Containing At Least Nine Percent Chromium(cr) (e.g., Stainless Steel, Etc.) Patents (Class 148/542)
  • Publication number: 20090263276
    Abstract: High strength aluminum magnesium alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. These alloys may also optionally contain zinc, copper, lithium and silicon.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20090257906
    Abstract: A cobalt-rich wear resistant and corrosion resistant alloy comprises in weight %, 0.5 to 1.2% C, 0.6 to 2.1% Si, 17 to 24% Cr, 27 to 38.5% Fe, 1.4 to 20% W, 3.8 to 9.7% Mo, less than 1% Ni and balance Co. A preferred cobalt-rich alloy comprises in weight %, 0.5 to 0.9 C, 0.75 to 1.15% Si, 17.5 to 20.5 Cr, 27.0 to 32.0 Fe, 12.5 to 16.5 W, 6.25 to 8.25 Mo, 0.45 to 1.00 Ni and balance Co. The alloy preferably has a microstructure free of primary carbides and comprises up to about 50% by volume eutectic reaction phases in a solid solution matrix. The solid solution matrix is an ?Fe-?Co face-centered cubic solution with W, Cr and Mo as solute elements and the eutectic reaction products comprise a (Co, Cr)7(W,Mo)6 phase and an ?Fe-?Co phase. The alloy is useful as a valve seat insert for internal combustion engines such as diesel engines.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Applicant: L.E. Jones Company,
    Inventors: Cong Yue Qiao, Daniel W. Bancroft
  • Publication number: 20090129967
    Abstract: A forgeable austenitic stainless steel alloy and forging process capable of producing forged components that exhibit mechanical and environmental properties and metallurgical stability suitable for use in thermally and chemically hostile environments, such as the environment of a component of a gas turbine engine shroud assembly. The alloy contains, by weight, 18.0 to 22.0% chromium, 8.0 to 14.0% nickel, 4.0 to 7.0% manganese, 0.4 to 0.6% silicon, at least 0.2 up to 1.0% nitrogen, at least 0.05 up to 0.075% carbon; up to 0.3% molybdenum, up to 1.0% niobium, up to 0.2% cobalt, up to 4.5% aluminum, up to 0.1% boron, up to 0.1% vanadium, up to 1.0% tungsten, and up to 5.0% copper, with the balance iron and incidental impurities.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 21, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: George Albert Goller
  • Publication number: 20090130483
    Abstract: An amorphous, ductile brazing foil is produced with a composition of FeaNibCrcSidBeMofPg with 25?a?50 atomic %; 30?b?45 atomic %; 5<c?15 atomic %; 4?d?15 atomic %; 4?e?15 atomic %; 0?f?5 atomic %; 0?g?6 atomic %; and any impurities, wherein 10?d+e+g?28 atomic % with a+b+c+d+e+f+g=100. Excellent brazing joints can be produced with these brazing foils.
    Type: Application
    Filed: July 18, 2006
    Publication date: May 21, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Publication number: 20090120540
    Abstract: A cold die steel excellent in the characteristic of suppressing dimensional change, which has a chemical composition in mass %: C: 0.7% or more and less than 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: less than 0.05% including 0%, S: 0.01 to 0.12%, Cr: 7.0 to 13.0%, one or two elements selected from the group consisting of Mo and W: amounts satisfying the formula (Mo+(W/2))=0.5 to 1.7%, V: less than 0.7% including 0, Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0% and Al: 0.1 to 0.7%. Preferably, the die steel satisfies the formula in mass %: Ni/Al=1 to 3.7. It is preferred that the die steel also satisfies the following formula in mass %: (Cr?4.2×C)=5 or less and (Cr?6.3×C)=1.4 or more and that it contains 0.3% or less of Nb.
    Type: Application
    Filed: December 24, 2008
    Publication date: May 14, 2009
    Applicant: Hitachi Metals, Ltd.
    Inventors: Kunichika Kubota, Hideshi Nakatsu, Shugo Komatsubara
  • Publication number: 20090110588
    Abstract: Disclosed is a stainless steel containing, by mass, 0.05% or less carbon, 1.5 to smaller than 3.5% Si, 3.0% or less Mn, 6.0 to 12.0% Cr, 4.0 to 10.0% Ni, 10.0% or less Co, 6.0% or less Cu, 0.5 to 3.0% Ti, 0 to 2.0% Al, less than 0.4% Mo, not more than 0.01% nitrogen, and the balance of Fe and unavoidable impurities. Preferably, it has a hardness of not lower than 59 HRC and may contain not more than 1.0% Nb and/or not more than 1.0% Ta. Alternatively, the stainless steel may further contain not more than 0.1% of Zr. The process for producing the steel includes producing a steel having a composition as described above by a consumable electrode remelting process, and then subjecting the steel to a solution treatment at a temperature of 1000 to 1150° C. and an aging treatment at a temperature of 400 to 550° C., thereby aging the stainless steel to a hardness of not lower than 59 HRC.
    Type: Application
    Filed: December 22, 2008
    Publication date: April 30, 2009
    Applicant: HITACHI METALS, LTD.
    Inventors: Yoshiyuki INOUE, Fumio Tohyama
  • Publication number: 20090065104
    Abstract: A method of making a cold strip with a ferritic structure includes casting a molten steel which forms a ferritic structure on cooling into a cast strip, wherein if necessary hot-rolling the cast strip in-line, coiling the hot-rolled strip and in one or more steps cold-rolling to form the cold strip. With such a method, cold strips can be produced, in which the risk of formation of an orange peel appearance or ridging is minimized during a cold forming process. The cast strip is cooled between the casting process and the coiling process from a starting temperature not lower than 1180° C., at a cooling rate of at least 150° C. per second, to a maximum intermediate temperature of 1000° C. and is then held for at least 10 seconds at a maintenance temperature of between 900 and 1000° C.
    Type: Application
    Filed: December 27, 2006
    Publication date: March 12, 2009
    Inventors: Roland Sellger, Guido Stebner, Michael Sachtleber, Lutz Ernenputsch, Rolf Degenhardt
  • Patent number: 7459219
    Abstract: An item made of wear resistant material, the item, in certain aspects, made by a method including forming a mass of wear resistant material, the wear resistant material comprising at least one element from the group consisting of arsenic, antimony, cerium and bismuth, wherein the at least one element is present by weight as between 0.01% to 0.0001% of a total weight of the wear resistant material, wherein the wear resistant material includes by weight percent chromium 29.10-30.00%; nickel 5.00-6.00%; titanium 1.00-2.10%; boron 3.00-3.90%; silicon 1.00-2.10%; manganese 1.10-2.00%; iron-balance.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: December 2, 2008
    Inventors: Jimmie Brooks Bolton, Billi Marie Rogers
  • Patent number: 7445750
    Abstract: The invention relates to a tool steel, the composition of which comprises (the percentages being expressed in % by weight): 0.8 ? C ? 1.5 5.0 ? Cr ? 14 0.2 ? Mn ? 3 Ni ? 5 V ? 1 Nb ? 0.1 Si + Al ? 2 Cu ? 1 S ? 0.3 Ca ? 0.1 Se ? 0.1 Te ? 0.1 1.0 ? Mo + ½W ? 4 0.06 ? Ti + ½Zr ? 0.15 0.004 ? N ? 0.02 the balance of the composition consisting of iron and impurities resulting from the smelting, it being furthermore understood that: 2.5×10?4%2?(Ti+½Zr)×N, to a process for manufacturing parts made in this steel and to the parts obtained.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 4, 2008
    Assignee: USINOR
    Inventors: Jean Beguinot, Dominique Viale
  • Patent number: 7416619
    Abstract: The present invention relates to new kitchen utensils, in particular relates to an application of a material in kitchen utensils. The present invention solves the problems of long-term presence in the field. SUS436L is used for kitchen utensils. SUS436L chemical composition (wt %) comprises Cr 16-19, C?0.025, Si?1.00, Mn?1.00, N?0.02, Ni?0.60, Ti?0.75, Mo 0.75-1.50 and balance of Fe. The kitchen utensils have all excellence of present kitchen utensils, overcome its disadvantage and possess high property of heat conduction and magnetoconductivity. The kitchen utensils are used in induction cooker, possess the all and the one structure and have low cost.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: August 26, 2008
    Assignee: Xinhui Rixing Stainless Steel Product Company Limited
    Inventor: Iou Lei
  • Patent number: 7396421
    Abstract: A duplex stainless steel containing C, Si, Mn, P, S, Al, Ni, Cr, Mo, N (nitrogen, O (oxygen), Ca, Mg, Cu, B, and W, and the balance Fe and impurities, where a number of oxide-based inclusions, which have a total content of Ca and Mg of 20 to 40% by mass and also have a long diameter of not less than 7 ?m, is not more than a 10 per 1 mm2 of the cross section perpendicular to the working direction, or further, the number of oxide-based inclusions, which have a content of S of not less than 15% by mass and also have a long diameter of not less than 1 ?m, is not more than 10 per 0.1 mm2 of the cross section perpendicular to the working direction. Particularly, the contents of Cu, B and W are desirably 0.2 to 2%, 0.001 to 0.01%, and 0.1 to 4% by mass, respectively.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: July 8, 2008
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiko Omura, Satoshi Matsumoto
  • Patent number: 7160398
    Abstract: A melt of an alloy, represented (Fe1-mTm)100-x-y-zQxRyMz, where T is Co and/or Ni, Q is B and/or C, R is at least one rare-earth element, M is selected from Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb; 10 at %?x?35 at %; 2 at %?y?10 at %; 0 at %?z?10 at %; and 0?m?0.5, is prepared. Next, the melt is brought into contact with, and rapidly cooled and solidified by, the surface of a rotating chill roller. The melt is teemed onto a guide member, of which the guide surface defines a tilt angle with a horizontal plane, runs down on the guide surface, and then is fed through at least one tubular hole onto a contact area on the surface of the chill roller.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: January 9, 2007
    Assignee: Neomax Co., Ltd.
    Inventor: Hirokazu Kanekiyo
  • Patent number: 7056398
    Abstract: A ferritic stainless steel sheet contains abut 0.01 percent by mass or less of carbon; about 1.0 percent by mass or less of silicon; about 1.5 percent by mass or less of manganese; about 11 to about 23 percent by mass of chromium; about 0.06 percent by mass or less of phosphorous; about 0.03 percent by mass or less of sulfur; about 1.0 percent by mass or less of aluminum; about 0.04 percent by mass or less of nitrogen; about 0.0005 to about 0.01 percent by mass of boron; about 0.3 percent by mass or less of vanadium; about 0.8 percent by mass or less of niobium and/or about 1.0 percent by mass or less of titanium wherein 18?Nb/(C+N)+2(Ti/(C+N))?60; and the balance being iron and unavoidable impurities. The average crystal grain diameter is about 40 ?m or less and the average surface roughness is about 0.3 ?m or less.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: June 6, 2006
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiro Yazawa, Osamu Furukimi, Yasushi Kato, Yoshihiro Ozaki
  • Patent number: 6896747
    Abstract: Austenitic alloy for high-temperature strength with improved pourability and manufacturing, of which the composition comprises, in weight-%: 0.010%<carbon<0.04% 0%<nitrogen<0.01% silicon<2% 16%<nickel<19.9% manganese<8% 18.1%<chromium<21% 1.8%<titanium<3% molybdenum<3% copper<3% aluminum<1.5% boron<0.01% vanadium<2% sulfur<0.2% phosphorous<0.04% and possibly up to 0.5% of at least one element chosen from among yttrium, cerium, lanthanum and other rare earths, the remainder being iron and impurities resulting from manufacturing or deoxidizing, the said composition also satisfying the two following relationships: in relationship to the solidification mode: remainder a=eq. Nia?0.5×eq. Cra<3.60 where eq. Cra=Cr+0.7×Si+0.2×Mn+1.37×Mo+3×Ti+6×Al+4×V, and where eq. Nia=Ni+22×C+0.5×Cu, in relationship to the rate of residual ferrite: remainder b=eq. Nib?2×eq. Crb>?41 where eq. Crb=Cr+0.7×Si+1.37×Mo+3×Ti+6×Al+4×V, and where eq. Nib=Ni+22×C+0.5×Cu+0.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: May 24, 2005
    Assignee: Usinor
    Inventors: Jean-Michel Hauser, Christophe Bourgin
  • Patent number: 6855213
    Abstract: A ferritic non-ridging stainless steel and process therefor. A chromium alloyed steel melt containing sufficient titanium and nitrogen but a controlled amount of aluminum is cast into an ingot or continuously cast into a strip or a slab having an as-cast fine equiaxed grain structure substantially free of columnar grains. The as-cast steel contains 0.08% C, at least about 8% Cr, up to 1.50% Mn, <0.020% Al, ?0.05% N, ?1.5% Si, <2.0% Ni, Ti?0.10%, the ratio of (Ti×N)/Al?0.14, all percentages by weight, the balance Fe and residual elements. Preferably, the titanium is controlled so that (Ti/48)/[(C/12)+(N/14)]>1.5. A hot processed sheet may be formed from a continuously cast slab without grinding the surfaces of the slab. The hot processed sheet may be descaled, cold reduced to a final thickness and recrystallization annealed. Annealing the hot processed sheet prior to cold reduction is not required to obtain an annealed sheet essentially free of ridging and having high formability.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: February 15, 2005
    Assignee: Armco Inc.
    Inventors: Eizo Yoshitake, Alan R. McKague
  • Publication number: 20040261915
    Abstract: A new austenitic stainless steel containing approximately 0.1-1.0 mass % of Si and not more than approximately 0.003 mass % of Al. Nonmetallic inclusions dispersed in a steel matrix are converted to MnO—SiO2—Al2O3 containing not less than approximately 15 mass % of SiO2 and not more than approximately 40 mass % of Al2O3. During steel making, molten steel is covered with basic slag and heavily deoxidized with a Si alloy whose Al content is controlled to not more than approximately 1.0 mass % in a vacuum or non-oxidizing atmosphere. The austenitic stainless steel sheet can be formed to an objective shape without the occurrence of cracking due to its decrease in susceptibility to cracking and its good formability.
    Type: Application
    Filed: July 13, 2004
    Publication date: December 30, 2004
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Junichi Katsuki, Teruyoshi Iida, Takashi Yamauchi, Satoshi Suzuki, Naoto Hiramatsu
  • Patent number: 6793744
    Abstract: The present invention relates to a martensitic stainless steel that can be used in manufacturing articles such as a shaft or an impeller which require high mechanical strength and corrosion resistance and provides a martensitic stainless steel comprising less than 0.06 wt. % C, less than 2.5 wt. % Si, less than 2.5 wt. % Mn, 1.0-6.0 wt. % Ni, 10.0-19.0 wt. % Cr, 0.5-6.0 wt. % W, less than 3.5 wt. % Mo, less than 0.5 wt. % Nb, less than 0.5 wt. % V, less than 3.0 wt. % Cu, 0.05-0.25 wt. % N, and the remainder being Fe and minor impurities.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: September 21, 2004
    Assignee: Research Institute of Industrial Science & Technology
    Inventor: Jae-Young Jung
  • Publication number: 20040092334
    Abstract: A golf club head comprises a part made of a martensitic iron alloy which has: a nickel (Ni) content of from 9.0 to 12.0 weight %; a chromium (Cr) content of from 11.0 to 12.5 weight %; a titanium (Ti) content of from 1.5 to 1.8 weight %; a molybdenum (Mo) content of from 0.75 to 1.2 weight %; a carbon (C) content of not more than 0.05 weight %; a phosphorus (P) content of not more than 0.015 weight %; a silicon (Si) content of not more than 0.25 weight %; a magnesium (Mg) content of not more than 0.25 weight %; and a sulfur (S) content of not more than 0.01 weight %.
    Type: Application
    Filed: November 4, 2003
    Publication date: May 13, 2004
    Inventor: Akio Yamamoto
  • Publication number: 20040065393
    Abstract: A non-magnetic austenitic stainless cast steel having high yield strength at room temperature without losing ductility at liquid nitrogen temperature, permitting easy casting without requiring the solution heat treatment, containing (by mass %) 0.08 percent or less carbon, 0.1 to 1.5 percent silicon, 0.1 to 1.5 percent manganese, 13 to 15 percent nickel, 18 to 19 percent chromium, 2 to 2.5 percent molybdenum, 0.005 to 0.1 percent aluminum, and 0.12 to 0.2 percent nitrogen, with the remainder of the steel being iron and incidental impurities, and having an elongation at liquid nitrogen temperature having 30 percent or more, 0.2% yield strength at room temperature having 240 MPa or more and relative magnetic permeability having 1.10 or less.
    Type: Application
    Filed: November 6, 2002
    Publication date: April 8, 2004
    Inventors: Akira Kato, Takuo Handa, Tadashi Ichihara
  • Patent number: 6716291
    Abstract: A castable martensitic mold alloy and process for preparing same are disclosed. The composition is characterized by a ductile fine grain tempered martensite having an HRC of about 40 to about 50. The process includes forming a molten fixture of the components and then slow cooling same without requiring an additional tempering heat treatment step as is required in conventional techniques. The components comprise: a) from about 5.0-15% Cr; b) from about 0.5-15% Ni; c) from about 0.1-10% Mo; d) not more than about 2% Si; e) from about 0.1-2% Mn; f) from about 0.1-2% C; g) not more than about 1% S; h) not more than about 1% P; i) not more than about 5% B; j) and the balance being substantially Fe.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Global Manufacturing Solutions, Inc.
    Inventor: Charles M. Woods
  • Publication number: 20040050459
    Abstract: The present invention relates to a steel, in particular for tools exposed to corrosion, of the following composition (in mass-%): C: min. 0.02 and max. 0.12%; Si: max. 1.5%; Mn: more than 1.0-2.50%; P: max. 0.035%; S: min. 0.04% and less than 0.15%; Cr: more than 8.0% and less than 12%; Mo: more than 0.0% and max. 0.20%; V: more than 0.0% and max. 0.25%; Nb: more than 0.1% and max. 0.5%; N: at least 0.02% and max. 0.12%; Ni: max. 0.5%; B: max. 0.005%; Cu: max. 0.3%; Al: max. 0.035%; Sn: max. 0.035%; As: max. 0.02%; at least one of the elements Ca, Mg or Ce, wherein the sum of the contents of these elements is at least 0.0002% and max. 0.015%; with the remainder being iron and unavoidable impurities.
    Type: Application
    Filed: July 24, 2003
    Publication date: March 18, 2004
    Inventors: Claudia Ernst, Bernd Milo Gehricke, Frank Bredenbreuker
  • Publication number: 20040025979
    Abstract: The method according to the invention can be used for the economic manufacture of a steel strip (W) or sheet consisting mainly of Mn-austenite which possesses enhanced strength compared with the prior art. For this purpose a steel is melted which contains at least the following alloying components (in wt. %), 15.00-24.00% Cr, 5.00-12.00% Mn, 0.10-0.60% N, 0.01-0.2% C, max. 3.00% Al and/or Si, max. 0.07% P, max. 0.05% S, max. 0.5% Nb, max. 0.5% V, max. 3.0% Ni, max. 5.0% Mo, max. 2.0% Cu as well as iron and unavoidable impurities as the remainder. This steel is cast into a thin strip (D) having a maximum thickness of 10 mm in a casting gap formed between two rotating rollers (2, 3) or rolls. The rollers (2, 3) or rolls are cooled so intensively that the thin strip (D) in the casting gap (4) is cooled at a cooling rate of at least 200 K/s.
    Type: Application
    Filed: September 16, 2003
    Publication date: February 12, 2004
    Inventors: Gabriele Bruckner, Wolfgang Schlump, Hans-Joachim Krautschick
  • Publication number: 20030145916
    Abstract: A turbine rotor material, that has sufficient corrosion resistance and stress corrosion cracking resistance and appropriate strength and toughness in a good balance, and a manufacturing method thereof are provided. The turbine rotor material is a 12Cr alloy steel that contains: C of 0.01 to 0.10%, Si of 0.01 to 0.50%, Mn of 0.1 to 1.0%, Cr of 9 to 13%, Ni of 2 to 7%, Mo of 0.3 to 3%, N of 0.01 to 0.10%, all in weight percent, and remains of Fe and incidental impurities.
    Type: Application
    Filed: October 25, 2002
    Publication date: August 7, 2003
    Inventors: Masatomo Kamada, Masahiro Saito, Akitsugu Fujita, Yusaku Takano
  • Patent number: 6588494
    Abstract: The invention relates to a process for the casting of thin strip having a thickness of less than 10 mm, made of ferritic stainless steel, directly from liquid metal between two rotating cooled rolls having parallel horizontal axes, characterized in that: the said ferritic stainless steel contains (in percentages by weight) from 11 to 18% chromium, less than 1% manganese, less than 1% silicon and less than 2.5% molybdenum; the said ferritic stainless steel has carbon and nitrogen contents, the sum of the contents not exceeding 0.05%; the said ferritic stainless steel contains at least one of the stabilizing elements titanium, niobium, zirconium and aluminium and the sum of their contents is between 0.05 and 1%; the other elements present are iron and the usual impurities resulting from the smelting. The subject of the invention is also thin strip capable of being obtained by the above process.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: July 8, 2003
    Assignee: Usinor
    Inventors: Frédéric Mazurier, Philippe Paradis
  • Patent number: 6585799
    Abstract: A cast steel with excellent workability, characterized in that not less than 60% of the total cross section thereof is occupied by equiaxed crystals, the diameters (mm) of which satisfy the following formula: D<1.2X1/3+0.75, wherein D designates each diameter (mm) of equiaxed crystals in terms of internal structure in which the crystal orientations are identical, and X the distance (mm) from the surface of the cast steel. The cast steel and the steel material obtained by processing the cast steel have very few surface flaws and internal defects.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: July 1, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Zeze, Takashi Morohoshi, Ryusuke Miura, Shintaro Kusunoki, Yasuhiro Kinari, Masayuki Abe, Hiroshi Sugano, Kenichiro Miyamoto, Masaharu Oka, Yuji Koyama
  • Patent number: 6576068
    Abstract: A method for producing a stainless steel with improved corrosion resistance includes homogenizing at least a portion of an article of a stainless steel including chromium, nickel, and molybdenum and having a PREN of at least 50, as calculated by the equation: PREN=Cr+(3.3×Mo)+(30×N), where Cr is weight percent chromium, Mo is weight percent molybdenum, and N is weight percent nitrogen in the steel. In one form of the method, at least a portion of the article is remelted to homogenize the portion. In another form of the method, the article is annealed under conditions sufficient to homogenize at least a surface region of the article. The method of the invention enhances corrosion resistance of the stainless steel as reflected by the steel's critical crevice corrosion temperature.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: June 10, 2003
    Assignee: ATI Properties, Inc.
    Inventors: John F. Grubb, James D. Fritz
  • Publication number: 20030024614
    Abstract: Refining elements for refining discs for disc refiners for the manufacture of mechanical pulp, for example, board pulp, are subjected to hard abrasive wear in acid environment and at high temperature. In order to improve the wear resistance alloys with precipitated carbides are used. A service life improved in comparison with known alloys is obtained with a refining disc with the following analysis in % by weight: 2.96 C, 0.77 Si, 0.82 Mn, 24.2 Cr, 5.16 V, 0.04 Ni, 0.03 Mo, and the remainder Fe and impurities. After casting, the refining segments are hardened and annealed and assume a hardness of 57-63 HRC.
    Type: Application
    Filed: September 10, 2002
    Publication date: February 6, 2003
    Inventor: Jan-Ake Gaven
  • Publication number: 20020189399
    Abstract: A method for producing a stainless steel with improved corrosion resistance includes homogenizing at least a portion of an article of a stainless steel including chromium, nickel, and molybdenum and having a PREN of at least 50, as calculated by the equation:
    Type: Application
    Filed: April 24, 2001
    Publication date: December 19, 2002
    Inventors: John F. Grubb, James D. Fritz
  • Patent number: 6478899
    Abstract: A stainless steel band is continuously cast. The stainless steel band is descaled and cold rolled. The cold rolled band is annealed and descaled or bright annealed. The band is finish formed and finally coiled. The stainless steel band is not coiled after being continuously cast and before being finally coiled.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: November 12, 2002
    Assignee: Ugine S.A.
    Inventors: Hugues Legrand, Luc Vendeville, Jean Veyer, Francis Chassagne, Jean-Michel Damasse, Yann Breviere, Henri Giraud, Jean-Pierre Malingriaux, Michel Ternisien, Bernard Tetu, Bernard Vialatte
  • Publication number: 20020088717
    Abstract: Disclosed is an aluminium brazing product, such as a brazing sheet product, having a substrate (1) of an aluminium alloy comprising silicon in an amount in the of 2 to 18% by weight, and on at least one outer surface a layer (2) comprising nickel, wherein a separately deposited layer (3) is applied on one side of the layer (2) comprising nickel and the layer (3) comprising a metal such that taken together the aluminium base substrate (1) and all layers exterior thereto form a metal filler having a liquidus temperature in the range of 490 to 570° C., and preferably in the range of to 550° C. The invention also relates to a method of manufacturing such a brazing product and to a brazed assembly comprising at least one component made of the brazing sheet product.
    Type: Application
    Filed: October 31, 2001
    Publication date: July 11, 2002
    Inventors: Adrianus Jacobus Wittebrood, Jacques Hubert Olga Joseph Wijenberg
  • Patent number: 6383316
    Abstract: Through electro slag refining of a bloom of a stainless, precipitation hardenable stainless steel of 17-7 PH type, the fatigue resistance of springs made of cold drawn wires of said material is increased substantially. This depends on the fact that large slag inclusions, which can initiate fatigue failures, are eliminated at the ESR remelting, while longer zones containing concentrations of small slag inclusions are substantially reduced. The material is particularly suitable for springs in injection pumps for Diesel engines.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: May 7, 2002
    Assignee: Haldex Garphyttan Aktiebolag
    Inventor: Claes-Henrik Engström
  • Patent number: 6306341
    Abstract: The present invention provides a stainless steel having superior corrosion resistance, antibacterial properties, and durability, the antibacterial properties being maintained after surface treatments commonly performed including, for example, polishing. In particular, the stainless steel contains not less than 10 percent by weight of chromium, 0.001 to 0.30 percent by weight of silver, or further contains 0.001 to 1.0 percent by weight of vanadium. In addition, not less than 0.0005 weight percent of a silver oxide, the amount thereof being not more than 1.1 times that of the silver, is dispersed in the stainless steel. In order to homogeneously disperse the silver oxide in the stainless steel, when continuous casting of molten steel is performed, the casting rate for the continuous casting is preferably 0.8 to 1.6 m/min. A method for manufacturing the stainless steel is also disclosed.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: October 23, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Takeshi Yokota, Misako Tochihara, Susumu Satoh, Sadao Hasuno
  • Publication number: 20010013382
    Abstract: A ferritic non-ridging stainless steel and process therefor. A chromium alloyed steel melt containing sufficient titanium and nitrogen but a controlled amount of aluminum is cast into an ingot or continuously cast into a strip or a slab having an as-cast fine equiaxed grain structure substantially free of columnar grains. The as-cast steel contains 0.08% C, at least about 8% Cr, up to 1.50% Mn, <0.020% Al, ≦0.05% N, ≦1.5% Si, <2.0% Ni, Ti ≧0.10%, the ratio of (Ti×N)/Al≧0.14, all percentages by weight, the balance Fe and residual elements. Preferably, the titanium is controlled so that (Ti/48)/[(C/12)+(N/14)]>1.5. A hot processed sheet may be formed from a continuously cast slab without grinding the surfaces of the slab. The hot processed sheet may be descaled, cold reduced to a final thickness and recrystallization annealed.
    Type: Application
    Filed: September 15, 1998
    Publication date: August 16, 2001
    Inventors: EIZO YOSHITAKE, ALAN R. MCKAGUE
  • Patent number: 6273973
    Abstract: A process for producing a steel includes subjecting at least a portion of a melt of the steel to electroslag remelting and, in a subsequent step, heating the steel to a temperature at least as great as the lowest temperature at which all carbides that can form in the remelted steel will dissolve and no greater than the nil ductility temperature of the of the remelted steel, and maintaining the temperature for a period of time sufficient to dissolve primary and clustered carbide particles in the remelted steel greater than 15 micrometers in length. A novel martensitic stainless steel also is disclosed including 0.65 to 0.70 carbon; 0 to 0.025 phosphorus; 0 to 0.020 sulfur; 0.20 to 0.50 silicon; at least one of greater than 0.0004 boron and greater than 0.03 nitrogen; 0.45 to 0.75 manganese; 12.7 to 13.7 chromium; and 0 to 0.50 nickel.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: August 14, 2001
    Assignee: ATI Properties, Inc.
    Inventors: Thomas R. Parayil, David S. Bergstrom, Raymond A. Painter
  • Patent number: 6106638
    Abstract: The subject of the invention is a process for manufacturing ferritic stainless steel strip, in which a strip of a ferritic stainless steel, of the type containing at most 0.12% of carbon, at most 1% of manganese, at most 1% of silicon, at most 0.040% of phosphorus, at most 0.030% of sulfur and between 16 and 18% of chromium, is solidified, directly from liquid metal, between two close-together, internally-cooled, counterrotating rolls with horizontal axes, wherein said strip is then cooled or left to cool so as to avoid making it remain within the austenite to ferrite and carbides transformation range, wherein said strip is coiled at a temperature of between 600.degree. C. and the martensitic transformation temperature Ms, wherein the coiled strip is left to cool at a maximum rate of 300.degree. C./h down to a temperature of between 200.degree. C. and ambient temperature and wherein said strip then undergoes box annealing.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: August 22, 2000
    Assignee: Usinor
    Inventors: Philippe Paradis, Philippe Martin
  • Patent number: 6099665
    Abstract: This invention aims at producing a cold rolled thin sheet having excellent surface quality from a cast strip of a Cr--Ni type stainless steel cast strip by a thin casting method. The production method of the invention comprises the steps of continuously casting a Cr--Ni type stainless steel to a cast strip having a thickness of not greater than 10 mm by using a continuous casting machine the cast mold wall surface of which moves in synchronism with the cast strip; hot rolling the resulting cast strip at a temperature within the range of 900 to 1,200.degree. C. at a reduction ratio of 10 to 50%; carrying out, subsequently, heat-treatment at a temperature within the range of 1,200 to 900.degree. C. for at least 5 seconds; coiling the hot rolled cast strip at a temperature not higher than 600.degree. C.; descaling the rolled cast strip; cold rolling the cast strip; conducting annealing, pickling or bright annealing; and conducting skin pass rolling, whenever necessary.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: August 8, 2000
    Assignee: Nippon Steel Corporation
    Inventors: Shin-ichi Teraoka, Toshiyuki Suehiro, Eiichiro Ishimaru, Tetsurou Takeshita, Shunji Shoda, Takashi Arai, Hideki Oka, Yoshikatsu Nohara
  • Patent number: 6090229
    Abstract: A low anisotropic Cr--Ni-based stainless steel hot-rolled sheet, which has texture with (100), (110), (111), (311) and (211) ND plane intensity from 0.5 to 1.5 in an inverse pole figure measured for a 1/4 section of the sheet thickness, and which is produced by continuously casting molten Cr--Ni-based stainless steel into a cast strip with a thickness of 1.5 mm to 6 mm using a continuous casting machine wherein the mold walls move in synchronization with the cast strip, hot rolling it at a hot rolling temperature of 950-1,150.degree. C. and a reduction of 25 to 35% within 60 seconds after the cast strip has left the mold, and then performing heat treatment wherein the strip is held for 5 to 60 seconds in a temperature range of 950-1,200.degree. C.; as well as a process for its production.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: July 18, 2000
    Assignee: Nippon Steel Corporation
    Inventors: Shin-ichi Teraoka, Eiichiro Ishimaru
  • Patent number: 6033497
    Abstract: A highly pitting resistant duplex stainless steel alloy is provided which compromises in weight percentages: C: 0.10% and below; Si: 1.5% and below; Mn: 2.0% and below; Cr: 25.0% to 27.0%; Ni: 5.0% to 7.5%; Cu: 1.5% to 3.5%; N: 0.15% and below; Mo: 0.5% and below; and the remaining portion being substantially iron and unavoidable impurities. This alloy has greatly improved machinability when treated in the mold after casting by an accelerated heat treatment, as compared to the same alloy composition that is very slowly control cooled in a tightly closed heat treatment furnace.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: March 7, 2000
    Assignee: Sandusky International, Inc.
    Inventors: Edward R. Ryan, John C. Rogers
  • Patent number: 5868875
    Abstract: A ferritic non-ridging stainless steel and process therefor. A chromium alloyed steel melt is deoxidized with a sub-equilibrium amount of titanium and nitrogen and continuously cast into a strip or a slab or cast into an ingot having an as-cast fine equiaxed microstructure substantially free of columnar grains. The as-cast steel contains .ltoreq.0.010% Al, up to 0.08% C, 0.10-1.50% Mn, .ltoreq.0.05% N, .ltoreq.1.5% Si, 8-25% Cr, <2.0% Ni and is deoxidized with titanium, all percentages by weight, the balance Fe and residual elements. Preferably, the titanium is controlled so that (Ti/48)/?(C/12)+(N/14)!>1.5. A hot processed continuous sheet may be formed from a continuously cast slab without surface grinding, may be descaled, cold reduced to a final thickness and recrystallization annealed. An anneal prior to cold reduction is not required to obtain an annealed sheet essentially free of ridging.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: February 9, 1999
    Inventors: Eizo Yoshitake, Alan R. McKague
  • Patent number: 5853501
    Abstract: A low anisotropic Cr--Ni-based stainless steel hot-rolled sheet, which has texture with (100), (110), (111), (311) and (211) ND plane intensity from 0.5 to 1.5 in an inverse pole figure measured for a 1/4 section of the sheet thickness, and which is produced by continuously casting molten Cr--Ni-based stainless steel into a cast strip with a thickness of 1.5 mm to 6 mm using a continuous casting machine wherein the mould walls move in synchronization with the cast strip, hot rolling it at a hot rolling temperature of 950.degree.-1,150.degree. C. and a reduction of 25 to 35% within 60 seconds after the cast strip has left the mould, and then performing heat treatment wherein the strip is held for 5 to 60 seconds in a temperature range of 950.degree.-1,200.degree. C.; as well as a process for its production.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: December 29, 1998
    Assignee: Nippon Steel Corporation
    Inventors: Shin-ichi Teraoka, Eiichiro Ishimaru
  • Patent number: 5833919
    Abstract: The present invention provides a Fe--Mn--Cr--Al cryogenic alloy having high ductility, strength, toughness and corrosion-resistance, and a process for preparing the same. The cryogenic structural alloy of the invention is prepared by the steps of: air-induced melting of a metallic alloy composition which consists of Fe 48.6 to 64.7 wt %, Mn 25.0 to 35.0 wt %, Cr 10.0 to 13.0 wt %, Al 0.1 to 2.0 wt %, C 0.1 to 0.4 wt % and Si 0.1 to 1.0 wt %; hot-rolling of the melted alloy at 1,090.degree. to 1,110 .degree. C.; and, solution heat treatment of the hot-rolled alloy at 1,040.degree. to 1,060.degree. C. for 50 to 70 minutes.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: November 10, 1998
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Soon-Hyung Hong, Young-Soo Han
  • Patent number: 5807444
    Abstract: The subject of the invention is a process for the continuous casting of an austenitic stainless steel strip directly from liquid metal of composition, expressed in percentages by weight: C.ltoreq.0.08%, Si.ltoreq.1%; Mn.ltoreq.2%; P.ltoreq.0.045%; S.ltoreq.0.030%; Cr between 17.0 and 20.0%; Ni between 8.0 and 10.5% on a machine for casting onto one or between two moving walls whose external surface is provided with dimples and in which the region surrounding the meniscus is inerted with an inerting gas of controlled composition, wherein:a Cr.sub.equ /Ni.sub.equ ratio greater than 1.55 is conferred on said liquid metal, with:Cr.sub.equ =% Cr+1.37.times.% Mo+1.5.times.% Si+2.times.% Nb+3.times.% Ti andNi.sub.equ =% Ni+0.31.times.% Mn+22.times.% C+14.2.times.% N+% Cu;one or more moving walls are used whose entire surface includes touching dimples having a diameter of between 100 and 1500 .mu.m and a depth of between 20 and 150 .mu.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: September 15, 1998
    Assignees: Usinor Sacilor, Thyssen Stahl Aktiengesellschaft
    Inventors: Philippe Paradis, Christian Marchionni, Manuel Bobadilla, Jean-Michel Damasse
  • Patent number: 5733387
    Abstract: A duplex stainless steel consisting of a ferrite phase and an austenite phase is disclosed which is superior in the hot ductility, the high temperature oxidation resistance, the corrosion resistance and the impact toughness. The duplex stainless steel is applied to marine facility and the like. The duplex stainless steel which consists of a ferrite phase and an austenite phase is composed of in weight %: less than 0.03% of C, less than 1.0% of Si, less than 2.0% of Mn, less than 0.04% of P, less than 0.004% of S, less than 2.0% of Cu, 5.0-8.0% of Ni, 22-27% of Cr, 1.0-2.0% of Mo, 2.0-5.0% of W, and 0.13-0.30% of N. Or there are further added one or two elements selected from a group consisting of: less than 0.03% of Ca, less than 0.1% of Ce, less than 0.005% of B and 0.5% of Ti. Further, the ratio (Cr.sub.eq /Ni.sub.eq) of the Cr equivalent (Cr.sub.eq) to the Ni equivalent (Ni.sub.eq) is 2.2-3.0. Further, the weight ratio (W/Mo) of the W to Mo is 2.6-3.4.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: March 31, 1998
    Assignees: Pohang Iron & Steel Co., Ltd., Research Institute of Industrial Science & Technology
    Inventors: Yong Deuk Lee, Kwang Tae Kim, Bong Un Kim, Yong Heon Lee
  • Patent number: 5725696
    Abstract: The invention refers to a process for production of raw stainless steel castings, in particular for stainless steel strip, covering rolling and annealing of cast material if required, as well as de-scaling, in particular by pickling in aqueous media, and coiling for raw stainless steel strip if necessary. In order to achieve greater flexibility as regards steel grades that can be treated and dimensions of the castings, the material is to be heat-treated in batches and preferably also annealed, cooled and de-scaled immediately after the final heat treatment stage, without intermediate storage, in batches. In a process covering the process stages for casting, rolling of the cast material if necessary, cooling, as well as de-scaling, in particular by pickling in aqueous media, and coiling, if necessary, to form raw stainless steel coils, the material is to be cast in batches and de-scaled immediately afterwards without intermediate storage in order to obtain the same advantage.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: March 10, 1998
    Assignee: Andritz-Patentverwaltungs-Gesselschaft m.b.H.
    Inventors: Gerald Maresch, Edgar Braun
  • Patent number: 5720830
    Abstract: A method of making an engineering ferrous metal comprising the steps of adding to liquid engineering ferrous metal solid alloy carbide particles and thereafter permitting the ferrous metal to solidify. The alloy carbide particles are coated with iron or an iron alloy to allow wetting to occur between the powder and the liquid ferrous metal and the particles have a density which matches that of the ferrous metal to provide a uniform distribution of the carbide particles in the ferrous metal. A roll may be made having at least a shell made of metal by such a method by centrifugal casting or electroslag remelting.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: February 24, 1998
    Assignee: Sheffield Forgemasters Limited
    Inventors: David Wragg, Paul Herbert Hewitt, Jack Nutting
  • Patent number: 5650024
    Abstract: A martensitic heat-resisting steel comprises, in terms of % by mass, 0.01 to 0.30% of C, 0.02 of 0.80% of Si, 0.20 to 1.00% of Mn, 5.00 to 18.00% of Cr, 0.005 to 1.00% of Mo, 0.20 to 3.50% of W, 0.02 to 1.00% of V, 0.01 to 0.50% of Nb, 0.01 to 0.25% of N, and at least one element selected from the group consisting of Ti, Zr, Ta and Hf in an amount of 0.005 to 2.0% for each of the elements, the volume of (Ti %+Zr %+Ta %+Hf %) in the metal component M of M.sub.23 C.sub.6 type carbides therein being from 5 to 65%. The heat-resisting steel is produced by a process comprising the steps ofadding Ti, Zr, Ta and Hf to a molten steel having chemical components as mentioned above, during the period from 10 minutes before completion of refining to completion of refining, casting said molten steel, working the resulting casting, solution treating said worked product, subjecting said worked product to temporary cooling stop at a temperature from 950.degree. to 1,000.degree. C.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: July 22, 1997
    Assignees: Nippon Steel Corporation, Toshio Fujita
    Inventors: Yasushi Hasegawa, Masahiro Ohgami, Nobuo Mizuhashi, Hisashi Naoi, Toshio Fujita
  • Patent number: 5571347
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 5, 1996
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5547521
    Abstract: A plurality of lost foam cast materials that are integrally connected with a controlled spacing between the cast materials are heated to a predetermined temperature for a preset time to improve through hardness of the lost foam cast materials.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: August 20, 1996
    Assignee: The Babcock & Wilcox Company
    Inventor: Bryan Hand
  • Patent number: 5492575
    Abstract: To produce a thin strip having a high cast strip toughness from a thin cast strip of a Cr-stainless steel containing Nb, Ti, and Al in an amount of 0.05% or more, a process includes the steps of: casting a thin cast strip of a Cr-stainless steel having a thickness of 10 mm or less, the steel containing 13-25 wt % of Cr, 0.05-1 wt % of one or more of Nb, Ti, Al and V in terms of a total amount, 0.03 wt % or less of C, 0.03 wt % or less of N, and 0.3-3.0 wt % of Mo in accordance with need, and having a .gamma.p value of 0% or less; hot-rolling the thin cast strip in a temperature range of from 1150.degree. to 950.degree. C. at a reduction in thickness of 5 to 50% to form a thin strip; either slowly cooling the thin strip at a rate of 20.degree. C./sec or less or holding the thin strip for 5 sec or more, in a temperature range of from 1150.degree. to 950.degree. C.; and then coiling the thin strip at a temperature lower than 700.degree. C..gamma.p(%)=420C+470N+23Ni+9Cu+7Mn-11.5Cr-11.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: February 20, 1996
    Assignee: Nippon Steel Corporation
    Inventors: Shinichi Teraoka, Takehisa Mizunuma, Takanori Nakazawa, Yuichi Satoh
  • Patent number: 5467811
    Abstract: An austenitic stainless steel sheet is produced by a twin-roll synchronous continuous casting process wherein the sheet has a Ni segregation ratio in the vicinity of its center section of 0.90 or more and .delta.Fe.sub.cal. (mass %) is 6 mass % or more. Ni segregation ratio is defined by the formula: {average Ni content of the segregated portion (%) }/{average Ni content of the cast sheet (%)}; where Ni content is expressed in % by mass. .delta.-Fe.sub.cal. (mass %) is defined by the formula: 3(Cr+1.5 Si+Mo+0.5 Nb)-2.8(Ni+0.5 Cu+0.5 Mn+30 C+30 N)-19.8; wherein the chemical elements are given in % by mass.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: November 21, 1995
    Assignee: Nippon Steel Corporation
    Inventors: Toshiyuki Suehiro, Shinichi Teraoka, Eiichiro Ishimaru, Yoshimori Fukuda, Shuichi Inoue