Cobalt Base Patents (Class 148/408)
-
Patent number: 12000022Abstract: An object of the invention is to provide an alloy article that exhibits even better mechanical properties and/or even higher corrosion resistance than conventional high entropy articles without sacrificing the attractive properties thereof, a product formed of the alloy article, and a fluid machine having the product. An alloy article according to the invention has a predetermined chemical composition consisting of Co, Cr, Fe, Ni and Ti, Mo within a range of 1 atomic % or more and 5 atomic % or less, an element with a larger atomic radius than the atomic radiuses of Co, Cr, Fe and Ni within a range of more than 0 atomic % and 4 atomic % or less, and a balance of inevitable impurities.Type: GrantFiled: October 31, 2018Date of Patent: June 4, 2024Assignee: Proterial, Ltd.Inventors: Meichuan Chen, Tadashi Fujieda, Kousuke Kuwabara
-
Patent number: 11779477Abstract: A stent having a cobalt-based alloy, wherein the cobalt-based alloy is free of nickel (Ni), the cobalt-based alloy including 10-65 weight % metal member selected from a platinum group metal, a refractory metal, or combinations thereof, 15-25 weight % chromium (Cr), 4-7 weight % molybdenum (Mo), 0-18 weight % iron (Fe), and 22-40 weight % cobalt (Co).Type: GrantFiled: December 27, 2021Date of Patent: October 10, 2023Assignee: ABBOTT CARDIOVASCULAR SYSTEMS, INC.Inventors: John A. Simpson, Puneet Kamal Singh Gill, Pamela A. Kramer-Brown
-
Patent number: 10718224Abstract: An aft frame assembly has a main body with an upstream facing surface, a downstream facing surface, a radially outer facing surface and a radially inner facing surface. Feed hole inlets are located on the upstream facing surface and radially outward of the outer sleeve so that the feed hole inlets are located to receive input from a high pressure plenum. The feed hole inlets are coupled to cooling channels that pass through the main body. Microchannels are formed in or near the radially inner facing surface and the downstream facing surface. The cooling channels are connected to and terminate in the microchannels. Exit holes are connected to the plurality of microchannels, and the exit holes are located radially outward of the transition piece and radially inward of the outer sleeve. The exit holes are located to exhaust into the cooling annulus.Type: GrantFiled: October 13, 2017Date of Patent: July 21, 2020Assignee: General Electric CompanyInventors: Charles Lewis Davis, III, Kevin Weston McMahan, Wei Chen, Scott Robert Simmons
-
Patent number: 9206319Abstract: A surface hardening material being excellent in abrasion resistance and having impact resistance is provided. Provided are: a wear-resistant cobalt-based alloy containing 20.0 to 30.0 mass % of a sum of Mo and/or W, 0.8 to 2.2 mass % of B, 5.0 to 18.0 mass % of Cr, 5.0 mass % or less of a sum of Fe, Ni, Mn, Cu, Si and C, 1.0 mass % or less of Si, and 0.3 mass % or less of C, and the remainder comprising 55.0 to 70.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.Type: GrantFiled: May 23, 2011Date of Patent: December 8, 2015Assignees: Fukuda Metal Foil & Powder Co., Ltd., Nittan Valve Co., Ltd.Inventors: Katsunori Otobe, Shinichi Nishimura, Kazunori Kurahashi
-
Patent number: 8551265Abstract: A Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the Ll2 type [Co3(Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3(Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.Type: GrantFiled: February 25, 2008Date of Patent: October 8, 2013Assignee: Japan Science and Technology AgencyInventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
-
Patent number: 8529710Abstract: A Co-based alloy being useful as a spiral spring, common spring, wire, cable guide, steel belt, build-up material, guide wire, stent, catheter, etc. There is provided a Co-based alloy having a composition of Co—Al binary system containing 3-13% Al loaded with at least one workability enhancing element selected from among 001 to 50% Ni, 0.01 to 40% Fe and 0.01 to 30% Mn and having a lamellar structure wherein f.c.c. structure ?-phase and ?(B2)-phase are repeated in layers. The lamellar structure is so regulated that the occupancy ratio of the whole structure is 30 vol. % or above and the layer spacing is 100 ?m or less. The Co-based alloy may contain at least one optional component selected from among Ga, Cr, V, Ti, Mo, Nb, Zr, W, Ta, Hf, Si, Rh, Pd, Ir, Pt, Au, B, C and P may be added in a total amount of 0.01 to 60%.Type: GrantFiled: April 7, 2008Date of Patent: September 10, 2013Assignee: Japan Science and Technology AgencyInventors: Kiyohito Ishida, Kiyoshi Yamauchi, Ryosuke Kainuma, Yuji Sutou, Toshihiro Omori
-
Patent number: 8524017Abstract: A process for manufacturing a component with a base of Co—Cr—Mo alloys having values of average ultimate elongation at 800° C. greater than 10% and of average yielding load at 800° C. greater than 400 MPa, comprising: obtaining a sintered component by additive sintering of powders of Co—Cr—Mo alloys containing carbides irregularly dispersed in the molten matrix; Conducting a first heat treatment on the sintered component for solubilization of the carbides at a temperature of between 1100° C. and 1300° C. for at least 2 hours to form a solubilization intermediate; and cooling the solubilization intermediate at a cooling rate at least equal to that of cooling in air to form a cooled intermediate; and conducting a second heat treatment on the cooled intermediate at a temperature of between 700° C. and 1000° C.Type: GrantFiled: July 26, 2010Date of Patent: September 3, 2013Assignee: AVIO S.p.A.Inventor: Giovanni Paolo Zanon
-
Patent number: 8398791Abstract: Cobalt based alloys exhibiting high-temperature mechanical strength in an oxidizing medium are provided. The alloys are free of W and Hf and include the following elements in percentage by weight of the alloy: 23 to 34% Cr; 6 to 12% Ni; 6.0 to 10% Ta; 0.3 to 1.2% C; less than 3% Fe; less than 1% Si; less than 0.5% Mn; less than 0.1% Zr; and a balance of cobalt and impurities. Ta/C molar ratios of the alloys are at least 0.3.Type: GrantFiled: August 23, 2007Date of Patent: March 19, 2013Assignees: Saint-Gobain Isover, Saint-Gobain SevaInventors: Patrice Berthod, Jean-Luc Bernard, Christophe Liebaut
-
Patent number: 7578893Abstract: A material for electrical contacts comprising a martensitic cobalt-nickel-iron alloy with a high strength, a high bendability and a high electrical conductivity, with a cobalt content of 12.0?Co?60.0% by weight, a nickel content of 10.0?Ni?36.0% by weight, remainder iron and an impurity content of less than 0.2 atomic percent, with a martensite temperature Ms of 75° C.?Ms?400° C. in the case of the martensitic variant and ?50° C.?Ms?25° C. in the case of the variant which is naturally hard as a result of cold-forming.Type: GrantFiled: August 18, 2005Date of Patent: August 25, 2009Assignee: Vacuumschmelze GmbH & Co. KGInventors: Hartwin Weber, Waldemar Döring, Matthias Schierling
-
Patent number: 7442338Abstract: The present invention develops a manufacture method, via conventional liquid metallurgy, of finished and semi-finished metallic parts as casting, ingot, blooms and slabs in alloys base Fe, base Ni and base Co, microstructurally reinforced with complex molybdenum and titanium carbide particles, by means of their previous elaboration and latter addition to the molten alloy in the melting furnace. Then, when the alloy solidifies, they are inserted and distributed within the grains of the base metallic matrix, enhancing their mechanical properties and behavior at room as well as at high temperatures.Type: GrantFiled: May 13, 2004Date of Patent: October 28, 2008Assignee: Fundacion InasmetInventors: Ignacio Erauskin Lopetegui, Manuel Gutierrez Stampa, Inigo Agote Beloki, Manuel Orbegozo Ibarguren
-
Publication number: 20080185078Abstract: A Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the Ll2 type [Co3(Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3(Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.Type: ApplicationFiled: February 25, 2008Publication date: August 7, 2008Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCYInventors: Kiyohito ISHIDA, Ryosuke KAINUMA, Katunari OIKAWA, Ikuo OHNUMA, Jun SATO
-
Publication number: 20080185075Abstract: A Co-based alloy being useful as a spiral spring, common spring, wire, cable guide, steel belt, build-up material, guide wire, stent, catheter, etc. There is provided a Co-based alloy having a composition of Co—Al binary system containing 3-13% Al loaded with at least one workability enhancing element selected from among 001 to 50% Ni, 0.01 to 40% Fe and 0.01 to 30% Mn and having a lamellar structure wherein f.c.c. structure ?-phase and ?(B2)-phase are repeated in layers. The lamellar structure is so regulated that the occupancy ratio of the whole structure is 30 vol. % or above and the layer spacing is 100 ?m or less. The Co-based alloy may contain at least one optional component selected from among Ga, Cr, V, Ti, Mo, Nb, Zr, W, Ta, Hf, Si, Rh, Pd, Ir, Pt, Au, B, C and P may be added in a total amount of 0.01 to 60%.Type: ApplicationFiled: April 7, 2008Publication date: August 7, 2008Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCYInventors: Kiyohito ISHIDA, Kiyoshi YAMAUCHI, Ryosuke KAINUMA, Yuji SUTOU, Toshihiro OMORI
-
Patent number: 6986951Abstract: The present invention relates to a cobalt-based alloy for the coating of organs subject to erosion by liquid comprising chromium 28–32% by weight, tungsten 6–8% by weight, silicon 0.1–2% by weight, carbon 1.2–1.7% by weight, nickel 3–6% by weight, molybdenum 1–3%, cobalt the complement to 100%. The invention also relates to an application method of the alloy on organs subject to erosion by liquid, in particular vapour turbine blades, to reduce the metal erosion rate following impact with liquids.Type: GrantFiled: September 25, 2003Date of Patent: January 17, 2006Assignee: Nuovo Pignone Holdings S.p.A.Inventor: Massimo Giannozzi
-
Patent number: 6984458Abstract: The present invention relates to a method for treating organs subject to erosion by liquids, in particular vapour turbine components, which contemplates laser plating with a cobalt-based alloy comprising chromium from 28 to 32% by weight; tungsten from 5 to 7% by weight; silicon from 0.1 to 2% by weight; carbon from 1.2 to 1.7% by weight; nickel from 0.5 to 3% by weight; iron from 0.01 to 1% by weight; manganese from 0.01 to 1% by weight; molybdenum from 0.2 to 1% by weight; possible impurities or other elements from 0 to 0.5% by weight and cobalt the complement to 100%.Type: GrantFiled: October 31, 2003Date of Patent: January 10, 2006Assignee: Nuovo Pignone Holding S.p.A.Inventor: Massimo Giannozzi
-
Patent number: 6924046Abstract: A protective layer has the composition 0.5 to 2% of rhenium, 15 to 21% of chromium, 9 to 11.5% of aluminum, 0.05 to 0.7% of yttrium and/or at least one equivalent metal from the group consisting of scandium and the rare earths, 0 to 1% of ruthenium, remainder cobalt and/or nickel and production-related impurities, and is scarcely subject to any embrittlement from Cr/Re precipitations.Type: GrantFiled: November 5, 2003Date of Patent: August 2, 2005Assignee: Siemens AktiengesellschaftInventor: Werner Stamm
-
Patent number: 6720088Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.Type: GrantFiled: February 5, 2002Date of Patent: April 13, 2004Assignee: General Electric CompanyInventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
-
Patent number: 6696176Abstract: A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.Type: GrantFiled: March 6, 2002Date of Patent: February 24, 2004Assignee: Siemens Westinghouse Power CorporationInventors: David B. Allen, Gregg P. Wagner, Brij B. Seth
-
Patent number: 6607614Abstract: The present invention provides amorphous non-laminar nickel phosphorous alloys, amorphous non-laminar nickel cobalt phosphorous alloys, or amorphous non-laminar cobalt phosphorous alloys. These alloys are useful in the formation of metal articles and metal-coated articles, including high precision devices and molds for plastics. In addition, the alloys of the present invention are useful in repairing damaged metal surfaces.Type: GrantFiled: October 16, 1998Date of Patent: August 19, 2003Assignee: Techmetals, Inc.Inventors: Rick Alan Richardson, Daniel A. Brockman
-
Publication number: 20020064678Abstract: To provide a corrosion-resisting and wear resisting alloy including cobalt, nickel or iron as a base used for a sliding part or a valve seat for a machine, and restraining erosion and corrosion caused by eutectic carbide constituting the alloy in an atmosphere with dissolved oxygen.Type: ApplicationFiled: August 28, 2001Publication date: May 30, 2002Inventors: Yoshihisa Kiyotoki, Yoshiteru Chiba, Shin Kumagai, Yasuhiro Ogawa, Akira Sakamoto, Hiroyuki Shinohara
-
Patent number: 6077615Abstract: A Co-base alloy including, by weight, 0.03-0.10% C, not more than 1.0% Si, not more than 1.0% Mn, 20-30% Cr, 15-23% Ni, 3-10% W, 5-10% Ta and 0.05-0.7% Zr, is used as a welding material. A gas turbine nozzle has a crack repaired with a multi-layer weld using the Co-base alloy and a gas turbine for power generation employs the nozzle.Type: GrantFiled: December 16, 1997Date of Patent: June 20, 2000Assignee: Hitachi, Ltd.Inventors: Masami Yada, Takao Funamoto, Takamitsu Nakazaki, Kei Kobayashi, Norio Yokoba, Nobuyuki Iizuka, Kazuhiko Kumata
-
Patent number: 6004661Abstract: An amorphous magnetic material possesses a composition essentially expressed by (Fe.sub.1-a-b N.sub.a M.sub.b).sub.100-x-y Si.sub.x B.sub.y (M denotes at least one kind of element selected from Mn, Cr, Co, Nb, V, Mo, Ta, W and Zr, 0.395.ltoreq.a.ltoreq.0.7, 0.ltoreq.b.ltoreq.0.21, 1-a-b<a, 6.ltoreq.x.ltoreq.18 at %, 10.ltoreq.y.ltoreq.18 at %, respectively). An amorphous magnetic material which has such a Ni rich Fe-Ni base possesses a Curie temperature T.sub.c of 473 to 573K, the maximum magnetic flux density B.sub.m of 0.5 to 0.9T. A ratio of residual magnetic flux density B.sub.r and the maximum magnetic flux density B.sub.m can be controlled according to a required characteristics, and, in the case of being used in a saturable core, is set at 0.60 or more. With an amorphous magnetic material of an inexpensive Fe-Ni base, magnetic characteristics applicable in a high frequency region, thermal stability, surface smoothness can be realized.Type: GrantFiled: June 24, 1998Date of Patent: December 21, 1999Assignee: Kabushiki Kaisha ToshibaInventors: Kazumi Sakai, Takao Kusaka, Yasuaki Moriya
-
Patent number: 5925197Abstract: A sintered hard alloy for tools for cutting wood. The alloy according to the present invention comprises 30-98 volume % hard constituents in a binder phase based on nickel and/or cobalt. The hard constituents comprise oxides, carbides, nitrides and/or borides of Al, Zr, Si and/or Ti, preferably Al.sub.2 O.sub.3, ZrC, ZrO.sub.2, SiC, Si.sub.3 N.sub.4 and/or TiB.sub.2 with a mean grain size <1.5 .mu.m, preferably <1.0 .mu.m. The binder phase comprises in solution, in weight %, Co max 90, Ni max 90, Cr 5-45.Type: GrantFiled: April 28, 1995Date of Patent: July 20, 1999Assignee: Sandvik ABInventor: Enrico Galli
-
Patent number: 5916518Abstract: An improved cobalt-base braze alloy composition and method for diffusion brazing are provided for use in repairing superalloy articles, such as gas turbine engines, power generation turbines, refinery equipment, and heat exchangers. The improved cobalt-base braze alloy composition includes nickel; at least one element selected from the group of rhenium, palladium, and platinum; at least one element selected from the group of boron and silicon; and the remaining balance consists of cobalt. This composition may also include aluminum, and the composition may be combined with one or more powdered base metal superalloy compositions to form an improved diffusion braze alloy mixture. In the improved method for repairing superalloy articles, the foregoing mixture is applied to a region of the superalloy article to be repaired. The mixture is then heated to melt the cobalt-base braze alloy, thereby joining the base metal superalloy powder particles together, and joining the entire mixture to the region being repaired.Type: GrantFiled: April 8, 1997Date of Patent: June 29, 1999Assignee: Allison Engine CompanyInventor: Richard Patrick Chesnes
-
Patent number: 5801630Abstract: A harmonic-type EAS marker includes a wire segment formed of cobalt alloy. To form the wire segment, the cobalt alloy is cast as an amorphous wire, die-drawn to a smaller diameter, and then annealed with application of longitudinal tension. The annealed wire is cut to produce wire segments which have a magnetic hysteresis loop with a large Barkhausen discontinuity at a lower threshold level than has previously been achieved.Type: GrantFiled: November 8, 1996Date of Patent: September 1, 1998Assignee: Sensormatic Electronics CorporationInventors: Wing K. Ho, Jiro Yamasaki
-
Patent number: 5728279Abstract: Target for a magnetron-cathode sputtering apparatus is made from a cobalt base alloy containing additional elements in such concentrations that intermetallic phases are formed with at least one of these elements and intermetallic phases are observed on the basis of the phase diagram in the state of equilibrium at the operating temperature of the target. The grain boundaries, sub-grain boundaries, twin-grain boundaries or slip bands of the cobalt mixed crystal forming the matrix are decorated with the elements forming the intermetallic phases. X-ray diffraction diagrams made from the target display reflections of an intermetallic phase which is largely absent in the cast state and which forms only during a heat treatment in the temperature range below the solidus temperature of the alloy by a solid state reaction.Type: GrantFiled: December 15, 1994Date of Patent: March 17, 1998Assignee: Leybold Materials GmbHInventors: Martin Schlott, Martin Weigert, Kwei Teng, Bruce Gehman
-
Patent number: 5702542Abstract: Metal-matrix composites and methods for producing these composites are provided. The manufacturing methods include providing a ceramic preform having a uniform distribution of ceramic particles sintered to one another. The particles include an average particle size of no greater than about 3 microns, and at least one half of the volume of the preform is occupied by porosity. The preform is then disposed into a mold and contacted by molten metal. The molten metal is then forced into the pores of the preform and permitted to solidify to form a solid metal-matrix composite. This composite is machinable with a high-speed steel (HSS) bit for greater than about 1 minute without excessive wear occurring to the bit. This invention preferably employs metal-matrixes including Al, Li, Be, Pb, He, Au, Sn, Mg, Ti, Cu, and Zn. Preferred ceramics include oxides, borides, nitrides, carbides, carbon, or a mixture thereof. Inert gas pressures of less than about 3,000 psi can be used to easily infiltrate the preforms.Type: GrantFiled: December 18, 1995Date of Patent: December 30, 1997Inventors: Alexander M. Brown, Eric M. Klier
-
Patent number: 5587259Abstract: A metal current collecting substrate for an air cathode in an electrochemical metal air cell is provided for, wherein the substrate is hardened by one of the steps of sandblasting, shotblasting, plastic deformation of the substrate below the recrystallization temperature range of the metal thereof, and heating the substrate to above the transformation temperature of the metal thereof followed by quenching the substrate below the transformation temperature of the metal thereof. Catalytically active materials, most preferably a mixture of carbon and manganese dioxide, are pressed or otherwise disposed upon the hardened substrate. The substrate is capable of being connected to electrical circuitry. Most preferably, the substrate is a metal screen that has been hardened, roughened and pitted by sandblasting before the catalytically active materials are disposed thereupon, and before the substrate is incorporated into an electrochemical metal air cell.Type: GrantFiled: March 9, 1994Date of Patent: December 24, 1996Assignee: Rayovac CorporationInventors: Robert B. Dopp, John E. Oltman, Joseph L. Passaniti
-
Patent number: 5429883Abstract: An alloy having excellent corrosion resistance and abrasion resistance, is provided comprising a matrix metal phase comprised of at least one member selected from an Fe-base alloy, a Co-base alloy and a Ni-base alloy and, present in the matrix metal phase, 10 to 65%, in terms of the area, of a substantially homogeneously crystallized and/or precipitated VC particle phase having a particle diameter of 5 .mu.m or less.A surface-modified metallic member, is also provided comprising a metallic member and the above-described alloy, the alloy being integrally coated on the surface of the metallic member at its desired portion.Type: GrantFiled: May 20, 1993Date of Patent: July 4, 1995Assignees: Toshiba Kikai Kabushiki Kaisha, Daido Steel Co., Ltd.Inventors: Kyoichi Sasaki, Yoshihisa Kato
-
Patent number: 5238481Abstract: A heat-resistant sintered hard alloy comprises 35% to 95% by weight of a WCoB type complex boride in a cobalt base alloy. The alloy contains 1.5% to 4.1% boron, 19.1% to 69.7% tungsten, optionally to 25% chromium, the balance being cobalt and a maximum of 1% impurities. Nickel, iron and/or copper may be substituted for portions of the cobalt content.Type: GrantFiled: January 23, 1992Date of Patent: August 24, 1993Assignee: Toyo Kohan Co., Ltd.Inventors: Kenichi Takagi, Masao Komai, Yoshihiko Isobe
-
Patent number: 5169463Abstract: A work-strengthenable alloy which includes a gamma prime phase gamma prime particles comprising the following elements in percent by weight:______________________________________ molybdenum 6-16 chromium 13-25 iron 0-23 nickel 10-55 carbon 0-0.05 boron 0-0.05 cobalt balance, at least 20, ______________________________________said alloy also containing one or more elements which form gamma prime phase with nickel,the electron vacancy number, N.sub.v, of the alloy being defined byN.sub.v =0.61 Ni+1.71 Co+2.66 Fe+4.66 Cr+566 Mowherein the respective chemical symbols represent the effective atomic fractions of the respective elements present in the alloy, said value not exceeding the valueN.sub.v =2.82-0.017 W.sub.Fe,where W.sub.Fe is the percent by weight of iron in the alloy for those alloys containing no iron or less than 13 percent by weight iron and W.sub.Fe is 13 for the alloys containing from 13-23 percent by weight iron. The alloys are formed by a melt; and heating the alloy at a temperature of from 600.Type: GrantFiled: February 19, 1991Date of Patent: December 8, 1992Assignee: SPS Technologies, Inc.Inventors: Roger D. Doherty, Rishi P. Singh
-
Patent number: 4938805Abstract: Cobalt-base superalloys having special utility in the production of industrial gas turbine hot gas path components because of their unique combination of properties in specially heat-treated condition including excellent hot corrosion resistance, stress-rupture strength at high temperature, metallurgical stability, tensile ductility and weldability, consist essentially of 0.3 to 0.6% carbon, 27-35% chromium, 9-16% nickel, 6-9% tungsten, 0.45 to 2.0% tantalum, up to 3.0% hafnium, up to 0.7% zirconium, not more than 2.0% iron, 1.5% manganese and silicon and 0.Type: GrantFiled: July 14, 1986Date of Patent: July 3, 1990Assignee: General Electric CompanyInventors: John S. Haydon, Adrian M. Beltran, John H. Wood
-
Patent number: 4908069Abstract: A method of making a work-strengthenable alloy which includes a gamma prime phase which method comprises forming a melt comprising the following elements in percent by weight:______________________________________ molybdenum 6-16 chromium 13-25 iron 0-23 nickel 10-55 carbon 0-0.05 boron 0-0.05 cobalt balance, at least 20, ______________________________________said alloy also containing one or more elements which form gamma prime phase with nickel, the electron vacancy number, N.sub.v, of the alloy being defined byN.sub.v =0.61 Ni+1.71 Co+2.66 Fe+4.66 Cr+5.66 Mowherein the respective chemical symbols represent the effective atomic fractions of the respective elements present in the alloy, said value not exceeding the valueN.sub.v =2.82-0.017 W.sub.Fe,where W.sub.Fe is the percent by weight of iron in the alloy for those alloys containing no iron or less than 13 percent by weight iron and W.sub.Type: GrantFiled: October 19, 1987Date of Patent: March 13, 1990Assignee: SPS Technologies, Inc.Inventors: Roger D. Doherty, Rishi P. Singh
-
Patent number: 4789412Abstract: A cobalt-base alloy comprises 0.2-1 wt % C 0.4-2 wt % Si, 0.2-1.5 wt % Mn, 5-15 wt % Ni, 20-35 wt % Cr, 3-15 wt % W, 0.003-0.1 wt % Ni, 20-35 wt % Cr, 3-15 wt % W, 0.003-0.1 wt % B, 0.05-1 wt % Nb, 0.01-1 wt % Ta, 2 wt % or less Fe, 30 ppm or less oxygen, 100 ppm or less nitrogen, and the balance of 45 wt % or more Co, wherein the content of Si is larger than that of Mn. The alloy is in a form of casting and has a structure containing a eutectic carbide and a secondary carbide dispersed therein. The cast alloy is produced through solution treatment at 1,100.degree.-1.200.degree. C., and aging treatment at 950.degree.-1,050.degree. C., and cooling rate after the solution treatment and after the aging treatment is 150.degree. to 300.degree. C./h. A gas turbine nozzle is made of a casting of the above-mentioned alloy.Type: GrantFiled: March 19, 1987Date of Patent: December 6, 1988Assignee: Hitachi, Ltd.Inventors: Shigeyoshi Nakamura, Tetsuo Kashimura, Nobuyuki Iizuka, Yutaka Fukui, Minoru Morikawa, Soichi Kurosawa
-
Patent number: 4761177Abstract: Fine cobalt or nickel powder is produced by hydrogen reduction of a sulfate solution in the presence of a base and a strong reductant such as a metal borohydride wherein the base is added stagewise to the solution with the initial addition of base being sufficient to insure an essentially neutral pH at the time of reductant addition.Type: GrantFiled: June 26, 1987Date of Patent: August 2, 1988Assignee: AMAX Inc.Inventors: Eddie C. Chou, Leo W. Beckstead, Luther R. Tinnin
-
Patent number: 4755240Abstract: The present invention provides Ni (and/or Co) base precipitation hardened alloy compositions having improved resistance to stress corrosion cracking and being comprised of:12-25 wt. % Cr;0-10 wt. % Mo;0-12 wt. % W, with the proviso that Mo+0.5 W is .gtoreq.2 wt. % and .ltoreq.10 wt. % and with the proviso that Cr+Mo+0.5 W is .ltoreq.28 wt. %;2-6 wt. % of one or more of Al, Nb, and Ti;<0.05 wt. % C;<0.05 wt. % O;<0.05 wt. % N; and the balance being Ni (and/or Co) and any incidental impurities,wherein the concentrations of Ni (and/or Co), Cr and Mo (and/or W) are correlated so that their combination represents a point within the area ABCD of FIG. 1 hereof. Preferably, the ratio, expressed in atomic percent, of Al to Nb+Ti is between about 0 and 4.0, preferably between about 0.8 and 1.5, more preferably about 1. In addition, Hf is preferably included in a concentration, expressed in weight percent, of between about 10 (C+O+N) and 30 (C+O+N), more preferably between about 15 (C+O+N) and 20 (C+O+N).Type: GrantFiled: May 12, 1986Date of Patent: July 5, 1988Assignees: Exxon Production Research Company, Exxon Research and Engineering CompanyInventors: Reghavan Ayer, Glen A. Vaughn, Lawrence J. Sykes
-
Patent number: 4714468Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.Type: GrantFiled: January 27, 1987Date of Patent: December 22, 1987Assignee: Pfizer Hospital Products Group Inc.Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
-
Patent number: 4668290Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.Type: GrantFiled: August 13, 1985Date of Patent: May 26, 1987Assignee: Pfizer Hospital Products Group Inc.Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
-
Patent number: 4631082Abstract: An oxide dispersion strengthened cobalt-chromium superalloy produced by mechanical alloying containing a refractory oxide, preferably yttrium oxide, and characterized by excellent corrosion resistance, high fatigue strength and high temperature stability; and prostheses formed from said superalloy.Type: GrantFiled: February 20, 1985Date of Patent: December 23, 1986Assignee: Pfizer Hospital Products Group Inc.Inventors: Henry L. Andrews, Gregory E. Gardiner
-
Patent number: 4473417Abstract: There is disclosed an amorphous alloy for a magnetic core material represented by the formula(Co.sub.1-x.sbsb.1.sub.-x.sbsb.2 Fe.sub.x.sbsb.1 M.sub.x.sbsb.2).sub.x.sbsb.3 B.sub.x.sbsb.4 Si.sub.100-x.sbsb.3.sub.-x.sbsb.4wherein M is at least one element selected from the group consisting of Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Ru, Hf, Ta, W and Re, and x.sub.1, x.sub.2, x.sub.3 and x.sub.4 are numbers which satisfy relations of 0.ltoreq.x.sub.1 .ltoreq.0.10, 0.ltoreq.x.sub.2 .ltoreq.0.10, 70.ltoreq.x.sub.3 .ltoreq.79 and 5.ltoreq.x.sub.4 .ltoreq.9, respectively.According to the present invention, it could be provided an amorphous alloy suitable for a magnetic core material of a magnetic amplifier in which its coercive force is as low as 0.4 oersted or less at a high frequency of 20 KHz or more, particularly even at 50 KHz, and its rectangular ratio is as much as 85% or more.Type: GrantFiled: August 6, 1982Date of Patent: September 25, 1984Assignee: Tokyo Shibaura Denki Kabushiki KaishaInventors: Koichiro Inomata, Michio Hasegawa, Masakatsu Haga, Takao Sawa
-
Patent number: 4437913Abstract: A cobalt base alloy having a superior high-temperature strength and high-temperature ductility, containing, by weight, 0.15 to 2% carbon, less than 2% silicon, less than 2% manganese, 5 to 15% nickel, 18 to 35% chromium, 3 to 15% tungsten, 0.003 to 0.1% boron, 0.01 to 1% niobium, 0.01 to 1% zirconium, less than 110% iron, less than 1% tantalum, less than 1% hafnium and remainder cobalt. At least one of 0.01 to 1 wt% titanium and 0.01 to 1 wt% (combined amount) rare earth elements is added to the alloy. The alloy is used as a casting and contains eutectic carbides and secondary carbides precipitated substantially uniformly in the grains. If the secondary carbides are formed by an age-treatment conducted at a higher temperature than that at which the alloy is actually used, the high-temperature strength and the high-temperature ductility of the alloy are remarkably improved. The cobalt base alloy is formed into gas turbine nozzles by a precision casting.Type: GrantFiled: July 24, 1981Date of Patent: March 20, 1984Assignee: Hitachi, Ltd.Inventors: Yutaka Fukui, Tetsuo Kashimura