour by rotating a seed rod alloy consisting essentially of Ti-43 to 45 Al-10 to 12 Nb+0.5 Si, in atomic percent, at about 7.75 to 8.25 RPM while in contact with a rotating feed rod alloy consisting essentially of Ti-43 to 45 Al-10 to 12 Nb, in atomic-percent, rotating at about 5.75 to 6.25 RPM in an atmosphere of substantially pure argon at melt temperatures ranging from about 1650° C. to 1750° C. to obtain two-phase single crystal alloys of Ti-43 to 45Al-10 to 12 Nb characterized as having improved ductility, excellent oxidation resistance, and high-temperature creep strength. These alloys are particularly useful for manufacturing high-temperature material components for internal combustion engines, gas turbines, and advanced aircraft engines.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: August 20, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Rabindra Mahapatra, Eui W. Lee, Jeffrey Waldman, John H. Perepezko
  • Patent number: 6419763
    Abstract: A nickel-base superalloy, in particular for the production of single-crystal components or directionally solidified components, comprising (measured in % by weight): 3.0-13.0% Cr, 5.0-15.0% Co, 0-3.0% Mo, 3.5-9.5% W, 3.2-6.0% Al, 0-3.0% Ti, 2.0-10.0% Ta, 0-6.0% Re, 0.002-0.08% C, 0-0.04% B, 0-1.4% Hf, 0-0.005% Zr, 10-60 ppm N, remainder nickel plus impurities. As a result of the addition of nitrogen in defined quantities, TiN is formed during solidification and carbides with a block morphology are formed. It is thus possible to increase the carbon content without deterioration in the low cycle fatigue at high load temperature.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: July 16, 2002
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Maxim Konter, John Fernihough
  • Patent number: 6355117
    Abstract: Compositional requirements and processing improvements are disclosed which improve the hydrogen embrittlement resistance and the fatigue resistance in air of nickel base single crystal articles. The compositional requirements enlarge the difference between the &ggr;′ solvus temperature and the incipient melting temperature, thus enabling the solution of &ggr;/&ggr;′ eutectic islands without causing incipient melting, while hot isostatic pressing and careful melt practice eliminate porosity and carbides, borides and nitrides, all of which act as crack initiation sites.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: March 12, 2002
    Assignee: United Technologies Corporation
    Inventors: Daniel P. DeLuca, Bradford A. Cowles, Maurice L. Gell, David N. Duhl, Alan D. Cetel, Charles M. Biondo
  • Patent number: 6322643
    Abstract: An Ni-base heat resistant alloy, has a composition which contains, by weight, Cr: from 12.0 to 14.3%, Co: from 8.5 to 11.0%, Mo: from 1.0 to 3.5%, W: from 3.5 to 6.2%, Ta: from 3.0 to 5.5%, Al: from 3.5 to 4.5%, Ti: from 2.0 to 3.2%, C: from 0.04 to 0.12%, B: from 0.005 to 0.05%, and the balance substantially Ni and inevitable impurities. A large-size casting, as well as a large-size turbine blade, having a columnar crystalline Ni-base heat-resistant alloy formed from the Ni-base heat-resistant alloy, have sound cast surfaces and a sound internal structure.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: November 27, 2001
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Akira Mitsuhashi, Michi Misumi, Saburou Wakita, Hisataka Kawai, Kouji Takahashi, Ikuo Okada
  • Patent number: 6273969
    Abstract: The present invention relates to an alloy comprising a first element A, a second element B, a third element C, and a fourth element D. In the alloy, first element A and second element B are present as a binary compound AB, and third element C and fourth element D are present as a binary compound CD. In addition, the alloy is substantially free from binary compounds AD, BC, AC, and BD. These alloys can be characterized as semiconducting, quasi-binary, single phase alloys having the formula (AB)x(CD)1−x, where x is between 0 and 1 and where A, B, C, and D are different. The present invention also relates to a method of producing an alloy. The method includes providing a first binary material AB and providing a second binary material CD. The first binary material AB and the second binary material CD are contacted under conditions effective to mix the first binary material AB and the second binary material CD without decomposing either the first binary material AB or the second binary material CD.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: August 14, 2001
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Partha S. Dutta, Aleksandar G. Ostrogorsky
  • Patent number: 6255000
    Abstract: Disclosed is a single-cast, thin wall structure capable of withstanding impinging gases at temperatures of 4300° F. and higher, and method of making the same.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 3, 2001
    Assignee: Allison Engine Company, Inc.
    Inventors: Kurt Francis O'Connor, James Paul Hoff, Donald James Frasier, Ralph Edward Peeler, Heidi Mueller-Largent, Floyd Freeman Trees, James Rodney Whetstone, John Henry Lane, Ralph Edward Jeffries
  • Patent number: 6217286
    Abstract: A cast superalloy article having a unidirectional crystal structure that is substantially defect free with primary dendrite arm spacing greater than 150 &mgr;m is provided. The unidirectional crystalline microstructure comprises a longitudinal columnar structure aligned parallel with the direction of solidification where said columnar structure is a single crystal or polycrystals or mixtures thereof.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: April 17, 2001
    Assignee: General Electric Company
    Inventors: Shyh-Chin Huang, Phillip Harold Monaghan, Ji-Cheng Zhao, Michael Francis Xavier Gigliotti, Jr.
  • Patent number: 6114052
    Abstract: An ingot plate (10) of cleaveable thermoelectric material has a layered structure having substantially parallel cleavage planes. Substantially all of the cleavage planes are disposed at a less cleavage angle with respect to the upper and lower faces (11, 12) of the plate. The ingot plate can be successfully cut into bars (20) along cutting planes generally perpendicular to the cleavage planes without causing substantial interlayer fracture. Electrodes (25) are formed on the opposite sides of the bar which are defined by the cutting planes. The bar is in use to be cut into a number of discrete chips (30) with one of the electrodes fixed on a substrate. Since the cutting is made along planes again generally perpendicular to the cleavage planes of the bar, the bar can be successfully cut into the corresponding chips without causing any substantial fracture.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: September 5, 2000
    Assignees: Matshsuhita Electric Works, Ltd., Crystal Ltd.
    Inventors: Nobuteru Maekawa, Belov Iouri Maksimovich
  • Patent number: 6103402
    Abstract: A containerless method of producing a crack free metallic article of near-net shape includes melting a filler material into a metallic substrate or seed under conditions chosen to preclude cracking. In a preferred embodiment of the invention, a laser beam is operated at a relatively low power density and at a relatively large beam diameter at the substrate surface for an extended length of time to produce a molten pool with a low aspect ratio. Near-net shape is achieved by applying the process in a closed-loop, multi-axis material deposition system.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: August 15, 2000
    Assignee: United Technologies Corporation
    Inventors: John Joseph Marcin, Jr., Justin Andreas Neutra, David Henry Abbott, James Peter Aduskevich, Dilip M. Shah, Dorothea Nadette Carraway, Raymond Paul Langevin, Marc R. Sauerhoefer, Richard Alan Stone