Chromium Containing Patents (Class 148/410)
  • Publication number: 20020139458
    Abstract: A rigid die insert for forming and shaping a working material. The rigid die insert comprises a nickel-base superalloy, preferably Rene 95. A plurality of gamma prime particles are uniformly distributed throughout the rigid die insert, which has a Rockwell hardness Rc of between about 48 and about 52. The invention also includes a method of treating a rigid die insert comprising a nickel-base superalloy to reduce crack propagation and raise yield stress. The method comprises the steps of: providing the rigid die insert; dissolving larger gamma-prime particles in the rigid die insert; and growing additional gamma-prime particles of smaller particle size in the rigid die insert, whereby the particle size of each of the plurality of gamma-prime particles is refined, thereby reducing crack propagation and raising the yield stress of the rigid die insert. A method of refining the particle size of gamma-prime particles in a Rene 95 superalloy is also disclosed.
    Type: Application
    Filed: April 3, 2001
    Publication date: October 3, 2002
    Applicant: General Electric Company
    Inventors: Raymond Grant Rowe, Arne Ronald Majorell, David Peter Mika
  • Patent number: 6409853
    Abstract: A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750° F. and 1800° F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750° F. and 1800° F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725° F. and 1750° F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: June 25, 2002
    Assignee: General Electric Company
    Inventors: Samuel V. Thamboo, Ling Yang
  • Publication number: 20020064678
    Abstract: To provide a corrosion-resisting and wear resisting alloy including cobalt, nickel or iron as a base used for a sliding part or a valve seat for a machine, and restraining erosion and corrosion caused by eutectic carbide constituting the alloy in an atmosphere with dissolved oxygen.
    Type: Application
    Filed: August 28, 2001
    Publication date: May 30, 2002
    Inventors: Yoshihisa Kiyotoki, Yoshiteru Chiba, Shin Kumagai, Yasuhiro Ogawa, Akira Sakamoto, Hiroyuki Shinohara
  • Publication number: 20020053376
    Abstract: A manufacturing method, particularly a forging treatment and a heat treatment method of a Ni-based alloy having sulfidation-corrosion resistance used for component members of corrosion-resistant high-temperature equipment, that is, Waspaloy (a trademark of United Technologies) or its improved Ni-based alloy wherein the high temperature sulfidation-corrosion resistance of the alloy can be improved while maintaining hot strength properties is disclosed. A Ni-based alloy used for the method consists essentially of 0.005 to 0.1% C, 18 to 21% Cr, 12 to 15% Co, 3.5 to 5.0% Mo, not more than 3.25% Ti and 1.2 to 4.0% Al (expressed in mass percentage), with the balance substantially comprising Ni.
    Type: Application
    Filed: July 17, 2001
    Publication date: May 9, 2002
    Applicant: HITACHI METALS, LTD.
    Inventors: Toshiaki Nonomura, Takehiro Ohno, Toshihiro Uehara, Hiroshi Yakuwa, Matsuho Miyasaka, Shuhei Nakahama, Shigeru Sawada
  • Patent number: 6383312
    Abstract: A nickel base alloy comprising: (measured in % by weight): 11-16% Co; 12.2-15.5% Cr; 6.5-7.2% Al; 3.2-5.0% Re; 1.0-2.5% Si; 1.5-4.5% Ta; 0.2-2.0% Nb; 0.2-1.2% Hf; 0.2-1.2% Y; 0-1.5% Mg; 0-1.5% Zr; 0-0.5% La and La series elements; 0-0.15% C; 0-0.1% B; and a remainder including Ni and impurities. The alloy is particularly suited for coatings for gas turbine components such as gas turbine blades and vanes.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: May 7, 2002
    Assignee: Alstom Ltd
    Inventors: Maxim Konter, Peter David Holmes, Christoph Tonnes, Hans-Peter Bossmann, Christoph Sommer
  • Patent number: 6375766
    Abstract: A nickel-base alloy containing a continuous matrix composed of a solid solution of chromium in nickel and a precipitate granularly dispersed in and coherent with the matrix and composed of an intermetallic nickel compound. The intermetallic nickel compound contains gallium that replaces aluminum and/or titanium partly or completely. The invention also relates to an article of manufacture containing a substrate formed of such a nickel-base alloy.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: April 23, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Norbert Czech
  • Publication number: 20020005233
    Abstract: A die cast article such is composed of nickel base superaloy IN 718 is disclosed. The microstructure is characterized by an absence of flowlines and includes a fine average grain size, e.g., ASTM 3 or smaller. Exemplary articles include gas turbine engine components, such as blades, vanes, cases and seals.
    Type: Application
    Filed: December 7, 1999
    Publication date: January 17, 2002
    Inventors: JOHN J. SCHIRRA, RALPH GIUGNO, WALTER FREDERICK GUSTAFSON, JOHN JOSEPH MARCIN JR., JEFFERY WILLIAM SAMUELSON, DELWYN EARLE NORTON
  • Patent number: 6331217
    Abstract: Large gas turbine blades made from separate cast segments of superalloys are disclosed. The turbine blade is designed such that bond lines between adjacent segments are placed in low stress regions of the blade. The cast superalloy segments of the blades are aligned and fitted together with specified tolerances. The turbine blade segments are then joined by transient liquid phase bonding, followed by a controlled heat treatment which produces the desired microstructure in the bond region. The method allows for the production of large, high quality turbine blades by joining small, high quality cast superalloy sections, in comparison with prior attempts to cast large turbine blades as single pieces which have produced very low yields and high individual component costs.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: December 18, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Michael A. Burke, Paula D. Freyer, Mohan A. Hebbar, Brij B. Seth, Gary W. Swartzbeck, Thomas Walter Zagar
  • Patent number: 6322643
    Abstract: An Ni-base heat resistant alloy, has a composition which contains, by weight, Cr: from 12.0 to 14.3%, Co: from 8.5 to 11.0%, Mo: from 1.0 to 3.5%, W: from 3.5 to 6.2%, Ta: from 3.0 to 5.5%, Al: from 3.5 to 4.5%, Ti: from 2.0 to 3.2%, C: from 0.04 to 0.12%, B: from 0.005 to 0.05%, and the balance substantially Ni and inevitable impurities. A large-size casting, as well as a large-size turbine blade, having a columnar crystalline Ni-base heat-resistant alloy formed from the Ni-base heat-resistant alloy, have sound cast surfaces and a sound internal structure.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: November 27, 2001
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Akira Mitsuhashi, Michi Misumi, Saburou Wakita, Hisataka Kawai, Kouji Takahashi, Ikuo Okada
  • Patent number: 6287398
    Abstract: A high strength nickel-base alloy consisting essentially of, by weight percent, 50 to 60 nickel, 19 to 23 chromium, 18 to 22 iron, 3 to 4.4 aluminum, 0 to 0.4 titanium, 0.05 to 0.5 carbon, 0 to 0.1 cerium, 0 to 0.3 yttrium, 0.002 to 0.4 total cerium plus yttrium, 0.0005 to 0.4 zirconium, 0 to 2 niobium, 0 to 2 manganese, 0 to 1.5 silicon, 0 to 0.1 nitrogen, 0 to 0.5 calcium and magnesium, 0 to 0.1 boron and incidental impurities. The alloy forms 1 to 5 mole percent Cr7C3 after 24 hours at a temperature between 950 and 1150° C. for high temperature strength.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: September 11, 2001
    Assignee: Inco Alloys International, Inc.
    Inventors: Gaylord Darrell Smith, Norman Farr, Brian Allen Baker
  • Patent number: 6284392
    Abstract: A cast nickel-base superalloy component (10) is made having a composition containing small amounts of both boron and zirconium which are effective in combination to provide increased weldability, where such alloy is adapted for welding by weld (18) to a second superalloy piece, where the two pieces are firmly bonded together and have a Sigmajig transverse stress value (16) greater than 137.9 million Newtons per square meter.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: September 4, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Brij B. Seth, Easo P. George, Sudarsanum S. Babu, Gene M. Goodwin, Stanislaus A. David, Carol E. Moyer
  • Patent number: 6258317
    Abstract: An ultra supercritical boiler tubing alloy characterized by a microstructure stabilized and strengthened for 375 bar/700° C. steam, in weight percent, service and alloyed to resist coal ash/flue gas corrosion for 200,000 hours consisting of 10 to 24 cobalt, 22.6 to 30 chromium, 2.4 to 6 molybdenum, 0 to 9 iron, 0.2 to 3.2 aluminum, 0.2 to 2.8 titanium, 0.1 to 2.5 niobium, 0 to 2 manganese, 0 to 1 silicon, 0.01 to 0.3 zirconium, 0.001 to 0.01 boron, 0.005 to 0.3 carbon, 0 to 4 tungsten, 0 to 1 tantalum and balance nickel and incidental impurities.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: July 10, 2001
    Assignee: Inco Alloys International, Inc.
    Inventors: Gaylord Darrell Smith, Shailesh Jayantilal Patel, Norman Charles Farr
  • Patent number: 6221181
    Abstract: The invention relates to a coating composition for superalloy structural parts, especially for gas turbine vanes and blades, which provides simultaneously excellent environmental resistance and highly improved thermomechanical behavior. The coating consists essentially of, by weight, 28-35% Co, 11-15% Cr, 10-13% Al, 0-1% Re, 1-2% Si, 0.2-1% Ta, 0.005-0.5% Y, 0-5% Ru, 0-1% Ca, 0-1% Mg, 0-0.5% La (or elements from the La series), 0-0.1% B, balance Ni and incidental impurities.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 24, 2001
    Assignee: ABB Research Ltd.
    Inventors: Hans-Peter Bossmann, Hans J. Schmutzler, Marianne Sommer, Christoph Sommer, Maxim Konter, Peter Holmes, Christoph Toennes
  • Patent number: 6132527
    Abstract: A new nickel base superalloy suitable for compressor or turbine discs of gas turbine engines with fatigue crack propagation resistance equal to Waspaloy, tensile strength higher than Waspaloy and higher operating temperature than Waspaloy or UDIMET 720 family of alloys. The nickel base superalloy has a preferred composition by weight % of 14.0-19.0% cobalt, 14.35-15.15 Chromium, 4.25-5.25 Molybdenum, 1.35-2.15 tantalum, 3.45-4.15 titanium, 2.85-3.15 aluminium, 0.01-0.025 boron, 0.012-0.033 carbon, 0.05-0.07 zirconium, 0.5-1.0 hafnium, up to 1.0 rhenium, up to 2.0 tungsten, less than 0.5 niobium, up to 0.1 yttrium, up to 0.1 vanadium, up to 1.0 iron, up to 0.2 silicon, up to 0.15 manganese and balance nickel plus incidental impurities.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: October 17, 2000
    Assignee: Rolls-Royce plc
    Inventors: Steven J Hessell, Wayne Voice, Allister W James, Sarah A Blackham, Colin J Small, Michael R Winstone
  • Patent number: 6113849
    Abstract: Nickel-based alloy, the chemical composition of which comprises, by weight, from 24.5% to 26.5% chromium and from 13.5% to 16.5% molybdenum, the remainder being nickel, optionally one or more complementary alloy elements selected from iron, aluminium and magnesium, and impurities resulting from processing. Drawn wire made of nickel-based alloy, and welding electrode including a drawn wire made of nickel-based alloy.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: September 5, 2000
    Assignee: Ugine-Savoie Imphy S.A.
    Inventors: Albert Bruyere, Jean-Bernard Couffin, Ricardo Cozar, Jacques Levigoureux
  • Patent number: 6093264
    Abstract: A nickel-based alloy composition is disclosed comprising from about 0.05 to about 3 percent by weight beryllium; from about 1 to about 40 percent by weight copper; no greater than about 10 percent by weight chromium, the balance being nickel. The alloy composition may be adjusted to achieve a high, as-cast hardness alloy over a wide range of alloy component contents, or a moderate, as-cast hardness alloy useful for forming articles such as golf clubs which has relatively constant mechanical properties over a wide range of copper contents.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: July 25, 2000
    Assignee: NGK Metals Corporation
    Inventors: Charles Walter Hershberger, Dennis Hall
  • Patent number: 6074602
    Abstract: The present invention is directed to the achievement of increased gas turbine engine efficiencies through further improvements in nickel-base superalloys used to make parts and components for gas turbine engines. The present invention comprises nickel-base superalloys for producing single crystal articles having a significant increase in temperature capability, based on stress rupture strength and low and high cycle fatigue properties, over single crystal articles made from current production nickel-base superalloys. Further, because of their superior resistance to degradation by cyclic oxidation, and their resistance to hot corrosion, the superalloys of this invention possess a balance in mechanical and environmental properties which is unique and has not heretofore been obtained.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 13, 2000
    Assignee: General Electric Company
    Inventors: Carl Stephen Wukusick, Leo Buchakjian, Jr.
  • Patent number: 6071324
    Abstract: A thermal spray powder consists of nickel, chromium and carbon. The chromium consists of a first portion and a second portion, the nickel being alloyed with the first portion in an alloy matrix. The second portion and the carbon are combined into chromium carbide substantially as Cr.sub.3 C.sub.2 or Cr.sub.7 C.sub.3 or a combination thereof, with the chromium carbide being in the form of precipitates between 0.1 .mu.m and 5 .mu.m distributed uniformly in the alloy matrix.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: June 6, 2000
    Assignee: Sulzer Metco (US) Inc.
    Inventors: Komal Laul, Mitchell R. Dorfman, Ronald Eugene Somoskey, Jr.
  • Patent number: 6066291
    Abstract: Castings based on the nickel aluminide intermetallic alloy IC-221M were melted and poured with an addition of enough molybdenum to bring its concentration to 5 weight %. This resulted in a minimization or elimination of the nickel-zirconium eutectic phase in the dies machined and prepared from these castings. The benefit of eliminating or minimizing the nickel zirconium eutectic phase with the addition of measurable amounts of molybdenum (Mo) to the nickel aluminide (Ni.sub.3 Al) alloy is the increase in the useful service life of the tooling made from it; thus providing the advantages of increased productivity, enhanced quality and reduced costs in a manufacturing setting. Heat treatment of the dies machined and prepared from these castings was also undertaken. The heat treatment regimen includes solution treatment at 2100.degree. F. for 24 hours and aging from between 1150.degree. F. and 1300.degree. F. for between 12 to 24 hours.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: May 23, 2000
    Assignee: United Defense, L.P.
    Inventors: Chien-Hua Chen, Guy Monroe Maddox, Jr., John Edward Orth, Elliott Lee Turbeville
  • Patent number: 6063212
    Abstract: Heat treated, spray formed articles are disclosed which exhibit crack growth rates and resistance to stress rupture comparable to corresponding, forged articles. The articles are first formed by depositing molten metal droplets, e.g., of IN 718, on a substrate to form a rough article. The articles are HIP'ed and then processed by heat treating, which includes solution, stabilization and precipitation heat treatments. The resultant articles have fine average grain sizes compared to forged and conventionally heat treated material, as well as yield and tensile strengths comparable to forged material. Importantly, the articles also exhibit low crack growth rates and stress rupture resistance, e.g., comparable to forged material, and have an isotropic microstructure. The articles can be used in place of forged articles.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: May 16, 2000
    Assignee: United Technologies Corporation
    Inventor: Antonio C. Cabral
  • Patent number: 6051083
    Abstract: In order to provide a high strength Ni-base superalloy for directionally solidified castings, which is prevented from solidification cracking at the casting, having a sufficient grain boundary strength for ensuring reliability during its operation and a superior high temperature concurrently, a high strength Ni-base superalloy for directionally solidified castings having a superior grain boundary strength, which contains C: 0.05% to less than 0.1%, B: 0.015% to 0.04%, Hf: 0.01.about.less than 0.5%, Zr: less than 0.01%, Cr: 1.5%.about.16%, Mo: utmost 6%, W: 2.about.12%, Re: 0.1.about.9%, Ta: 2.about.12%, Nb: utmost 4%, Al: 4.5.about.6.5%, Ti: less than 0.5%, Co: less than 9%, and Ni: at least 60% in weight, is disclosed.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: April 18, 2000
    Assignees: Hitachi, Ltd., Hitachi Metals
    Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Mitsuru Kobayashi, Kagehiro Kageyama, Takehiro Ohno
  • Patent number: 6036791
    Abstract: An Ni-base heat resistant alloy, has a composition which contains, by weight, Cr: from 12.0 to 14.3%, Co: from 8.5 to 11.0%, Mo: from 1.0 to 3.5%, W: from 3.5 to 6.2%, Ta: from 3.0 to 5.5%, Al: from 3.5 to 4.5%, Ti: from 2.0 to 3.2%, C: from 0.04 to 0.12%, B: from 0.005 to 0.05%, and the balance substantially Ni and inevitable impurities. A large-size casting, as well as a large-size turbine blade, having a columnar crystalline Ni-base heat-resistant alloy formed from the Ni-base heat-resistant alloy, have sound cast surfaces and a sound internal structure.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: March 14, 2000
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Akira Mitsuhashi, Michi Misumi, Saburou Wakita
  • Patent number: 6007645
    Abstract: A superalloy composition and single crystal articles of the composition are disclosed. The broad range, in weight percent, is 3.0-20.0% Co, 5.0-10.0% W, 5.0-7.0% Al, 0.4-2.9% Cr, 4.0-8.0% Ta, 0-1.0% V, 0-8.5% Re, 0-1.5% Ti, 0-3.0% Hf, 0-4.0% Mo, 0-2.0% Nb, 0-10.0% of one or more elements selected from the group consisting of Ru, Rh, Pd, Os, Ir, Pt, 0-1.0 of one or more elements selected from the group consisting of Y, La, Sc, Ce, lanthanides or actinides series of elements, balance essentially Ni. An equation is presented to select the most useful specific compositions from within this range.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: December 28, 1999
    Assignee: United Technologies Corporation
    Inventors: Alan D. Cetel, David N. Duhl
  • Patent number: 6004408
    Abstract: The invention relates to precipitation hardened alloy compositions comprising the following elements, with the contents expressed in % by weight:______________________________________ nickel: .gtoreq.52.00% chromium: 20.50%-22.50% iron: 7.00%-13.00% molybdenum: 5.50%-7.0% copper: 1.00%-3.50% niobium: 2.65%-3.50% titanium: 1.0%-2.0% cobalt: 0-3.00% aluminum: 0-0.75% tungsten: 0-0.50% silicon: 0-0.20% manganese: 0-0.20% phosphorous: 0-0.03% carbon: 0-0.02% nitrogen: 0-0.02% magnesium: 0-0.005% sulfur: 0-0.005% ______________________________________the elements satisfying the following four relationships:X=(2.271% Ti+1.142% Cr+0.957% Mn+0.858% Fe+0.777% Co+0.717% Ni+2.117% Nb+1.550% Mo+1.655% W+1.90% Al+1.90% Si+0.615% Cu).ltoreq.93.5, the percentages for this relationship being in atomic %;Y=(% Mo+% W+% Cu).ltoreq.9, the percentages for this relationship being in % by weight;A=(0.65% Nb+1.25% Ti+2.20% Al).gtoreq.4.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: December 21, 1999
    Assignee: Aubert & Duval (societe anonyme)
    Inventor: Jacques Montagnon
  • Patent number: 5980653
    Abstract: A nickel-based alloy composition is disclosed comprising from about 0.05 to about 3 percent by weight beryllium; from about 1 to about 40 percent by weight copper; no greater than about 10 percent by weight chromium, the balance being nickel. The alloy composition may be adjusted to achieve a high, as-cast hardness alloy over a wide range of alloy component contents, or a moderate, as-cast hardness alloy useful for forming articles such as golf clubs which has relatively constant mechanical properties over a wide range of copper contents.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: November 9, 1999
    Assignee: NGK Metals Corporation
    Inventors: Charles Walter Hershberger, Dennis Hall
  • Patent number: 5935349
    Abstract: An intermetallic nickel-aluminum base alloy has a microstructure which predominantly includes the binary phase NiAl and further contains the elements chromium and tantalum. The content of the elements chromium and tantalum is in total at most 12 atom %. Preferred contents ranges are 0.3 to 3.8 atom % tantalum and 1.0 to 9.0 atom % chromium. The intermetallic nickel-aluminum base alloy is distinguished in particular by high oxidation resistance at high temperatures, such as for example 1350.degree. C. It is therefore suitable for producing components which are exposed to a high long term temperature stress such as, for example, gas turbine blades. Depending on requirements, additional layers protecting against oxidation can be dispensed with due to the high oxidation resistance.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: August 10, 1999
    Assignees: Siemens Aktiengesellschaft, H. C. Starck GmbH & Co. KG
    Inventors: Gerhard Sauthoff, Benedikt Zeumer
  • Patent number: 5925198
    Abstract: A Ni-based superalloy consists of from 1.4 to 4.4 wt % of Cr; from 3 to 8 wt % of Co; from 5 to 7.5 wt % of W; from 4.8 to 7.5 wt % of Re; from 7.5 to 10 wt % of Ta; from 4.8 to 5.8 wt % of Al; from 0.1 to 0.2 wt % of Hf; from 0.1 to 0.5 wt % of Nb; from 0.01 to 0.05 wt % of Y; and balance Ni.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: July 20, 1999
    Assignee: The Chief Controller, Research and Developement Organization Ministry of Defence, Technical Coordination
    Inventor: Niranjan Das
  • Patent number: 5925197
    Abstract: A sintered hard alloy for tools for cutting wood. The alloy according to the present invention comprises 30-98 volume % hard constituents in a binder phase based on nickel and/or cobalt. The hard constituents comprise oxides, carbides, nitrides and/or borides of Al, Zr, Si and/or Ti, preferably Al.sub.2 O.sub.3, ZrC, ZrO.sub.2, SiC, Si.sub.3 N.sub.4 and/or TiB.sub.2 with a mean grain size <1.5 .mu.m, preferably <1.0 .mu.m. The binder phase comprises in solution, in weight %, Co max 90, Ni max 90, Cr 5-45.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: July 20, 1999
    Assignee: Sandvik AB
    Inventor: Enrico Galli
  • Patent number: 5916382
    Abstract: A superalloy having more excellent hot corrosion resistance than conventional single crystal alloys, oxidation resistance levels as high as that of conventional single crystal alloys, high strength, and creep rupture strength; single crystal members used for a blade or a nozzle produced by utilizing such an alloy; and a combined cycle power generation system produced by utilizing such members. A highly hot corrosion resistant and high-strength superalloy consisting essentially of, by weight, 6-12% Cr, 4.5-6.5% Al, 2-12% W, 2.5-10% Ta, not more than 5.8% Mo, 0.1-3% Co, 0.2-3% Nb, 0.1-4% Re, not more than 0.3% Hf, and the balance being Ni and unavoidable impurities; single crystal members used for a blade or a nozzle produced utilizing such an alloy; and a combined cycle power generation system produced by utilizing such members.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: June 29, 1999
    Assignees: Hitachi, Ltd., Hitachi Metals, Ltd.
    Inventors: Koji Sato, Takehiro Ohno, Ken Yasuda, Hideki Tamaki, Akira Yoshinari
  • Patent number: 5900078
    Abstract: A high-temperature sulfidation-corrosion resistant nickel-base alloy includes 12.about.15 weight % of cobalt, 18.about.21 weight % of chromium, 3.5.about.5 weight % of molybdenum, 0.02.about.0.1 weight % of carbon, at most 2.75 weight % of titanium, and at least 1.6 weight % of aluminum. The remainder is essentially of nickel except for impurities. The high-temperature sulfidation-corrosion resistant nickel-base alloy has sufficient high-temperature strength and is highly resistant to a high-temperature sulfidation corrosion.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: May 4, 1999
    Assignee: Ebara Corporation
    Inventors: Hiroshi Yakuwa, Matsuho Miyasaka, Toshio Narita, Shuhei Nakahama, Masamichi Kawasaki
  • Patent number: 5897718
    Abstract: A new nickel base superalloy suitable for compressor or turbine discs of gas turbine engines with fatigue crack propagation resistance equal to Waspaloy, tensile strength higher than Waspaloy and higher operating temperature than Waspaloy or UDIMET 720 family of alloys. The nickel base superalloy has a preferred composition by weight % of 14.0-19.0% cobalt, 14.35-15.15 Chromium, 4.25-5.25 Molybdenum, 1.35-2.15 tantalum, 3.45-4.15 titanium, 2.85-3.15 aluminium, 0.01-0.025 boron, 0.012-0.033 carbon, 0.05-0.07 zirconium, 0.5-1.0 hafnium, up to 1.0 rhenium, up to 2.0 tungsten, less than 0.5 niobium, up to 0.1 yttrium, up to 0.1 vanadium, up to 1.0 iron, up to 0.2 silicon, up to 0.15 manganese and balance nickel plus incidental impurities.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: April 27, 1999
    Assignee: Rolls-Royce plc
    Inventors: Steven J Hessell, Wayne Voice, Allister W James, Sarah A Blackham, Colin J Small, Michael R Winstone
  • Patent number: 5891272
    Abstract: A .gamma.' precipitation strengthened nickel-base superalloy provided in powder metal or cast and wrought form and alloyed to minimize nucleation tendencies and control grain growth. The superalloy includes a fine dispersion of a second phase in sufficient amounts to prevent critical grain growth in the superalloy when the superalloy is subjected to temperatures above its .gamma.' solvus temperature. The superalloy preferably contains at least about 0.030 weight percent carbon or about 27 to about 2000 ppm yttrium in order to produce a volume fraction of the second phase which is sufficient to cover a minimum of about 10 percent of the grain boundary area.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: April 6, 1999
    Assignee: General Electric Company
    Inventors: Edward L. Raymond, Robert D. Kissinger, Allen J. Paxson, Eric S. Huron
  • Patent number: 5888451
    Abstract: A nickel-base superalloy, in particular for the fabrication of monocrystalline components, consisting essentially of (measured in wt %) 6.0-6.8% of Cr, 8.0-10.0% of Co, 0.5-0.7% of Mo, 6.2-6.6% of W, 2.7-3.2% of Re, 5.4-5.8% of Al, 0.5-0.9% of Ti, 7.2-7.8% of Ta, 0.15-0.3% of Hf. 0.02-0.04% of C, 40-100 ppM of B, the remainder being nickel with impurities. The ratio (Ta+1.5 Hf+0.5 Mo-0.5 Ti)/(W+1.2 Re) is greater than or equal to 0.7.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: March 30, 1999
    Assignee: ABB Research Ltd.
    Inventors: Maxim Konter, Michael Newnham, Christoph Tonnes
  • Patent number: 5888316
    Abstract: This invention relates to nickel-cobalt based alloys comprising the following elements in percent by weight: from about 0.002 to about 0.07 percent carbon, from about 0 to about 0.04 percent boron, from about 0 to about 2.5 percent columbium, from about 12 to about 19 percent chromium, from about 0 to about 6 percent molybdenum, from about 20 to about 35 percent cobalt, from about 0 to about 5 percent aluminum, from about 0 to about 5 percent titanium, from about 0 to about 6 percent tantalum, from about 0 to about 6 percent tungsten, from about 0 to about 2.5 percent vanadium, from about 0 to about 0.06 percent zirconium, and the balance nickel plus incidental impurities, the alloys having a phasial stability number N.sub.v3B less than about 2.60. Furthermore, the alloys have at least one element selected from the group consisting of aluminum, titanium, columbium, tantalum and vanadium. Also, the alloys have at least one element selected from the group consisting of tantalum and tungsten.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: March 30, 1999
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5882586
    Abstract: A heat-resistant nickel-based alloy having excellent welding properties, said nickel-based alloy consisting essentially of, in terms of wt. %, 0.05 to 0.25% of C, 18 to 25% of Cr, 15 to 25% of Co, at least one selected from the group consisting of up to 3.5% of Mo and 5 to 10% of W, with W+1/2Mo being 5 to 10%, 1.0 to 5.0% of Ti, 1.0 to 4.0% of Al, 0.5 to 4.5% of Ta, 0.2 to 3.0% of Nb, 0.005 to 0.10% of Zr, 0.001 to 0.01% of B and the balance being Ni and unavoidable impurities, wherein the (Al+Ti) content and the (W+1/2Mo) content are within the range surrounded by the lines connecting points A (Al+Ti: 5%, W+1/2Mo: 10%), B (Al+Ti: 5%, W+1/2Mo: 5%), C (Al+Ti: 7%, W+1/2Mo: 5%), and D (Al+Ti: 7%, W+1/2Mo: 10%) excluding the line A-B in FIG. 1.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: March 16, 1999
    Assignees: Mitsubishi Steel Mfg. Co., Ltd., Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Itaru Tamura, Kazunori Tokoro, Takashi Kawabata, Tsuyoki Kokubun, Toshio Mochizuki, Shuichi Sakashita, Hisataka Kawai, Ikuo Okada, Ichiro Tsuji, Kouji Takahashi, Taiji Torigoe
  • Patent number: 5851318
    Abstract: The invention relates to a high temperature forgeable alloy consisting of<0.05 C<0.5 Si<0.5 Mn8.5 to 11 Al<0.02 P<0.01 S4 to 10 Cr23 to 28 Fe0.025 to 0.2 Hf and/or rare earths and/or Zr<0.5 Ti<0.005 Bresidue nickel and admixtures due to melting. It is used in the production of articles for energy technologies and in the chemical industry. The alloy is resistant to sulphidization, carbonization and oxidation at temperatures between 400.degree. and 1100.degree. C.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 22, 1998
    Assignee: Krupp VDM GmbH
    Inventor: Jutta Klower
  • Patent number: 5820700
    Abstract: A nickel base superalloy, having either columnar or equiaxed grain structure, which has significantly improved resistance to hydrogen embrittlement, and to fatigue in air is disclosed. The superalloy consists essentially of, in weight percent, about 0.006-0.17 carbon, about 6.0-22.0 chromium, up to about 17.0 cobalt, up to about 9.0 molybdenum, up to about 12.5 tungsten, up to about 5.0 titanium, up to about 6.7 aluminum, up to about 4.5 tantalum, up to about 2.5 hafnium, up to about 18.5 iron, up to about 3.25 rhenium, up to about 1.25 columbium, remainder nickel. The microstructure of the superalloy consists essentially of a plurality of fine, discrete carbide particles, .gamma.' precipitates in a .gamma. matrix, and is essentially free of script carbides, .gamma./.gamma.' eutectic islands and porosity.
    Type: Grant
    Filed: October 4, 1995
    Date of Patent: October 13, 1998
    Assignee: United Technologies Corporation
    Inventors: Daniel P. DeLuca, Charles M. Biondo
  • Patent number: 5815792
    Abstract: A nickel-based superalloy possessing good mechanical properties when hot regarding traction, creep and cracking resistance has a chemical composition which comprises, in percentages by weight: Co 14.5 to 15.5 ; Cr 12 to 15 ; Mo 2 to 4.5 : Al 2.5 to 4; Ti 4 to 6; Hf not more than 0.5 ; C 100 to 300 ppm; B 100 to 500 ppm; Zr 200 to 700 ppm; possibly W up to 4.5; and nickel as the remainder. Components made from these alloys have an excellent microstructural stability when operating at temperatures up to 800.degree. C.
    Type: Grant
    Filed: July 30, 1996
    Date of Patent: September 29, 1998
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "Snecma"
    Inventors: Catherine Duquenne, Jean Charles Henri Lautridou, Michel Marty, Michele Soucail, Andre Walder
  • Patent number: 5788785
    Abstract: The present invention relates to a method for making a gamma prime precipitation strengthened nickel base alloy having an improved resistance to hydrogen embrittlement, particularly crack propagation. The alloy is cast, heat treated to dissolve substantially all the gamma-gamma prime eutectic islands and script carbides without causing incipient melting, cooled to below 1000.degree. C., HIP'ed to eliminate porosity, precipitation treated and aged. The alloy has a microstructure which is essentially free of script carbides, gamma-gamma prime eutectic islands and porosity. The microstructure further includes a plurality of regularly occurring large barrier gamma prime precipitates and a continuous field of fine cuboidal gamma prime precipitates surrounding the large barrier gamma prime precipitates.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: August 4, 1998
    Assignee: United Technology Corporation
    Inventors: Daniel P. DeLuca, Charles M. Biondo, Howard B. Jones, Chris C. Rhemer
  • Patent number: 5759301
    Abstract: A nickel-base superalloy, in particular for the fabrication of large monocrystalline components, essentially comprises (measured in wt %): 6.0-6.8% of Cr, 8.0-10.0% of Co, 0.5-0.7% of Mo, 6.2-6.6% of W, 2.7-3.2% of Re, 5.4-5.8% of Al, 0.6-1.2% of Ti, 6.3-7.0% of Ta, 0.15-0.3% of Hf, 0.02-0.04% of C, 40-100 ppm of B. 15-50 ppm of Mg, the remainder being nickel with impurities. Carbides of Ta, Ti, and Hf, and Mg, and/or Mg--O--S compounds are concentrated along small angle grain boundaries of the superalloy.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: June 2, 1998
    Assignee: ABB Research Ltd.
    Inventors: Maxim Konter, Michael Newnham, Christoph Tonnes
  • Patent number: 5755897
    Abstract: An austenitic carbide-strengthened nickel/chromium/iron foregeable alloy comprises (in % by weight) 0.2 to 0.4% carbon, 25 to 30% chromium, 8 to 11% iron, more than 2.4 to 3.0% aluminum, 0.01 to 0.15% yttrium, 0.01 to 0.20% titanium, 0.01 to 0.20% niobium, 0.01 to 0.10% zirconium, 0.001 to 0.015% magnesium, 0.001 to 0.010% calcium, max 0.030% nitrogen, max 0.50% silicon, max 0.25% manganese, max 0.020% phosphorus, max 0.010% sulfur, balance nickel and unavoidable melting conditioned impurities. The quantity of precipitable carbon C* is in the range 0.083% to 0.300%, where C*=C.sub.tot. -(C.sub.diss. +C.sub.fix.Ti +C.sub.fix.Nb +C.sub.fix.Zr).
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: May 26, 1998
    Assignee: Krupp VDM GmbH
    Inventor: Ulrich Brill
  • Patent number: 5725692
    Abstract: The present invention relates to a heat treated, gamma prime precipitation strengthened nickel base alloy having an improved resistance to hydrogen embrittlement, particularly crack propagation. The alloy has a microstructure which is essentially free of script carbides, gamma--gamma prime eutectic islands and porosity. The microstructure further includes a plurality of regularly occurring large barrier gamma prime precipitates and a continuous field of fine cuboidal gamma prime precipitates surrounding the large barrier gamma prime precipitates.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: March 10, 1998
    Assignee: United Technologies Corporation
    Inventors: Daniel P. DeLuca, Charles M. Biondo, Howard B. Jones, Chris C. Rhemer
  • Patent number: 5679180
    Abstract: The present invention relates to a .gamma." strengthened nickel based alloy having an improved resistance to hydrogen embrittlement and to a process for forming the same. The nickel based alloy consists essentially of from about 0.02 to 0.06 wt % carbon, from about 11 to 13 wt % chromium, from about 17 to 19 wt % iron, from about 2.80 to 3.30 wt % molybdenum, from about 5.75 to about 6.25 wt % columbium+tantalum, from about 1.75 to 2.25 wt % titanium, from about 0.4 to 0.8 wt % aluminum and the balance essentially nickel and is in single crystal form. The nickel based alloy of the present invention has particular utility in high pressure hydrogen environments such as rocket engine components.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: October 21, 1997
    Assignee: United Technologies Corporation
    Inventor: Daniel P. DeLuca
  • Patent number: 5660649
    Abstract: Single crystal superalloy castings are described which have excellent oxidation resistance. The oxidation resistance is due to the presence of small but effective amounts of magnesium in the casting. Single crystal castings containing magnesium in the range of 5-200 parts per million, by weight, are described.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: August 26, 1997
    Assignee: United Technologies Corporation
    Inventors: Norman S. Bornstein, Stephen Chin, David N. Duhl, Donald R. Parille, Dilip M. Shah
  • Patent number: 5638594
    Abstract: A multi-stage telescopic antenna for use in vehicles and a method for manufacturing such an antenna in which the antenna element, which comprises uppermost rod and conductive pipes, is free of any bending or breaking damage even if a large load is applied to the antenna element from a lateral direction, and there is no permanent deformation occurs even after the load is removed, so that the antenna element can always be maintained straight and smooth and stable extension and retraction can be executed.At least the conductive pipes 12 through 14 are formed from a high-elasticity material obtained by heat-treating SUS 631. In the heat treatment, the material is heated at a standard temperature of 480.degree. C..+-.5.degree. C. and then gradually cooled.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: June 17, 1997
    Assignee: Harada Kogyo Kabushiki Kaisha
    Inventors: Misao Shinkawa, Misao Kimura
  • Patent number: 5637159
    Abstract: This invention relates to nickel-cobalt based alloys comprising the following elements in percent by weight: from about 0.002 to about 0.07 percent carbon, from about 0 to about 0.04 percent boron, from about 0 to about 2.5 percent columbium, from about 12 to about 19 percent chromium, from about 0 to about 6 percent molybdenum, from about 20 to about 35 percent cobalt, from about 0 to about 5 percent aluminum, from about 0 to about 5 percent titanium, from about 0 to about 6 percent tantalum, from about 0 to about 6 percent tungsten, from about 0 to about 2.5 percent vanadium, from about 0 to about 0.06 percent zirconium, and the balance nickel plus incidental impurities, the alloys having a phasial stability number N.sub.v3B less than about 2.60. Furthermore, the alloys have at least one element selected from the group consisting of aluminum, titanium, columbium, tantalum and vanadium. Also, the alloys have at least one element selected from the group consisting of tantalum and tungsten.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: June 10, 1997
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5605584
    Abstract: Columnar grain and single crystal nickel base superalloys are heat treated to provide a damage tolerant microstructure. The microstructure contains large, irregularly shaped "barrier" .gamma.' particles interspersed in an ordered array of smaller cuboidal .gamma.' particles in a .gamma. phase matrix. The barrier particles interrupt the progression of cracks through the microstructure. The invention process includes solutioning the .gamma.' phase, cooling slowly to a temperature about 50.degree. F. to 150.degree. F. (28.degree. C. to 83.degree. C.) below the .gamma.' solvus temperature, further cooling at a rate of at least about 100.degree. F. (56.degree. C.) per minute to less than 1000.degree. F. (538.degree. C.), reheating to 1975.degree. F. to 2000.degree. F. (1079.degree. C. to 1093.degree. C.) and holding for about four to six hours, cooling at 100.degree. F. (56.degree. C.) per minute to less than 1000.degree. F. (538.degree. C.), and heating to 1600.degree. F. .+-.25.degree. F. (871.degree. C. .+-.14.
    Type: Grant
    Filed: January 30, 1995
    Date of Patent: February 25, 1997
    Assignee: United Technologies Corporation
    Inventors: Daniel P. DeLuca, Howard B. Jones, Bradford A. Cowles
  • Patent number: 5556594
    Abstract: An age hardenable nickel base chromium, molybdenum, alloy as well as intermediate products and articles made therefrom are disclosed which, in the solution treated and age hardened condition, have a 0.2% yield strength greater than 100 ksi combined with resistance to pitting and crevice corrosion and to stress corrosion cracking in chloride and sulfide environments at elevated temperatures up to about 500.degree. F. without requiring working below the recrystallization temperature of the alloy. Broad and preferred ranges are disclosed as follows:______________________________________ Broad (w/o) Preferred (w/o) ______________________________________ C 0.1 Max. 0.03 Max. Mn 5 Max. 2 Max. Si 1 Max. 0.5 Max. P 0.03 Max. 0.015 Max. S 0.03 Max. 0.010 Max. Cr 16-24 18-22 Mo 7-12 7.5-11 W 4 Max. -- Nb 2-6 2.75-4.25 Ti 0.50-2.5 0.75-1.5 Al Trace-1 0.05-0.35 B 0.02 Max. 0.001-0.006 Zr 0.50 Max. 0.08 Max. Co 5 Max. -- Cu 0-3 0.5 Max. N 0.04 Max. 0.01 Max. Fe 20 Max.
    Type: Grant
    Filed: May 30, 1986
    Date of Patent: September 17, 1996
    Assignee: CRS Holdings, Inc.
    Inventors: Richard B. Frank, Terry A. DeBold, Sunil Widge, James W. Martin
  • Patent number: 5540789
    Abstract: Single crystal superalloy castings are described which have excellent oxidation resistance. The oxidation resistance is due to the presence of small but effective amounts of magnesium in the casting. Single crystal castings containing magnesium in the range of 5-200 parts per million, by weight, are described.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: July 30, 1996
    Assignee: United Technologies Corporation
    Inventors: Norman S. Bornstein, Stephen Chin, David N. Duhl, Donald R. Parille, Dilip M. Shah
  • Patent number: 5540790
    Abstract: This invention relates to a single crystal casting to be used under high stress, high temperature conditions up to about 2030.degree. F., characterized by an increased resistance to creep under such conditions. The casting is made from a nickel-based superalloy consisting essentially of the following elements in percent by weight: from 6.2 to 6.8 percent rhenium, from 1.8 to 2.5 percent chromium, from 1.5 to 2.5 percent cobalt, from 8 to 9 percent tantalum, from 3.5 to 6 percent tungsten, from 5.5 to 6.1 percent aluminum, from 0.1 to 0.5 percent titanium, from 0.01 to 0.1 percent columbium, from 0.25 to 0.60 percent molybdenum, from 0 to 0.05 percent hafnium, from 0 to 0.04 percent carbon, from 0 to 0.01 percent boron, from 0 to 0.01 percent yttrium, from 0 to 0.01 percent cerium, from 0 to 0.01 percent lanthanum, from 0 to 0.04 percent manganese, from 0 to 0.05 percent silicon, form 0 to 0.01 percent zirconium, from 0 to 0.001 percent sulfur, from 0 to 0.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: July 30, 1996
    Assignee: Cannon-Muskegon Corporation
    Inventor: Gary L. Erickson