Nickel Base Patents (Class 148/426)
  • Patent number: 6544668
    Abstract: Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: April 8, 2003
    Assignee: U. T. Battelle, LLC
    Inventors: Michael L. Santella, Jeffrey D. McNabb, Vinod K. Sikka
  • Patent number: 6494971
    Abstract: An iridium-containing nickel-base superalloy which has an orderly arrayed allow structure to be strengthened by precipitation and contains iridium dissolved in the &ggr; and &ggr;′ phases to be strengthened by solid solution, thus being improved in high-temperature strength and resistance to high-temperature corrosion.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: December 17, 2002
    Assignee: National Research Institute for Metals
    Inventors: Toshiharu Kobayashi, Yutaka Koizumi, Hideyuki Murakami, Yoshikazu Ro, Yoko Yamabe, Shizuo Nakazawa, Hiroshi Harada, Toshihiro Yamagata
  • Patent number: 6478895
    Abstract: The sputter target deposits nickel from a binary alloy. The binary alloy contains, by weight percent, 9 to 15 titanium and the balance nickel and incidental impurities. The binary alloy has, by weight percent, 35 to 50 TiNi3 needle-like intermetallic phase and balance &agr;-nickel phase. The TiNi3 needle-like intermetallic phase and &agr;-nickel phase are formed from a eutectic decomposition. The &agr;-nickel phase has a grain size between 50 and 180 &mgr;m. The binary alloy has a Curie temperature of less than or equal to a temperature of 25° C. and exhibits paramagnetic properties at temperatures of 25° C. or lower.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: November 12, 2002
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Holger J. Koenigsmann, Paul S. Gilman, Thomas J. Hunt
  • Patent number: 6475642
    Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia
  • Patent number: 6475261
    Abstract: In an NiMnGa alloy represented by the chemical formula of Ni2+XMn1−X Ga, a composition ratio parameter X (mol) is selected within a range of 0.10≦X≦0.30. With this composition, the finish point of the reverse transformation of the martensitic transformation can be selected to a desired temperature within the range between −20° C. and 50° C., while the Curie point is also selected to a desired temperature within the range between 60° C. and 85° C. The alloy has the shape memory effect by the martensitic transformation and the reverse transformation. Furthermore, the alloy is induced with the reverse transformation by application of an external magnetic field at the martensite phase to exhibit the shape recovery.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: November 5, 2002
    Inventors: Minoru Matsumoto, Junji Tani, Toshiyuki Takagi, Kiyoshi Yamauchi
  • Patent number: 6471790
    Abstract: The invention relates to a process for the forming of precipitates of carbides and borides along the grain boundaries of an component made from an Ni based superalloy while in solid state. This follows from the finding that the carbides formed by carburization offer similar grain boundary strengthening properties as those cast into the article using the current art without the detrimental effects of adding more carbon to the alloy prior to casting. With advantage the process will be carried out in a way to form secondary caribides in the form Cr23C6, Cr7C, Cr6C and HfC and may take place before, during or after the normal solution and/or precipitation hardening heat treatments of the component.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: October 29, 2002
    Assignee: ALSTOM (Switzerland) Ltd
    Inventor: John Fernihough
  • Publication number: 20020146342
    Abstract: A dental casting alloy based on Ni and Ti and having addition of cast of Mo, Fe, Cu and Co has the following composition in weight %:Ti: 40-50 % Mo 0.2-20 % Fe 0.1-1.5% Cu. 0.1-1.0% Co 0.1-0.
    Type: Application
    Filed: October 26, 2001
    Publication date: October 10, 2002
    Inventor: Victor Gjunter
  • Patent number: 6461453
    Abstract: An improved guiding member for use within a body lumen having a unique combination of superelastic characteristics. The superelastic alloy material has a composition consisting of about 30% to about 52% (atomic) titanium, and about 38% to 52% nickel and may have one or more elements selected from the group consisting of iron, cobalt, platinum, palladium, vanadium, copper, zirconium, hafnium and niobium. The alloy material is subjected to thermomechanical processing which includes a final cold working of about 10 to about 75% and then a heat treatment at a temperature between about 450° and about 600° C. and preferably about 475° to about 550° C. Before the heat treatment the cold worked alloy material is preferably subjected to mechanical straightening. The alloy material is preferably subjected to stresses equal to about 5 to about 50% of the room temperature ultimate yield stress of the material during the thermal treatment.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: October 8, 2002
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Robert M. Abrams, Sepehr Fariabi
  • Patent number: 6455166
    Abstract: A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8° limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375° C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400° C. A method of forming the metal and laminate articles is also disclosed.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: September 24, 2002
    Assignee: The University of Chicago
    Inventors: Thomas G. Truchan, Dean J. Miller, Kenneth C. Goretta, Uthamalingam Balachandran, Robert Foley
  • Publication number: 20020121316
    Abstract: An improved guiding member for use within a body lumen having a unique combination of superelastic characteristics. The superelastic alloy material has a composition consisting of about 30% to about 52% (atomic) titanium, and about 38% to 52% nickel and may have one or more elements selected from the group consisting of iron, cobalt, platinum, palladium, vanadium, copper, zirconium, hafnium and niobium. The alloy material is subjected to thermomechanical processing which includes a final cold working of about 10 to about 75% and then a heat treatment at a temperature between about 450° and about 600° C. and preferably about 475° to about 550° C. Before the heat treatment the cold worked alloy material is preferably subjected to mechanical straightening. The alloy material is preferably subjected to stresses equal to about 5 to about 50% of the room temperature ultimate yield stress of the material during the thermal treatment.
    Type: Application
    Filed: April 5, 2002
    Publication date: September 5, 2002
    Inventors: Robert M. Abrams, Sepehr Fariabi
  • Patent number: 6428634
    Abstract: A method of processing a Ni—Ti—Nb based alloy which contains from about 4 to about 14 atomic percent Nb and in which the ratio of atomic percent Ni to atomic percent Ti is from about 3.8 to 1.2, comprising working the alloy sufficient to impart a textured structure to the alloy, at a temperature below the recrystallisation temperature of the alloy. Preferably, the alloy is worked at least 10%, by a technique such as rolling or drawing, or another technique which produces a similar crystal structure. The alloy has increased stiffness compared with Ni—Ti binary alloys with superelastic properties.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: August 6, 2002
    Assignee: Ormco Corporation
    Inventors: Petrus A. Besselink, Rohit C. L. Sachdeva
  • Publication number: 20020092583
    Abstract: A medical device which includes a component formed from an alloy which contains at least about 40% Ni by weight. The alloy in a 10 nm deep surface region of the component contains not more than about 10% Ni by weight. The Ni content in that surface region can be reduced by polishing and oxidizing treatment such as (a) exposure to superheated steam, or (b) immersion in a chemical solution, or (c) an electrochemical treatment, using the device as the anode in a solution bath with a current running therethrough.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 18, 2002
    Inventors: Alan R. Pelton, Christine Trepanier
  • Patent number: 6372059
    Abstract: A hydrogen storage material which is an AB5 type hydrogen storage alloy having a CaCu5 type crystal structure represented by general formula: MmNiaMnbAlcCod wherein Mm denotes a misch metal, 4.0<a≦4.3, 0.25≦b≦0.4, 0.25≦c≦0.4, 0.3≦d≦0.5, and 5.05≦a+b+c+d≦5.25, or general formula: MmNiaMnbAlcCodXe wherein Mm denotes a misch metal, X is Cu and/or Fe, 4.0<a≦4.3, 0.25≦b≦0.4, 0.25≦c≦0.4, 0.3≦d≦0.5, 0<e≦0.1, and 5.05≦a+b+c+d+e≦5.25, characterized in that the lattice length on the c-axis is 404.9 pm to 405.8 pm.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: April 16, 2002
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kiyotaka Yasuda, Yoshiki Sakaguchi, Akira Uchiyama, Daisuke Mukai, Shingo Kikugawa
  • Patent number: 6372063
    Abstract: The process for manufacturing a metallic component, such as a wheel part for the rolling system of a vehicle, which includes, in an initial stage, forming the component of a metallic material in a semi-solid state and having a thixotropic structure, and in a subsequent cold-treatment stage, cold-treating at least part of said component by blasting it with projectiles with a view to plastic deformation thereof. A wheel in which a metallic disk is welded to a wheel rim and in which the metallic disk is obtained by the manufacturing process.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 16, 2002
    Assignee: Michelin Recherche et Technique, S.A.
    Inventor: Gilles Grillon
  • Patent number: 6342181
    Abstract: A nickel based, high silicon alloy exhibits very high corrosion resistance in high temperature sulfuric acid environments. The alloy may be cast and is sufficiently ductile to be fabricated and machined. The alloy is ductile and has sufficient resistance to mechanical and thermal shock to be reliable in service when used as rotating parts. The alloy may have the following composition, in percent by weight: Nickel about 82-86% Silicon about 9-11% Niobium about 3-6% Cerium about 0-0.1% Boron about 0.-0.11% Cesium about 0.1-0.7% Lanthanum about 0.04-0.3% Neodymium about 0.04-0.3% Iron about 0-0.65% Carbon about 0-0.08%.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: January 29, 2002
    Assignee: The Curators of the University of Missouri
    Inventors: Joseph W. Newkirk, Sanhong Zhang
  • Patent number: 6325868
    Abstract: Disclosed are nickel-based amorphous alloy compositions, and particularly quaternary nickel-based amorphous alloy compositions containing nickel, zirconium and titanium as main constituent elements and additive Si or P, the quaternary nickel-zirconium-titanium-silicon alloy compositions comprising nickel in the range of 45 to 63 atomic %, zirconium plus titanium in the range of 32 to 48 atomic % and silicon in the range of 1 to 11 atomic %, and being represented by the general formula: Nia(Zr1−xTix)bSic. Also, at least one kind of element selected from the group consisting of V, Cr, Mn, Cu, Co, W, Sn, Mo, Y, C, B, P, Al can be added to the alloy compositions in the range of content of 2 to 15 atomic %. The quaternary nickel-zirconium-titanium-phosphorus alloy compositions comprising nickel in the range of 50 to 62 atomic %, zirconium plus titanium in the range of 33 to 46 atomic % and phosphorus in the range of 3 to 8 atomic %, and being represented by the general formula: Nid(Zr1−yTiy)ePf.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: December 4, 2001
    Assignee: Yonsei University
    Inventors: Do Hyang Kim, Won Tae Kim, Sheng Hoon Yi, Jin Kyu Lee, Min Ha Lee, Tae Gyu Park, Ju Gun Park, Hyun Kyu Lim, Jong Shim Jang
  • Publication number: 20010027832
    Abstract: Provided is a hydrogen absorbing alloy powder for use in nickel-metal hydride storage batteries having a high capacity, excellent initial characteristics and a long life. Specifically provided is a process for the production of a hydrogen absorbing alloy powder which includes the steps of treating a hydrogen absorbing alloy powder with an acid solution, and subsequently treating the hydrogen absorbing alloy powder with a solution containing a condensed phosphoric acid having 2 to 20 phosphorus atoms per molecule and/or phytic acid, as well as an electrode formed of the hydrogen absorbing alloy powder produced by the above process.
    Type: Application
    Filed: April 17, 2001
    Publication date: October 11, 2001
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yukihiro Kuribayashi, Hiroto Sugahara, Masatoshi Ishii, Satoshi Shima
  • Patent number: 6287398
    Abstract: A high strength nickel-base alloy consisting essentially of, by weight percent, 50 to 60 nickel, 19 to 23 chromium, 18 to 22 iron, 3 to 4.4 aluminum, 0 to 0.4 titanium, 0.05 to 0.5 carbon, 0 to 0.1 cerium, 0 to 0.3 yttrium, 0.002 to 0.4 total cerium plus yttrium, 0.0005 to 0.4 zirconium, 0 to 2 niobium, 0 to 2 manganese, 0 to 1.5 silicon, 0 to 0.1 nitrogen, 0 to 0.5 calcium and magnesium, 0 to 0.1 boron and incidental impurities. The alloy forms 1 to 5 mole percent Cr7C3 after 24 hours at a temperature between 950 and 1150° C. for high temperature strength.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: September 11, 2001
    Assignee: Inco Alloys International, Inc.
    Inventors: Gaylord Darrell Smith, Norman Farr, Brian Allen Baker
  • Patent number: 6264761
    Abstract: The present invention provides liquid phase diffusion bonding alloy foils capable of bonding in an oxidizing atmosphere, which can ensure joints with a homogeneous structure and adequate tensile strength in air in a short period of time using various alloys or Fe-based materials as materials to be bonded; specifically, they are Ni-based liquid phase diffusion bonding alloy foils with compositions comprising as essential components in terms of atomic percent, the diffusion elements B or P at 1.0-20.0% or B and P each at 1.0-20.0%, and Si at 0.5 to ≦15% or 0.5 to <10% and V at 0.1-20.0%, with the remainder substantially Ni and unavoidable impurities, and having a thickness of 3-100 &mgr;m. If necessary, one or more types of Cr, Mn or Mo, Co, and/or one or more types of W, Nb and Ti may be selectively included as appropriate. Compositions with a substantially amorphous crystal structure are most effective.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: July 24, 2001
    Inventors: Yasushi Hasegawa, Eiji Tsuru, Yuichi Sato, Shigekatsu Ozaki
  • Patent number: 6245165
    Abstract: The present invention concerns a hydrogen storage alloy powder composition for nickel metal hydride rechargeable batteries. The powder is distinguished by a fine dendritic stnucture and is prepared by gas atomising a metal melt and rapidly cooling the gas atomised powder, which is subsequently heat treated and pulverised.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: June 12, 2001
    Assignee: Hoganas AB
    Inventors: Johan Arvidsson, Ralf Carlström, Hans Hallén, Sture Löfgren
  • Patent number: 6238494
    Abstract: Described is a polycrystalline, metallic sputtering target with a minimum of statically crystallized grain size difference in grain size at any location of less than about ±3%, as well as a dispersion in orientation content ratio of textures of less than about ±4% at any location.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 29, 2001
    Assignee: Johnson Matthey Electronics Inc.
    Inventor: Vladimir Segal
  • Patent number: 6197437
    Abstract: A composite barrel for use in extrusion or injection molding is disclosed. The composite barrel includes an outer housing having a cylindrical bore that extends throughout the length of the outer housing. A wear-resistant lining is disposed on an interior surface that defines the cylindrical bore. The lining is fabricated from an alloy that includes a base metal and phosphorus and the lining may contain hard abrasion-resistant particulate, such as tungsten carbide. The base metal is nickel or cobalt or a mixture of nickel and cobalt. The alloy is typically applied by centrifugal casting and can be cast in a nitrogen-rich atmosphere without creating undesirable lining porosity. Such linings can be made for a fraction of the cost of comparable linings that must be cast under vacuum or in an atmosphere of argon.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 6, 2001
    Assignee: Wall Colmonoy Corporation
    Inventors: David Martin Bielec, Samuel Conrad DuBois, Subramaniam Rangaswamy
  • Patent number: 6190467
    Abstract: A Ni-base alloy composition comprises of Zr, B, and Si. Zr and B are coupled to each other to form ZrB2, the B and Zr suppress melting points of the Ni-base alloy composition. Further, a Ni-base alloy composition also comprises Cr, Ti, and Ni, where the Ti and Cr suppress melting points.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: February 20, 2001
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Stephen Joseph Ferrigno, David Edwin Budinger, Richard Patrick Chesnes
  • Patent number: 6190516
    Abstract: A planar ferromagnetic sputter target is provided for use as cathode in the magnetron sputtering of magnetic thin films, wherein the ferromagnetic material has localized regions of differing magnetic permeability. A solid, unitary, planar sputter target is formed from a ferromagnetic material, such as cobalt, nickel, iron or an alloy thereof, and this planar target is subjected to mechanical deformation, heat treatment, and/or thermal-mechanical treatment to create regions within the sputter target having different permeability than adjacent regions. The permeability differences in the ferromagnetic sputter target guides the path of the magnetic flux flow through the target to thereby increase the magnetic leakage flux at the target sputtering surface.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: February 20, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Wei Xiong, Hung-Lee Hoo, Peter McDonald
  • Patent number: 6130006
    Abstract: There is provided a hydrogen-absorbing alloy which contains an alloy ingot manufactured by means of a casting or sintering method or a pulverized product of the alloy ingot, and the alloy ingot being represented by the following general formula (1),(Mg.sub.1-a-b R1.sub.a M1.sub.b)Ni.sub.z (1)wherein R1 is at least one element selected from rare earth elements (including Y), M1 is at least one element selected from elements having a larger electronegativity than that of Mg (excluding the elements of R1, Cr, Mn, Fe, Co, Cu, Zn and Ni), and a, b and z are respectively a number satisfying conditions 0.1.ltoreq.a.ltoreq.0.8, 0<b.ltoreq.0.9, 1-a-b>0, and 3.ltoreq.z.ltoreq.3.8.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: October 10, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuoki Kohno, Isao Sakai, Masaaki Yamamoto, Motoya Kanda, Hideki Yoshida, Fumiyuki Kawashima, Takao Sawa, Takamichi Inaba, Shusuke Inada, Hirotaka Hayashida, Hiroshi Kitayama
  • Patent number: 6068713
    Abstract: A hydrogen absorbing alloy is provided which is increased in reaction rate without being restricted in composition and which is unimpaired in the reversibility of reaction and hydrogen absorption-desorption cycle life characteristics. The alloy contains the phase of an intermetallic compound of the composition A5T19 wherein A is at least one element selected from the group consisting of La, Ce, Pr, Sm, Nd, Mm (misch metal), Y, Gd, Ca, Mg, Ti, Zr and Hf, and T is at least one element selected from the group consisting of B, Bi, Al, Si, Cr, V, Mn, Fe, Co, Ni, Cu, Zn, Sn and Sb. The alloy is produced by mixing together an alloy containing an AT3 phase and an alloy containing an AT4 phase, mechanically alloying the mixture to form the phase of intermetallic compound of the composition A5T19 in addition to the AT3 and AT4 phases, and subsequently mixing together or mechanically alloying the resulting alloy and an alloy containing AT5 phase.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: May 30, 2000
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masaharu Yamaguchi, Haruyuki Inui, Koichi Sato, Koichi Nishimura, Shin Fujitani, Ikuo Yonezu, Koji Nishio
  • Patent number: 5976281
    Abstract: A Ni--Ti superelastic alloy demonstrates superelastic properties at normal temperatures from about 0 and 30.degree. C. The superelastic alloy allows shape alteration when the temperature is in excess of 40.degree. C. The Ni--Ti superelastic alloy is produced by plastic working a composition containing essentially Ni and Ti, and subjecting the composition to heat treatment at a temperature between 600 and 800.degree. C. to impart shape memory. When the Ni--Ti superelastic alloy is used in an eyeglass frame, it allows the shape of the pad arms to be adjusted at temperatures above about 40.degree. C.
    Type: Grant
    Filed: February 29, 1996
    Date of Patent: November 2, 1999
    Assignee: Furukawa Electric Co.
    Inventors: Masayuki Nakamura, Mikio Takeuchi
  • Patent number: 5968450
    Abstract: The present invention provides a scandium containing hydrogen absorption alloy having an alloy phase which is represented by the following formula;(Sc.sub.x A.sub.1-x)(B'.sub.y B".sub.2-y).sub.zwherein A is at least one of Ti, Zr, rare-earth elements, a mixture of Ti and at least one of Zr, Ta, Nb, Hf, Ca and rare-earth elements, and a mixture of Zr and at least one of Ti, Ta, Nb, Hf, Ca and rare-earth elements; B'is at least one of Ni, Fe, Co and a mixture of at least one of Ni, Fe and Co and at least one of Al, Ga, Si and In; B" is at least one of Mn, V, Cr, Nb, Ti and a mixture of at least one of Mn, V, Cr, Nb and Ti and at least one of Al, Ga, Si and In; x represents 0<x.ltoreq.1; y represents 0<y<2; and z represents 0.75.ltoreq.z.ltoreq.1.2, and the alloy phase includes at least one of a part which belongs to a C15 type Laves phase and a part which belongs to a C14 type Laves phase, and a hydrogen absorption electrode which includes the alloy.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: October 19, 1999
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Takitaro Yamaguchi, Takao Ogura
  • Patent number: 5964966
    Abstract: Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: October 12, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Amit Goyal, Eliot D. Specht, Donald M. Kroeger, Mariappan Paranthaman
  • Patent number: 5958154
    Abstract: Magnetically-controlled actuator materials are provided that produce large actuation stroke, that exhibit fast actuation response time and corresponding high-frequency operation, and that enable efficient actuation energy conversion at convenient operating temperatures. The actuator materials exhibit an austenitic crystal structure above a characteristic phase transformation temperature and exhibit a martensitic twinned crystal structure below the phase transformation temperature. One actuator material provided by the invention is an alloy composition that can be defined generally as (Ni.sub.a Fe.sub.b Co.sub.c).sub.65-x-y (Mn.sub.d Fe.sub.e Co.sub.f).sub.20+x (Ga.sub.g Si.sub.h Al.sub.i).sub.15+y, where x is between about 3 atomic % and about 15 atomic % and y is between about 3 atomic % and about 12 atomic %, and where a+b+c=1, where d+e+f=1, and g+h+i=1.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: September 28, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert C. O'Handley, Kari M. Ullakko
  • Patent number: 5951945
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 12 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a main phase which constitutes the matrix of the alloy and which is made of a Zr--Ni--Mn based alloy, a dispersed granular phase made of a rare earth elements--Ni type alloy distributed along the grain boundary of the main phase, and a flaky phase which is made of a Ni--Zr type alloy attached to the dispersed granular phase and intermittently distributed along the grain boundary mentioned above.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: September 14, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo
  • Patent number: 5916380
    Abstract: An Fe--Ni alloy for use as a part 10 of an electron-gun 4 is press-blanked by a punch to form minute apertures 10a, 10b, 10c for passing an electron beam 3. The burrs 10 formed around the minute apertures 10a, 10b, 10c are detrimental to such part 4. The Fe--Ni alloy according to the present invention essentially consists of from 30 to 55 wt % of Ni, not more than 0.5 wt % of Si, not more than 1.5 wt % of Mn, and the balance being Fe and unavoidable impurities. The alloy includes from 10 to 1,000 of A type or B type non-metallic inclusions of 10 .mu.m or more in length per 1 mm.sup.2 of longitudinal cross section, and from 100 to 50,000 of C type non-metallic inclusions having a diameter of 5 .mu.m or less.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: June 29, 1999
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Norio Yuki, Masazumi Mori, Yoshihiro Ozeki
  • Patent number: 5898020
    Abstract: A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: April 27, 1999
    Inventors: Amit Goyal, John D. Budai, Donald M. Kroeger, David P. Norton, Eliot D. Specht, David K. Christen
  • Patent number: 5891271
    Abstract: Fe--Ni alloys for electron gun parts consisting of, all by weight, 30-55% Ni, 0.0010-0.200% S, up to 0.8% Mn, from not less than 0.005 to less than 0.5% in total of one or more elements selected from the group consisting of Ti, Mg, Ce and Ca, and the balance substantially Fe and unavoidable impurities, and electron gun parts, typically electron gun electrodes, made of the alloys by punching are provided. Controlling the grain size number to No. 7.0 or above is also effective. The Fe--Ni alloys of this invention for electron gun parts are remarkably improved in press punchability and can solve burring problems through the easy formation of sulfide inclusions of Ti, Mg, Ce, and Ca.
    Type: Grant
    Filed: November 18, 1997
    Date of Patent: April 6, 1999
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Norio Yuki, Yoshihisa Kita
  • Patent number: 5872074
    Abstract: Leached nanocrystalline materials having a high specific surface are particularly useful for storing hydrogen or as catalysts or electrocatalysts in the manufacture electrodes, especially for fuel cells. Such materials can be manufactured by preparing a nanocrystalline material consisting of a metastable composite or alloy of at least two different chemical elements. To be nanocrystalline, this material must have a crystalline structure with the grain size lower than 100 nm. Then, the so prepared nanocrystalline material can be subjected to a leaching treatment in order to eliminate partially or totally one of the elements of the composite or alloy. This leaching results in nanocrystalline materials having a porous structure and, thereby, the requested high specific surface.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: February 16, 1999
    Assignee: Hydro-Quebec
    Inventors: Robert Schulz, Guy Lalande, Jacques Huot, Marie-Chantal Denis, Guoxian Liang, Andre Van Neste, Daniel Guay, Jean-Pol Dodelet
  • Patent number: 5853451
    Abstract: Ultrafine spherical nickel powder for use in a laminate ceramics capacitor is produced through a process employing a vapor phase chemical reaction between nickel chloride and hydrogen. The process includes the steps of: i) charging a reaction vessel with nickel chloride and evaporating the nickel chloride to generate vapor of nickel chloride; ii) mixing an inert gas with the vapor of the nickel chloride to form a mixture gas having a nickel chloride gas concentration of 0.05 to 0.3, and sending the mixture gas to a reaction zone; iii) bringing, in the reaction zone, the mixture gas into contact and mixing with hydrogen which is supplied from a nozzle at a temperature of 1004.degree. C. to 1453.degree. C., in such a manner that the flow rate ratio of the hydrogen to the mixture gas meets the condition of (H.sub.2 /(NiCl.sub.2 +inert gas)) <1, thereby causing the chemical reaction; and iv) cooling the generated ultrafine nickel powder together with the gas and collecting the ultrafine nickel powder.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: December 29, 1998
    Assignee: Kawasaki Steel Corporation
    Inventor: Hiroyuki Ishikawa
  • Patent number: 5841043
    Abstract: A shaped body of hydrogen absorbing alloy prepared by pressing a mixture of a hydrogen absorbing alloy powder A having a first particle-size distribution, a hydrogen absorbing alloy powder B having a second particle-size distribution and a binder C, the powder A being larger than the powder B in mean particle size, the mixture being at least 0.03 to not gerater than 0.50 in the mean particle size ratio r.sub.B /r.sub.A of the powder B to the powder A wherein r.sub.A and r.sub.B are the mean particle sizes of the respective powders A and B. The hydrogen absorbing alloy of the powder B is higher than the hydrogen absorbing alloy of the powder A in the rate of progress of pulverization resulting from absorption and desorption of hydrogen.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: November 24, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Koichi Nishimura, Takahiro Yonesaki, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu, Hiroshi Watanabe
  • Patent number: 5817222
    Abstract: A rare earth metal-nickel hydrogen storage alloy having a composition represented by the formula (1)RNi.sub.x-y M.sub.y (1)(wherein R stands for La, Ce, Pr, Nd, or mixtures thereof, M stands for Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, Si, V, Cr, Nb, Hf, Ta, W, B, C, or mixtures thereof, x satisfies the formula of 3.5.ltoreq.x<5, and y satisfies the formula of 0<y.ltoreq.2, crystals in the alloy having a LaNi.sub.5 type single phase structure, the alloy including in an amount of not less than 5 volume % and less than 95 volume % thereof crystals each containing not less than 2 and less than 17 antiphase boundaries extending perpendicular to C-axis of a grain of the crystal in the alloy per 20 nm along the C-axis, a method of producing the same, and an anode for a nickel hydrogen rechargeable battery containing as an anode material the above rare earth metal-nickel hydrogen storage alloy and an electrically conductive material.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: October 6, 1998
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventor: Akihito Kaneko
  • Patent number: 5810981
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 15 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a net-shaped continuous phase which is made of a Ni--Zr type alloy, a main phase (in the net-shaped continuous phase) made of a Zr--Ni--Mn based alloy, and a dispersed granular phase made of a rare earth elements-Ni type alloy distributed along the net-shaped continuous phase.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: September 22, 1998
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo, Chris N. Christodoulou
  • Patent number: 5800639
    Abstract: The present invention discloses a type of novel material compositions for hydrogen storage. The material compositions includes a hydrogen storage Laves-phase alloy which has a material composition represented by A.sub.1-X B.sub.X C.sub.Y where A=(Zr or Hf).sub.1-X1 Ti.sub.X1 and X1 has a value between zero to one, B=La, Ce, Pr, Nd and mixed rare earth, alkaline, or alkaline earth metallic element, C=V.sub.Y1 Ni.sub.Y2, where Y1 has a value between zero to 0.8, Y2 has a value between 1.3 to 3.0, and X has a value between zero to 0.2 and Y has a value between 2.0 to 3.0. In a preferred embodiment, when the value of X is greater than zero, the Laves-phase alloy includes a plurality of B--Ni clusters.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: September 1, 1998
    Assignee: Mobius Green Energy, Inc.
    Inventor: De Yi Yan
  • Patent number: 5725687
    Abstract: The present invention relates to a wear-resistant high permeability alloy nsisting of Ni, Nb, C and Fe, a wear-resistant high permeability alloy consisting of Ni, Nb, C and Fe as main components and at least one element selected from the group consisting of Cr, Mo, Ge, Au, Co, V, W, Cu, Ta, Mn, Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth element, platinum element, Be, Ag, Sr, B, P, N, O, S as a secondary component and a method of manufacturing the same and a magnetic recording and reproducing head, and an object of the invention is to obtain an excellent wear-resistant magnetic alloy having easy forging processability, a large effective permeability, a saturated flux density of more than 4000G, and a recrystallization texture of {110}<112>+{311}<112>+{111}<112>, and a wear-resistant high permeability alloy consisting by weight of Ni 60-90%, Nb 0.5-14%, C 0.0003-0.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: March 10, 1998
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Yuetsu Murakami, Katashi Masumoto
  • Patent number: 5470404
    Abstract: A rare earth metal-nickel hydrogen occlusive alloy ingot contains 90 vol % or more of crystals having a crystal grain size of 1 to 50 .mu.m as measured along a short axis of the crystal and 1 to 100 .mu.m as measured along a long axis of the crystal. A method for producing the rare earth metal-nickel hydrogen occlusive alloy ingot involves melting a rare earth metal-nickel alloy and uniformly solidifying the alloy melt to have a thickness of 0.1 to 20 mm under cooling conditions of a cooling rate of 10.degree. to 1000.degree. C./sec and a sub-cooling degree of 10.degree. to 500.degree. C.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: November 28, 1995
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventors: Kazuhiko Yamamoto, Yuichi Miyake, Chikara Okada, Nobuyuki Kitazume
  • Patent number: 5376194
    Abstract: A slide surface construction is formed of an aggregate of Ni crystals having a face-centered cubic structure. The aggregate includes {311} oriented Ni crystals with their {311} planes (by Miller indices) oriented toward a slide surface. The content S of the {311} oriented Ni crystals is set in a range represented by S.gtoreq.40%. The {311} oriented Ni crystals are of a quadrangular pyramid shape on the slide surface, and provide good oil retention for the slide surface construction. Thus, the slide surface construction exhibits an excellent seizure resistance.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: December 27, 1994
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takahiro Gunji, Yoshikazu Fujisawa, Kazuhisa Okamoto, Masamune Tabata
  • Patent number: 5374319
    Abstract: A process is provided for welding a gamma-prime precipitation-strengthened nickel base superalloy by heating the weld area and adjacent region to a ductile temperature, welding while maintaining the entire weld area and adjacent region at the ductile temperature and holding the weldment, weld area and adjacent region at the ductile temperature until the entire weld has solidified. The ductile temperature is above the aging temperature but below the incipient melting temperature of the superalloy.
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: December 20, 1994
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: Richard J. Stueber, Thomas Milidantri, Moshen Tadayon
  • Patent number: 5374323
    Abstract: Disclosed is a large alloy forging, the forging having an alloy composition selected from one of a nickel base alloy, a cobalt-chromium-nickel base alloy, a nickel-cobalt base alloy and an iron-nickel-chromium-molybdenum alloy, the forging having a grain size of ASTM grain size 3 or finer, as measured by ASTM method E112 and having a tensile strength in the range of 135 to 175 KSI.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: December 20, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Richard A. Beaumont, Daniel F. Carbaugh, David Anderson, Al Farrell, Amiya K. Chakrabarti, Kenneth P. Kinnear
  • Patent number: 5366565
    Abstract: The alloy is preferably an alloy having a niobium and titanium base according to the expression:Nb-Ti.sub.27-40.5 -Al.sub.4.5-10.5 -Hf.sub.1.5-5.5 Cr.sub.4.5-7.9 V.sub.0-6,wherein the ratio of concentrations of Ti to Nb (Ti/Nb) is greater than or equal (.gtoreq.) to 0.5, andwherein the maximum concentration of the Hf+V+Al+Cr additives is less than or equal (.ltoreq.) to the expression:16.5+(5.times.Ti/Nb),and the minimum concentration of these additives is 10.5.The crystal form of the alloy is specifically body centered cubic crystal form.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: November 22, 1994
    Assignee: General Electric Company
    Inventor: Melvin R. Jackson
  • Patent number: 5360496
    Abstract: Disclosed is a large alloy forging and method for making it. The forging having an alloy composition selected from one of a nickel base alloy, a cobalt-chromium-nickel base alloy, a nickel-cobalt base alloy and an iron-nickel-chromium-molybdenum alloy and having a grain size of ASTM grain size 4 or finer, as measured by ASTM method E112 and having a tensile strength in the range of 135 to 175 KSI. The process includes: (1) four upset forgings, (2) a rapid cooling after the final upset cooling, (3) a first and second upset forging with a reduction greater than 50%, (4) a third upset forging with a reduction greater than 25.%, and (5) a forging process with a fourth upset forging with a reduction greater than 50%.
    Type: Grant
    Filed: April 7, 1993
    Date of Patent: November 1, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Richard A. Beaumont, Daniel F. Carbaugh, David Anderson, Amiya K. Chakrabarti, Kenneth P. Kinnear
  • Patent number: 5344510
    Abstract: Superalloy articles are made more oxidation resistant by a process which includes heating the article in an environment having a reduced pressure of inert gas and a low partial pressure of oxygen to a temperature at which the sulfur in the article diffuses out. The heat treatment is best carried out at a temperature within the range defined by the incipient melting temperature of the article and about 150.degree. C. below the incipient melting temperature of the article. Alternatively, the heat treatment may be carried out at a temperature above the gamma prime solvus temperature of the article and below the incipient melting temperature of the article. At such temperatures, sulfur readily diffuses out of the article, and a more oxidation resistant component is produced.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: September 6, 1994
    Assignee: United Technologies Corporation
    Inventors: William P. Allen, Donald R. Parille
  • Patent number: 5304346
    Abstract: The invention provides a welding material for welding iron containing low CTE alloys. The filler metal contains 25-55% nickel, 0-30% cobalt, 0.05-0.5% carbon, 0.25-5% niobium and balance iron with incidental impurities. The welding material also is operable with fluxes for submerged arc welding. In addition, the welding material may be configured to function as a flux coated or flux-cored electrode.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: April 19, 1994
    Assignee: INCO Alloys International, Inc.
    Inventors: David B. O'Donnell, Robert A. Bishel
  • Patent number: 5304039
    Abstract: An extension is provided on an end of an article having a directionally oriented microstructure by using the article end as a growth seed in a molten material compatible with material from which the article end is made. The extension is directionally solidified as integral with and as an extension of the article end and with a microstructure compatible with that of the article end.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: April 19, 1994
    Assignee: General Electric Company
    Inventors: Reed R. Corderman, Kevin G. McAllister