Containing Over 50 Percent Metal, But No Base Metal Patents (Class 148/419)
-
Patent number: 10476176Abstract: The present invention relates to a male electrical contact of twist-pin type comprising an electrical terminal formed by a bundle comprising three central strands made of nickel or made of copper and 7 peripheral strands made of Ni—Cr—Ti—Al alloy and a bulge in the central portion, it being possible for said alloy to optionally additionally comprise Co and/or Mo. It also relates to the use of this contact in a micro-D connector, advantageously for applications at a service temperature ?260° C.Type: GrantFiled: April 24, 2015Date of Patent: November 12, 2019Assignee: AXON CABLEInventors: Leen De Deken, Ning Yu, Bastien Brocard
-
Patent number: 10385424Abstract: Palladium-based ternary or higher alloys include palladium at about 45-55 wt %, copper about 32-42 wt %, silver at about 8-15 wt %, rhenium at about 0-5 wt %, and optionally one or more modifying elements at up to 1.0 wt %. The alloys are age-hardenable, provide hardness in excess of 350 HK (Knoop, 100 g load), have electrical conductivities above 19.5% IACS (International Annealed Copper Standard), have an elevated temperature strength above 100 ksi at temperatures up to 480° F. (250° C.), and remain ductile (tensile elongation >2%) in their fully age-hardened condition. The alloys may be used in static and moveable electrical contact and probe applications.Type: GrantFiled: January 29, 2016Date of Patent: August 20, 2019Assignee: Deringer-Ney, Inc.Inventors: Arthur S. Klein, Edward F. Smith, III, Srinath Viswanathan
-
Patent number: 10106871Abstract: A Ni-based alloy tube includes a base metal having a chemical composition consisting, by mass percent, of C: 0.15% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 10.0 to 40.0%, Ni: 50.0 to 80.0%, Ti: 0.50% or less, Cu: 0.60% or less, Al: 0.20% or less, N: 0.20% or less, and the balance: Fe and impurities; and a low Cr content complex oxide film having a thickness of 25 nm or smaller at least on an inner surface of the base metal, wherein contents of Al, Ni, Si, Ti, and Cr in the film satisfy [at % Al/at % Cr?2.00], [at % Ni/at % Cr?1.40], and [(at % Si+at % Ti)/at % Cr?0.10].Type: GrantFiled: September 29, 2015Date of Patent: October 23, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yasuhiro Masaki, Manabu Kanzaki, Kazuyuki Kitamura, Shoji Kinomura, Yumi Momozono, Osamu Miyahara
-
Patent number: 9789432Abstract: A flexible line segment for the exhaust system of an internal combustion engine, with an annularly corrugated or helically corrugated metallic bellows, for exhaust gas flow therethrough, and a line segment arranged upstream in reference to the metallic bellows, with a precipitation device provided in the line section, arranged upstream in reference to the metallic bellows or mounted thereat. The precipitation device is provided for urea derivatives or urea entrained in an edge layer of the exhaust gas flow from an oversaturated edge layer of the exhaust gas flow.Type: GrantFiled: July 31, 2013Date of Patent: October 17, 2017Assignees: Witzenmann GmbH, Eberspächer Exhaust Technology GmbH & Co. KGInventors: Jens Barthold, Frank Berson, Jorg Ludwig, Rene Rosler, Silvia Calvo, Heike Tobben
-
Patent number: 9512507Abstract: Provided are a silver-white copper alloy which has superior mechanical properties such as hot workability, cold workability, or press property, color fastness, bactericidal and antibacterial properties, and Ni allergy resistance; and a method of producing such a silver-white copper alloy. The silver-white copper alloy includes 51.0 mass % to 58.0 mass % of Cu; 9.0 mass % to 12.5 mass % of Ni; 0.0003 mass % to 0.010 mass % of C; 0.0005 mass % to 0.030 mass % of Pb; and the balance of Zn and inevitable impurities, in which a relationship of 65.5?[Cu]+1.2×[Ni]?70.0 is satisfied between a content of Cu [Cu] (mass %) and a content of Ni [Ni] (mass %). In a metal structure thereof, an area ratio of ? phases dispersed in an ?-phase matrix is 0% to 0.9%.Type: GrantFiled: June 27, 2012Date of Patent: December 6, 2016Assignees: MITSUBISHI MATERIALS CORPORATION, MITSUBISHI SHINDOH CO., LTD.Inventors: Shinji Tanaka, Keiichiro Oishi, Hiroharu Ogawa
-
Publication number: 20150122379Abstract: A tin-containing magnesium alloy having superior tensile strength and superior elongation. A method of manufacturing a magnesium alloy includes melting and casting raw materials including an element selected from the group consisting of more than 0 weight % and 14 weight % or less of Sn, more than 0 weight % and 5 weight % or less of Li, more than 0 weight % and 40 weight % or less of Pb, more than 0 weight % and 17 weight % or less of Al, and more than 0 weight % and 5 weight % or less of Zn and a remainder of Mg, subjecting the cast magnesium alloy to solution treatment, subjecting the solution-treated magnesium alloy to aging, and plastically deforming the aged magnesium alloy.Type: ApplicationFiled: November 6, 2014Publication date: May 7, 2015Inventors: DoHyang Kim, YoungKyun Kim, TaeHee Cho, WonTae Kim
-
Patent number: 9017490Abstract: A high strength, corrosion resistant alloy suitable for use in oil and gas environments includes, in weight %: 0-12% Fe, 18-24% Cr, 3-6.2% Mo, 0.05-3.0% Cu, 4.0-6.5% Nb, 1.1-2.2% Ti, 0.05-0.4% 0.05-0.2% Al, 0.005-0.040% C, balance Ni plus incidental impurities and deoxidizers. A ratio of Nb/(Ti+Al) is equal to 2.5-7.5 to provide a desired volume fraction of ?? and ?? phases. The alloy has a minimum yield strength of 145 ksi.Type: GrantFiled: November 18, 2008Date of Patent: April 28, 2015Assignee: Huntington Alloys CorporationInventor: Sarwan Kumar Mannan
-
Patent number: 8906171Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.Type: GrantFiled: September 25, 2012Date of Patent: December 9, 2014Assignee: Sandvik Intellectual PropertyInventors: Ulrika Magnusson, Guocai Chai
-
Patent number: 8906174Abstract: Disclosed are a high-strength Ni-base alloy, a method of producing the Ni-base alloy, and a method of recovering a member made of a degraded Ni-base alloy. It contains not more than 0.1 wt % C, not more than 50 wt % Fe, not more than 30 wt % Cr, Ti, and at least one of Nb and Al. It has been strengthened by precipitates of a ?? phase (Ni3Al) and/or a ?? phase (Ni3Nb). It contains also a ? phase (Ni3Ti) which is thermodynamically stable in a temperature range of 800° C. to 900° C. When observed a cross-section of the Ni-base alloy, a plurality of nodes exist along each segment connecting two meeting points each of which point is defined by adjacent three crystal grains, and precipitates of the ?? phase and/or the ?? phase in each of crystal grains of the Ni-base alloy have an average particle size of not more than 100 nm.Type: GrantFiled: February 18, 2010Date of Patent: December 9, 2014Assignee: Mitsubishi Hitachi Power Systems, Ltd.Inventors: Shinya Imano, Jun Sato
-
Publication number: 20140345752Abstract: Provided is a precipitation hardened Fe—Ni alloy having the following constitutions: (1) the precipitation hardened Fe—Ni alloy including: from 0.01 to 0.08% by mass of C, from 0.02 to 1.0% by mass of Si, not more than 1.0% by mass of Mn, from 36.0 to 41.0% by mass of Ni, 14.0 or more and less than 20.0% by mass of Cr, from 0.01 to 3.0% by mass of Mo, from 0.1 to 1.0% by mass of Al, from 1.0 to 2.5% by mass of Ti, and from 2.0 to 3.5% by mass of Nb, with the balance being Fe and unavoidable impurities; (2) the precipitation hardened Fe—Ni alloy satisfying the following formulae: Ni?6×Nb+17 and Nb/(Ti+Al)?0.8.Type: ApplicationFiled: May 15, 2014Publication date: November 27, 2014Applicant: DAIDO STEEL CO., LTD.Inventors: Mari TAKAHASHI, Shigeki UETA
-
Publication number: 20140212324Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.Type: ApplicationFiled: April 10, 2012Publication date: July 31, 2014Applicant: THREE-O CO., LTD.Inventor: Kazuo Ogasa
-
Patent number: 8608877Abstract: Articles that include a material that has L12-structured gamma-prime phase precipitates within a matrix phase at a concentration of at least 20% by volume are disclosed. The gamma-prime phase precipitates are less than 1 micrometer in size. The material also has A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The articles may be formed by mechanically working a workpiece that has at least about 40% nickel, about 1.5% to about 8% titanium, and about 1.5% to about 4.5% aluminum. The workpiece may be worked at a temperature below a solvus temperature of the eta phase; and then heat treated at a temperature sufficient to dissolve any gamma prime phase present in the workpiece but below the solvus temperature of the eta phase.Type: GrantFiled: July 27, 2010Date of Patent: December 17, 2013Assignee: General Electric CompanyInventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
-
Publication number: 20130327447Abstract: A high strength corrosion resistant tubing comprises about 35 to about 55% Ni, about 12 to about 25% Cr, about 0.5 to about 5% Mo, up to about 3% Cu, about 2.1 to about 4.5% Nb, about 0.5 to about 3% Ti, about 0.05 to about 1.0% Al, about 0.005 to about 0.04% C, balance Fe plus incidental impurities and deoxidizers. The composition also satisfies the equation: (Nb?7.75 C)/(Al+Ti)=about 0.5 to about 9. A process for manufacturing the tubing includes: extruding the alloy to form a tubing; cold working the extruded tubing; annealing the cold worked tubing; and applying at least one age hardening step to the annealed tubing. Another process includes extruding the alloy at a temperature of about 2050° F. or less; annealing the extruded tubing; and applying at least one age hardening step to the annealed tubing.Type: ApplicationFiled: June 11, 2012Publication date: December 12, 2013Applicant: HUNTINGTON ALLOYS CORPORATIONInventor: Sarwan K. Mannan
-
Patent number: 8580154Abstract: Disclosed are quaternary ammonium salts containing non-halogen anions such as carbonates, bicarbonates, phosphates, glycolates and mixtures thereof as conversion coatings or additives imparting anti-corrosive properties to paints. The invention relates to a method for inhibiting the corrosion of metal surfaces by applying a composition containing one or more quaternary ammonium carbonate or bicarbonate. The disclosure is also directed to anti-corrosive coatings for metal substrates containing these compounds and to metal substrates having these anticorrosive coatings.Type: GrantFiled: December 24, 2012Date of Patent: November 12, 2013Assignee: Lonza, Inc.Inventors: Thomas C. Bedard, Thomas David Burleigh, Larry K. Hall, Joseph Kimler, Joseph W. Scheblein, Michael Y. Chiang
-
Publication number: 20130255843Abstract: A precipitation-strengthened Ni-based heat-resistant alloy of the present invention includes 0.03 wt % or less of C, 0.5 wt % or less of Mn, 0.01 wt % or less of P, 0.01 wt % or less of S, 2.0 to 3.0 wt % of Si, 23 to 30 wt % of Cr, 7.0 to 14.0 wt % of W, 10 to 20 wt % of Fe, and 40 to 60 wt % of Ni, wherein a total content of C, N, O, P and S is 0.01 wt % or less. A silicide is dispersed and precipitated and a grain size of a matrix austenite is controlled through a thermo-mechanical treatment. As a result, the precipitation-strengthened Ni-based heat-resistant alloy excellent in irradiation resistance, heat resistance and corrosion resistance can be obtained with a low cost.Type: ApplicationFiled: May 29, 2013Publication date: October 3, 2013Inventors: Kiyoshi KIUCHI, Kiyoyuki Shiba, Tsuyoshi Noura, Jumpei Nakayama
-
Patent number: 8512485Abstract: A alloy and a process of forming a alloy are disclosed. The alloy has a predetermined grain boundary morphology. The alloy includes by weight greater than about 0.06 percent carbon, up to about 0.0015 percent sulfur, less than about 16 percent chromium, between about 39 percent and about 44 percent nickel, between about 2.5 percent and about 3.3 percent niobium, between about 1.4 percent and about 2 percent titanium, up to about 0.5 percent aluminum, up to about 0.006 percent boron, up to about 0.3 percent copper, up to about 0.006 percent nitrogen, and greater than about 0.5 percent molybdenum.Type: GrantFiled: January 3, 2011Date of Patent: August 20, 2013Assignee: General Electric CompanyInventors: Ganjiang Feng, George A. Goller, Raymond Joseph Stonitsch, Jason R. Parolini, Shan Liu
-
Publication number: 20130133793Abstract: A method for heat treating a 718-type nickel-base comprises heating a 718-type nickel-base alloy to a heat treating temperature, and holding the alloy at the heat treating temperature for a heat treating time sufficient to form an equilibrium or near-equilibrium concentration of ?-phase grain boundary precipitates within the nickel-base alloy and up to 25 percent by weight of total ??-phase and ??-phase. The 718-type nickel-base alloy is air cooled. The present disclosure also includes a 718-type nickel-base alloy comprising a near-equilibrium concentration of ?-phase grain boundary precipitates and up to 25 percent by weight of total ??-phase and ??-phase precipitates. Alloys according to the disclosure may be included in articles of manufacture such as, for example, face sheet, honeycomb core elements, and honeycomb panels for thermal protection systems for hypersonic flight vehicles and space vehicles.Type: ApplicationFiled: November 30, 2011Publication date: May 30, 2013Applicant: ATI Properties, Inc.Inventor: Erin T. McDevitt
-
Publication number: 20120222783Abstract: The invention relates to a method for producing a strip made of an AlMgSi alloy in which a rolling ingot is cast of an AlMgSi alloy, the rolling ingot is subjected to homogenization, the rolling ingot which has been brought to rolling temperature is hot-rolled, and then is optionally cold-rolled to the final thickness thereof. The problem of providing a method for producing an aluminum strip made of an AlMgSi alloy and an aluminum strip, which has a higher breaking elongation with constant strength and therefore enables higher degrees of deformation in producing structured metal sheets, is solved in that the hot strip has a temperature of no more than 130° C. directly at the exit of the last rolling pass, preferably a temperature of no more than 100° C., and the hot strip is coiled at that or a lower temperature.Type: ApplicationFiled: December 29, 2011Publication date: September 6, 2012Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBHInventors: Henk-Jan Brinkman, Thomas Wirtz, Dietmar Schröder, Eike Brünger, Kai-Friedrich Karhausen
-
Publication number: 20120145284Abstract: A Cu-based sintered sliding member that can be used under high-load conditions. The sliding member is age-hardened, including 5 to 30 mass % Ni, 5 to 20 mass % Sn, 0.1 to 1.2 mass % P, and the rest including Cu and unavoidable impurities. In the sliding member, an alloy phase containing higher concentrations of Ni, P and Sn than their average concentrations in the whole part of the sliding member, is allowed to be present in a grain boundary of a metallic texture, thereby achieving excellent wear resistance. Hence, without needing expensive hard particles, there can be obtained, at low cost, a Cu-based sintered sliding member usable under high-load conditions. Even more excellent wear resistance is achieved by containing 0.3 to 10 mass % of at least one solid lubricant selected from among graphite, graphite fluoride, molybdenum disulfide, tungsten disulfide, boron nitride, calcium fluoride, talc and magnesium silicate mineral powders.Type: ApplicationFiled: August 27, 2010Publication date: June 14, 2012Applicant: Diamet CorporationInventors: Yoshinari Ishii, Tsuneo Maruyama, Yoshiki Tamura
-
Patent number: 8172959Abstract: There are provided an austenitic stainless steel having high stress corrosion crack resistance, characterized by containing, in percent by weight, 0.030% or less C, 0.1% or less Si, 2.0% or less Mn, 0.03% or less P, 0.002% or less S, 11 to 26% Ni, 17 to 30% Cr, 3% or less Mo, and 0.01% or less N, the balance substantially being Fe and unavoidable impurities; a manufacturing method for an austenitic stainless steel, characterized in that a billet consisting of the said austenitic stainless steel is subjected to solution heat treatment at a temperature of 1000 to 1150° C.; and a pipe and a in-furnace structure for a nuclear reactor to which the said austenitic stainless steel is applied.Type: GrantFiled: January 13, 2005Date of Patent: May 8, 2012Assignees: Mitsubishi Heavy Industries, Ltd., The Tokyo Electric Power Company, Inc.Inventors: Yasuhiro Sakaguchi, Toshihiko Iwamura, Hiroshi Kanasaki, Hidehito Mimaki, Masaki Taneike, Shunichi Suzuki, Kenrou Takamori, Suguru Ooki, Naoki Anahara, Naoki Hiranuma, Toshio Yonezawa
-
Publication number: 20120027607Abstract: Articles suitable for use in high temperature applications, such as turbomachinery components, and methods for making such articles, are provided. One embodiment is an article. The article comprises a material comprising a plurality of L12-structured gamma-prime phase precipitates distributed within a matrix phase at a concentration of at least 20% by volume, wherein the gamma-prime phase precipitates are less than 1 micrometer in size, and a plurality of A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The solvus temperature of the eta phase is higher than the solvus temperature of the gamma-prime phase. Moreover, the material has a median grain size less than 10 micrometers. The method comprises providing a workpiece, the workpiece comprising at least about 40% nickel, from about 1.5% to about 8% titanium, and from about 1.5% to about 4.5% aluminum.Type: ApplicationFiled: July 27, 2010Publication date: February 2, 2012Applicant: GENERAL ELECTRIC COMPANYInventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
-
Patent number: 8012271Abstract: The presently described technology relates to a material for components of a gas turbine, in particular for components of a gas turbine aircraft engine, having a matrix of an iron-based alloy material, wherein the matrix of the iron-based alloy material being hardened by means of an intermetallic material of the Laves phase.Type: GrantFiled: December 15, 2006Date of Patent: September 6, 2011Assignee: MTU Aero Engines GmbHInventors: Wilfried Smarsly, Gerhard Sauthoff
-
Publication number: 20110203707Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and dwell fatigue crack growth behavior. The superalloy contains, by weight, 10.00 to 22.0% cobalt, 10.0 to 14.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 2.0 to 6.0% titanium, 1.5 to 5.0% tungsten, 1.5 to 5.0% molybdenum, 1.0 to 3.5% niobium, 0.05 to 0.6% hafnium, 0.02 to 0.10% carbon, 0.01 to 0.40% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.7 to 1.5. The superalloy is hot worked and heat treated to contain cellular gamma prime precipitates that distort grain boundaries, creating tortuous grain boundary fracture paths that are believed to promote the fatigue crack growth resistance of the superalloy.Type: ApplicationFiled: May 3, 2011Publication date: August 25, 2011Applicant: GENERAL ELECTRIC COMPANYInventors: David Paul Mourer, Kenneth Rees Bain
-
Patent number: 8003045Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).Type: GrantFiled: June 4, 2010Date of Patent: August 23, 2011Assignee: UT-Battelle, LLCInventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
-
Patent number: 7955448Abstract: It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/?m2 in a Cu matrix except Cr phases of more than 100 nm.Type: GrantFiled: October 5, 2005Date of Patent: June 7, 2011Assignees: JFE Precision Corporation, JFE Steel CorporationInventors: Hoshiaki Terao, Hideaki Kobiki, Satoshi Uenosono
-
Publication number: 20110011500Abstract: A Ni—Fe—Cr—Mo alloy containing a small amount of Cu and correlated percentages of Nb, Ti and Al to develop a unique microstructure to produce 145 ksi minimum yield strength. The unique microstructure is obtained by special annealing and age hardening conditions, by virtue of which the alloy has an attractive combination of yield strength, impact strength, ductility, corrosion resistance, thermal stability and formability, and is especially suited for corrosive oil well applications that contain gaseous mixtures of carbon dioxide and hydrogen sulfide. The alloy comprises in weight percent the following: 0-15% Fe, 18-24% Cr, 3-9% Mo, 0.05 3.0% Cu, 3.6-6.5% Nb, 0.5-2.2% Ti, 0.05-1.0% Al, 0.005-0.040% C, balance Ni plus incidental impurities and a ratio of Nb/(Al+Ti) in the range of 2.5-7.5. To facilitate formability, the composition range of the alloy is balanced to be Laves phase free.Type: ApplicationFiled: November 18, 2008Publication date: January 20, 2011Applicant: HUNTINGTON ALLOYS CORPORATIONInventor: Sarwan Kumar Mannan
-
Patent number: 7859177Abstract: A spark plug for an internal-combustion engine is provided wherein the central and ground electrodes exhibit a long service life and wherein the fatigue strength at high temperatures is improved. The ground electrode is made from an alloy comprised of nickel (Ni) as a primary component, chromium: 20-30% by weight, iron: 7-20% by weight, aluminum: 1-3% by weight, titanium: 0.05-0.5% by weight, manganese: not higher than 0.1% by weight, silicon: not higher than 0.1% by weight, and carbon: not higher than 0.5% by weight. The alloy further includes at least one specific element selected from zirconium, yttrium, neodymium, cerium, lanthanum and samarium. Further, the total content of the specific element group is 5% or more of the aluminum content and is not higher than 1% by weight.Type: GrantFiled: November 16, 2006Date of Patent: December 28, 2010Assignee: NGK Spark Plug Co., Ltd.Inventors: Osamu Yoshimoto, Wataru Matsutani
-
Publication number: 20100243111Abstract: Disclosed are a high-strength Ni-base alloy, a method of producing the Ni-base alloy, and a method of recovering a member made of a degraded Ni-base alloy. It contains not more than 0.1 wt % C, not more than 50 wt % Fe, not more than 30 wt % Cr, Ti, and at least one of Nb and Al. It has been strengthened by precipitates of a ?? phase (Ni3Al) and/or a ?? phase (Ni3Nb). It contains also a ? phase (Ni3Ti) which is thermodynamically stable in a temperature range of 800° C. to 900° C. When observed a cross-section of the Ni-base alloy, a plurality of nodes exist along each segment connecting two meeting points each of which point is defined by adjacent three crystal grains, and precipitates of the ?? phase and/or the ?? phase in each of crystal grains of the Ni-base alloy have an average particle size of not more than 100 nm.Type: ApplicationFiled: February 18, 2010Publication date: September 30, 2010Applicant: HITACHI, LTD.Inventors: Shinya IMANO, Jun SATO
-
Patent number: 7785427Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.Type: GrantFiled: April 20, 2007Date of Patent: August 31, 2010Assignee: Shell Oil CompanyInventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
-
Patent number: 7780798Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.Type: GrantFiled: March 29, 2007Date of Patent: August 24, 2010Assignees: Boston Scientific Scimed, Inc., CRS Holdings, Inc.Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
-
Publication number: 20100193083Abstract: A hydrogen-resistant high strength material made of a Ni-based alloy or an Fe—Ni-based alloy includes an aged portion and a hydrogen embrittlement suppressing layer that is to be exposed to hydrogen. The hydrogen embrittlement suppressing layer has a hydrogen embrittlement index of not less than 0.9, wherein the hydrogen embrittlement index is defined as a ratio of an elongation after hydrogen charging in relation to an elongation before hydrogen charging. The aged portion has a tensile strength exceeding 1000 MPa.Type: ApplicationFiled: February 1, 2010Publication date: August 5, 2010Applicant: HITACHI, LTD.Inventors: Hironori KAMOSHIDA, Shinya IMANO
-
Patent number: 7749431Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, is used as a container or other device for high-pressure hydrogen gas, and consists of, by mass %, C: not more than 0.04%, Si: not more than 1.0%, Mn: 7 to 30%, Cr: 15 to 22%, Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the relationship, 2.5Cr+3.4Mn?300N. The weld metal of the welded joint of the container or other device made of the said stainless steel satisfies the relationship, ?11?Nieq?1.1×Creq??8.Type: GrantFiled: April 18, 2005Date of Patent: July 6, 2010Assignee: Sumitomo Metal Industries, Ltd.Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
-
Patent number: 7708842Abstract: A metal gasket formed from a suitable iron-nickel chromium alloy includes at least one embossment that exhibits essentially full functional recovery at temperatures exceeding 1000° F. and including in the range of 1100° F. to 1600° F. or more and which is made from sheet material that is work hardened and strengthened by cold rolling, or a combination of cold rolling and precipitation hardening, without any post embossment heat treating that would act to further harden the material. Suitable iron-nickel-chromium alloys include those comprising, by weight, greater than 18% nickel; greater than 14% chrome and 0.1-10% of at least one element selected from the group consisting of Mo, Ti, V, Al, Co, Nb, Ta and Cu, with the balance being substantially Fe, wherein the gasket sheet alloy has a deformed microstructure.Type: GrantFiled: July 3, 2007Date of Patent: May 4, 2010Assignee: Federal-Mogul World Wide, Inc.Inventor: Thomas Zurfluh
-
Patent number: 7578893Abstract: A material for electrical contacts comprising a martensitic cobalt-nickel-iron alloy with a high strength, a high bendability and a high electrical conductivity, with a cobalt content of 12.0?Co?60.0% by weight, a nickel content of 10.0?Ni?36.0% by weight, remainder iron and an impurity content of less than 0.2 atomic percent, with a martensite temperature Ms of 75° C.?Ms?400° C. in the case of the martensitic variant and ?50° C.?Ms?25° C. in the case of the variant which is naturally hard as a result of cold-forming.Type: GrantFiled: August 18, 2005Date of Patent: August 25, 2009Assignee: Vacuumschmelze GmbH & Co. KGInventors: Hartwin Weber, Waldemar Döring, Matthias Schierling
-
Patent number: 7531129Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, and excellent in stress corrosion cracking resistance, and a container or other device for high-pressure hydrogen gas, which is made of the said stainless steel, are provided. The stainless steel is characterized in that it consists of, by mass %, C: not more than 0.02%, Si: not more than 1.0%, Mn: 3 to 30%, Cr: more than 22% but not more than 30%, Ni: 17 to 30%, V: 0.001 to 1.0%, N: 0.10 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the following relationship [1]: 5Cr+3.4 Mn?500 N??[1].Type: GrantFiled: April 18, 2005Date of Patent: May 12, 2009Assignee: Sumitomo Metal Industries, Ltd.Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
-
Publication number: 20090087338Abstract: A nickel base superalloy consisting of 20 to 40 wt % cobalt, 10 to 15 wt % chromium, 3 to 6 wt % molybdenum, 0 to 5 wt % tungsten, 2.5 to 4 wt % aluminium, 3.4 to 5 wt % titanium, 1.35 to 2.5 wt % tantalum, 0 to 2 wt % niobium, 0.5 to 1 wt % hafnium, 0 to 0.1 wt % zirconium, 0.01 to 0.05 wt % carbon, 0.01 to 0.05 wt % boron, 0 to 2 wt % silicon and the balance nickel plus incidental impurities. The gamma prime phase comprises (Ni/Co)3 (Al/Ti/Ta).Type: ApplicationFiled: September 4, 2008Publication date: April 2, 2009Applicant: ROLLS-ROYCE PLCInventors: Robert J. Mitchell, Mark C. Hardy
-
Publication number: 20090053100Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.Type: ApplicationFiled: December 7, 2006Publication date: February 26, 2009Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
-
Publication number: 20090053090Abstract: It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/?m2 in a Cu matrix except Cr phases of 100 nm or more.Type: ApplicationFiled: October 5, 2005Publication date: February 26, 2009Inventor: Hoshiaki Terao
-
Patent number: 7459035Abstract: To provide a rotor material preferable for a steam turbine of which main steam temperature is 675° C. or more, particularly exceeding 700° C., and a steam turbine plant having a rotor formed by the material, the invention provides a steam turbine plant including a very-high-pressure turbine of which steam inlet temperature is 675 to 725° C. and steam outlet temperature is 650° C. or less, a high-pressure turbine, and a medium-low-pressure turbine, wherein a rotor of the very-high-pressure turbine is formed from a forged material of NiFe-base alloy containing: 14 to 18 weight % Cr, 15 to 45 weight % Fe, 1.0 to 2.0 weight % Al, 1.0 to 1.8 weight % Ti, C and N of which the sum is 0.05 or less weight %, and Nb in the range specified by the formula: 3.5?(Fe weight %)/20<(Nb weight %)<4.5?(Fe weight %)/20.Type: GrantFiled: June 10, 2004Date of Patent: December 2, 2008Assignee: Hitachi, Ltd.Inventors: Shinya Imano, Hiroyuki Doi, Hirotsugu Kawanaka, Eiji Saitou
-
Patent number: 7381369Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.Type: GrantFiled: May 18, 2004Date of Patent: June 3, 2008Assignees: Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Tetsuya Shimizu, Michio Okabe
-
Publication number: 20080091267Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.Type: ApplicationFiled: March 29, 2007Publication date: April 17, 2008Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
-
Patent number: 7244320Abstract: Systems and methods for repairing Thermo-Span® gas turbine engine components are described herein. Embodiments of these methods minimize post-weld residual stresses in a weld repaired Thermo-Span® component by solution heat treating the component by heating the component to about 2000° F.±25° F., holding the component at about 2000° F.±25° F. for about one hour; and cooling the component to below about 700° F. at a rate equivalent to cooling in air; and precipitation heat treating the component by heating the component to about 1325° F.±25° F., holding the component at about 1325° F.±25° F. for about 8 hours, cooling the component to about 1150° F.±25° F. at a maximum rate of about 100° F./hour, holding the component at about 1150° F.±25° F. for about 8 hours, and cooling the component at a predetermined cooling rate. Dimensions of the fully-machined and weld repaired component are maintained during solution heat treating and precipitation heat treating via custom designed furnace tools.Type: GrantFiled: June 1, 2004Date of Patent: July 17, 2007Assignee: United Technologies CorporationInventors: David R. Malley, Carl E. Kelly, Robert P. Schaefer
-
Patent number: 6841011Abstract: The present invention is directed to an iron, aluminum, chromium, carbon alloy and a method of producing the same, wherein the alloy has g good room temperature ductility, excellent high temperature oxidation resistance and ductility. The alloy includes about 10 to 70 at. % iron, about 10 to 45 at. % aluminum, about 1 to 70 at. % chromium and about 0.9 to 15 at. % carbon. The invention is also directed to a material comprising a body-centered-cubic solid solution of this alloy, and a method for strengthening this material by the precipitation of body-centered-cubic particles within the solid solution, wherein the particles have substantially the same lattice parameters as the underlying solid solution. The ease of processing and excellent mechanical properties exhibited by the alloy, especially at high temperatures, allows it to be used in high temperature structural applications, such as a turbocharger component.Type: GrantFiled: September 26, 2002Date of Patent: January 11, 2005Inventor: Hui Lin
-
Patent number: 6720088Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.Type: GrantFiled: February 5, 2002Date of Patent: April 13, 2004Assignee: General Electric CompanyInventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
-
Patent number: 6696176Abstract: A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.Type: GrantFiled: March 6, 2002Date of Patent: February 24, 2004Assignee: Siemens Westinghouse Power CorporationInventors: David B. Allen, Gregg P. Wagner, Brij B. Seth
-
Publication number: 20040033158Abstract: A precipitation hardened Co—Ni based heat-resistant alloy is composed of, all by weight, not more than 0.05% of C; not more than 0.5% of Si; not more than 1.0% of Mn; 25 to 45% of Ni; 13 to 22% of Cr; 10 to 18% of Mo or 10 to 18% of Mo+½W; 0.1 to 5.0% of Nb; 0.1 to 5.0% of Fe; and further at least one kind of 0.007 to 0.10% of REM; 0.001 to 0.010% of B; 0.0007 to 0.010% of Mg and 0.001 to 0.20% of Zr; the balance of substantially Co and inevitable impurities, and Co3Mo or Co7Mo6 is precipitated in boundaries between a fine twin structure and a parent phase.Type: ApplicationFiled: July 3, 2003Publication date: February 19, 2004Inventors: Akihiko Chiba, Shirou Takeda, Michihiko Ayada, Shigemi Sato, Shigeki Ueta, Toshiharu Noda
-
Publication number: 20040025989Abstract: A Co—Ni base heat-resistant alloy is composed of, all by weight: not more than 0.05 mass % of C; not more than 0.5 mass % of Si; not more than 1.0 mass % of Mn; 25 to 45 mass % of Ni; 13 to less than 18 mass % of Cr; 7 to 20 mass % of Mo+½W of one kind or more of Mo and W; 0.1 to 3.0 mass % of Ti; 0.1 to 5.0 mass % of Nb; 0.1 to 5.0 mass % of Fe, with the balance of substantially Co and inevitable impurities.Type: ApplicationFiled: July 28, 2003Publication date: February 12, 2004Inventors: Akihiko Chiba, Shirou Takeda, Shigemi Sato, Shigeki Ueta, Toshiharu Noda, Michio Okabe
-
Publication number: 20040026060Abstract: A core rod is utilized in the process of forming a core in a metal casting. The core rod has a length and opposite ends The core rod is generally round in cross-section along at least a portion of the length of the core rod proximate at least one of the ends configured for use in forming the core of the metal casting. The core rod is made from a precipitation-hardenable alloy including about 40.0 to 75.0 wt. % Ni, about 0.0 to 25.0 wt. % Co, about 10.0 to 25.0 wt. % Cr, and about 0.0 to 20.0 wt. % Fe. A method for forming a core within a metal casting includes the steps of providing a precipitation-hardenable alloy core rod having a length and opposite ends; packing sand around at least one end of the core rod to form a sand core with core rod; placing the sand core with core rod into a mold; pouring molten metal into the mold and around the sand core with core rod; and producing a metal casting having a core and a uniform sidewall thickness in a range of ±0.060 inches.Type: ApplicationFiled: August 4, 2003Publication date: February 12, 2004Applicant: HILDRETH MANUFACTURING. LLCInventors: Gerald Scott, Gerald Selan, Terry Hildreth
-
Patent number: 6592810Abstract: Disclosed is an Fe—Ni alloy consisting of, by mass, 30 to 50% of Ni (or 27 to 47% Ni and not more than 22% Co), 0.005 to 0.1% of Nb, less than 0.01% of C, 0.002 to 0.02% of N, and the balance of Fe and inevitable impurities, wherein the equation “0.000013≦(% Nb)×(% N)≦0.002”, is fulfilled. In the alloy, preferably, the maximum grain size of compounds primarily containing Nb and nitrogen and other compounds primarily containing Nb and C is less than 0.5 &mgr;m, which can be observed at an fractional section of metal structure, and a total number of the compounds is not less than 50,000/mm2 at an fractional section. An average grain size of the alloy structure is not less than 10 by the crystal grain size number as defined in JIS G0551. The alloy may applied to shadow masks for the Braun tube and lead frames for semiconductor elements.Type: GrantFiled: March 19, 2001Date of Patent: July 15, 2003Assignee: Hitachi Metals, Ltd.Inventors: Junichi Nishida, Ryoji Inoue, Takehisa Seo
-
Patent number: 6524405Abstract: The present invention is directed to an iron, aluminum, chromium, carbon alloy and a method of producing the same, wherein the alloy has good room temperature ductility, excellent high temperature oxidation resistance and ductility. The alloy includes about 10 to 70 at. % iron, about 10 to 45 at. % aluminum, about 1 to 70 at. % chromium and about 0.9 to 15 at. % carbon. The invention is also directed to a material comprising a body-centered-cubic solid solution of this alloy, and a method for strengthening this material by the precipitation of body-centered-cubic particles within the solid solution, wherein the particles have substantially the same lattice parameters as the underlying solid solution. The ease of processing and excellent mechanical properties exhibited by the alloy, especially at high temperatures, allows it to be used in high temperature structural applications, such as a turbocharger component.Type: GrantFiled: March 31, 2000Date of Patent: February 25, 2003Inventor: Hui Lin