Aluminum(al) Or Aluminum Base Alloy Patents (Class 148/549)
  • Patent number: 11898232
    Abstract: The present invention relates to metallurgy of high-strength cast and wrought alloys based on aluminum, and can be used in missioncritical designs operable under load, in the transport field, sports industry, casings for electronic devices, and other industrial sectors. The technical result aims to enhance mechanical characteristics of articles produced from the alloy by precipitation hardening caused by secondary phases in the age-hardening process while providing high workability during casting. The claimed high-strength alloy comprises zinc, magnesium, nickel, iron, copper, zirconium, and at least one metal selected from a group consisting of titanium, scandium and chromium, with the following amounts in, wt %: zinc 3.8-7.4; magnesium 1.2-2.6; nickel 0.5-2.5; iron 0.3-1.0; copper 0.001-0.25; zirconium 0.05-0.2; titanium 0.01-0.05; scandium 0.05-0.10; chromium 0.04-0.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 13, 2024
    Assignee: United Company RUSAL Engineering and Technology Centre LLC
    Inventors: Viktor Khrist'yanovich Mann, Aleksandr Nikolaevich Alabin, Anton Valer'evich Frolov, Aleksandr Olegovich Gusev, Aleksandr Yur'evich Krokhin, Nikolaj Aleksandrovich Belov
  • Patent number: 11634795
    Abstract: An aluminum alloy for near net shaped casting of structural components is disclosed. The alloy contains 2 to 10 wt. % Zn, 0.5 to 5 wt. % Mg, 0.5 to 5 wt. %) Fe, optionally Cu, Ti, Sr, Be, Zr, V, Cr, Sc, Na, Si, Mn, Mo, B, and Ni, with balance aluminum. The alloy may be subjected to heat treatment selected from the group consisting of solutionizing, incubation, aging, and two or more heat treatment steps.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 25, 2023
    Assignee: MCMASTER UNIVERSITY
    Inventors: Sumanth Shankar, Xiaochun Zeng
  • Patent number: 11530473
    Abstract: Disclosed are high-strength, highly deformable aluminum alloys and methods of making and processing such alloys. More particularly, disclosed is a heat treatable aluminum alloy exhibiting improved mechanical strength and formability. The processing method includes casting, homogenizing, hot rolling, solutionizing, pre-aging and in some cases pre-straining. In some cases, the processing steps can further include cold rolling and/or heat treating.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 20, 2022
    Assignee: Novelis Inc.
    Inventors: Guillaume Florey, Corrado Bassi, Aude Despois, David Leyvraz
  • Patent number: 11408062
    Abstract: A method for heat treating cast aluminum alloy components that includes obtaining a casting formed from an aluminum alloy having a silicon constituent and at least one metal alloying constituent, and heating the casting to a first casting temperature that is below but within 10° C. of a predetermined silicon solution temperature at which the silicon constituent rapidly enters into solid solution. The method also includes increasing the rate of heat input into the casting to raise the temperature of the casting to a second casting temperature that is above but within 10° C. of a predetermined alloying metal solution temperature at which the at least one metal alloying constituent rapidly enters into solid solution, maintaining the casting at the second casting temperature for a period of time that is less than about 20 minutes, and then quenching the casting to a temperature less than or about 250° C.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 9, 2022
    Assignee: Consolidated Engineering Company, Inc.
    Inventors: Scott P. Crafton, Shanker Subramaniam, Paul Fauteux
  • Patent number: 11274358
    Abstract: An aluminum alloy and a preparation method thereof are provided. The aluminum alloy of the present disclosure includes, in percentage by weight, 8-10% of silicon, 0.2-0.4% of magnesium, 0-0.01% of manganese, 0-0.01% of titanium, 0.1-0.3% of iron, 0.02-0.06% of boron, 0.15-0.3% of cerium, and 88.92-91.53% of aluminum.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 15, 2022
    Assignee: BYD COMPANY LIMITED
    Inventors: Qiang Guo, Yongliang Xie, Mengjue Liao
  • Patent number: 11242587
    Abstract: The present disclosure concerns embodiments of aluminum alloy compositions exhibiting superior microstructural stability and strength at high temperatures. The disclosed aluminum alloy compositions comprise particular combinations of components that contribute the ability of the alloys to exhibit improved microstructural stability and hot tearing resistance as compared to conventional alloys. Also disclosed herein are embodiments of methods of making and using the alloys.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: February 8, 2022
    Assignees: UT-Battelle, LLC, FCA US LLC, Nemak USA, Inc.
    Inventors: Amit Shyam, James A. Haynes, Adrian S. Sabau, Dongwon Shin, Yukinori Yamamoto, Christopher R. Glaspie, Jose A. Gonzalez-Villarreal, Seyed Mirmiran, Andres F. Rodriguez-Jasso
  • Patent number: 11028462
    Abstract: A method of suppressing the Samson phase, Al3Mg2, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri
  • Patent number: 10900107
    Abstract: Method for the manufacturing of an Al—Mg—Si(—Cu) extrusion alloy, the alloy initially being cast to extrusion billet(s), containing in wt. % Si: 0.20-1.50 Mg: 0.25-1.50 Fe: 0.05-0.50 Cu: 0.00-1.00 Mn: 0.00-1.00 Cr: 0.00-0.50 Zn: 0.00-0.50 Ti: 0.00-0.20, and including incidental impurities and balance Al.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: January 26, 2021
    Assignee: NORSK HYDRO ASA
    Inventors: Ulf Tundal, Jostein Røyset, Oddvin Reiso, Øystein Bauger
  • Patent number: 10781507
    Abstract: Provided are an anti-fatigue in-situ aluminum-based nanocomposite material for heavy-load automobile hubs and a preparation method therefor. By means of the fine adjustment of components and a forming process, in situ nano-compositing, micro-alloying and rapid compression moulding techniques are combined. That is, after the addition of Zr and B, an in-situ reaction occurs to form a nano ZrB2 ceramic reinforcement, which is distributed in aluminum crystals and crystal boundaries and bonded to a metallurgical interface kept firm with the matrix.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 22, 2020
    Assignees: Jiangsu University, Sumec Wheels Co., Ltd.
    Inventors: Yutao Zhao, Yuanpu Peng, Tongxiang Fan, Xizhou Kai, Gang Chen, Wenling Wang
  • Patent number: 10633725
    Abstract: Aluminum-Iron-Zirconium alloys that exhibit improved electrical and mechanical properties.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: April 28, 2020
    Assignee: NaneAL LLC
    Inventor: Nhon Q. Vo
  • Patent number: 10597762
    Abstract: The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 24, 2020
    Assignee: Apple Inc.
    Inventors: Brian M. Gable, James A. Wright, Charles J. Kuehmann, Brian Demers, Chune-Ching Young, Chun-Hsien Chiang
  • Patent number: 10508329
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 17, 2019
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 10494699
    Abstract: The invention provides a method of refining aluminum alloy, which is characterized in that aluminum-based nanometer quasicrystal alloy is used as an aluminum alloy refiner to refine the aluminum alloy; the aluminum-based nanometer quasicrystal alloy does not comprise Si, Fe or Cr; the aluminum-based nanometer quasicrystal alloy consists of (1) Al; (2) Mn and (3) La and/or Ce. The refiner selected in the invention is rare earth-containing alloy which has a strong refinement ability on the aluminum alloy, and is nanometer quasicrystal; after adding the rare earth-containing alloy to melt, the element distribution of the rare earth-containing alloy is more uniform than that of traditional alloy; and nanometer quasicrystal particles substantially increase the number of heterogeneous nucleation particles and improve the grain refinement effect of the aluminum alloy.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: December 3, 2019
    Assignees: CITIC DICASTAL CO., LTD., Hebei University of Technology
    Inventors: Lisheng Wang, Yongning Wang, Zhihua Zhu, Chunhai Liu, Changhai Li, Lateng A, Zhendong Zhang, Bangwei Bai, Weimin Zhao, Zhifeng Wang
  • Patent number: 10364484
    Abstract: A method and alloys for low pressure permanent mold casting without a coating are disclosed. The method includes preparing a permanent mold casting die that is devoid of die coating or lubrication along the die surface, preparing a permanent mold casting alloy, pushing the alloy into the die under low pressure, cooling the permanent mold casting, and removing the casting from the die. One alloy has 4.5-11.5% by weight silicon; 0.45% by weight maximum iron; 0.20-0.40% by weight manganese; 0.045-0.110% by weight strontium; 0.05-5.0% by weight copper; 0.01-0.70% by weight magnesium; and the balance aluminum. Another alloy has 4.2-5.0% by weight copper; 0.005-0.45% by weight iron; 0.20-0.50% by weight manganese; 0.15-0.35% by weight magnesium; 0.045-0.110% by weight strontium; 0.50% by weight maximum nickel; 0.10% by weight maximum silicon; 0.15-0.30% by weight titanium; 0.05% by weight maximum tin; 0.10% by weight maximum zinc; and the balance aluminum.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: July 30, 2019
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Alexander K. Monroe, Kevin R. Anderson, Terrance M. Cleary
  • Patent number: 10300563
    Abstract: An aluminum alloy brazing sheet exhibits excellent brazability by effectively weakening an oxide film formed on the surface of a filler metal. The aluminum alloy brazing sheet includes a core material and a filler metal, and is used to braze aluminum in an inert gas atmosphere or in vacuum, the core material including aluminum or an aluminum alloy, the filler metal including 6 to 13 mass % of Si, with the balance being Al and unavoidable impurities, and one side or each side of the core material being clad with the filler metal, wherein the core material is clad with the filler metal in a state in which a sheet material is interposed between the core material and the filler metal, the sheet material including one element, or two or more elements, among 0.05 mass % or more of Li, 0.05 mass % or more of Be, 0.05 mass % or more of Ba, and 0.05 mass % or more of Ca, with the balance being Al and unavoidable impurities.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 28, 2019
    Assignee: UACJ CORPORATION
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi
  • Patent number: 10202670
    Abstract: The present disclosure provides an aluminum (Al) alloy for continuous casting, and a method of making the same. The Al alloy includes Al, Si in the range of 14 to 20 wt %, Ti in the range of 2 to 7 wt % and B in the range of 1 to 3 wt %. According to the disclosure, TiB2 compound may be formed in the alloy, where the ratio of Ti:B may range from 2 to 2.5 wt %. By a process of continuously casting the molten metal, an aluminum alloy with improved elasticity may be produced.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: February 12, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hoon Mo Park, Hyuk Kang
  • Patent number: 10000835
    Abstract: A method includes product side showering of showering a first surface (the surface of a product (11) opposite to a feeder head (12)) of an Al alloy casting (10) including the product (11) and the feeder head (12) with mist of cooling liquid, and feeder head side showering of showering a second surface (the surface of the feeder head (12) opposite to the product (11)) of the Al alloy casting (10) with the mist of the cooling liquid. The feeder head side showering starts showering the second surface of the Al alloy casting (10) after a start and before an end of the product side showering to quench and cool the Al alloy casting (10) together with the product side showering.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 19, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Tomohide Kubota, Naoaki Yamamoto, Shuichi Hashimoto, Yasuyuki Misawa
  • Patent number: 9738955
    Abstract: An aluminum alloy has a low thermal conductivity at room temperature (25° C.) and a high thermal conductivity at high temperature (200° C.). The aluminum alloy includes 1˜2 wt % of magnesium (Mg), 1˜2 wt % of copper (Cu), 1˜2 wt % of zinc (Zn), 0.5˜2 wt % of nickel (Ni), and the remainder of aluminum (Al) and inevitable impurities.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: August 22, 2017
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Kyung Moon Lee, Byung Ho Min, Hoo Dam Lee
  • Patent number: 9601978
    Abstract: A rotor includes a shorting ring defining a plurality of cavities therein, and a plurality of conductor bars each integral with the shorting ring and having an end disposed within a respective one of the plurality of cavities. The shorting ring and each of the conductor bars are formed from an aluminum alloy including a lanthanoid present in an amount of from about 0.1 part by weight to about 0.5 parts by weight based on 100 parts by weight of the aluminum alloy. An aluminum alloy, and a method of forming a rotor are also disclosed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 21, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Richard Jack Osborne, Yucong Wang, Margarita Thompson
  • Patent number: 9284636
    Abstract: A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-to-magnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000° F. for up to 1 hour followed by a water quench and a second heating at 350° F. to 390° F. for up to 1 hour. An optional short bake paint cycle or powder coating process further increases the impact toughness coefficient of the cast component.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 15, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Jonathan A Lee
  • Patent number: 9068252
    Abstract: Methods and technologies to maximize the aging response and the mechanical properties of aluminum alloys are provided. In one embodiment, the aging process for the slowly-quenched aluminum alloys includes, but is not limited to, at least a two-stage solution treatment and a two-stage aging hardening. In the solution treatment, the components are first heat treated at an initial solution treatment temperature and then gradually heated up to about 5° C. to about 30° C. above the initial solution treatment temperature for the material. For the aging treatment, the castings/components are first aged at a lower temperature followed by a higher temperature for the subsequent aging stages. The temperature increase during solution treatment and/or aging can be in steps, in a continuous manner, or combinations thereof. Another embodiment includes a two stage aging process in which there is a non-isothermal aging step.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: June 30, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Dale A. Gerard
  • Patent number: 9067623
    Abstract: An automobile component including an aluminum alloy product having a base aluminum alloy layer and a first additional aluminum alloy layer disposed directly on the base layer. The base aluminum alloy layer includes 2.0 to 22 wt. % zinc and the zinc is a predominate alloying element of the base layer other than aluminum and the first additional aluminum alloy layer includes 0.20 to 8.0 wt. % magnesium and the magnesium is a predominate alloying element of the first additional aluminum alloy layer other than aluminum. The automobile component may include outer panel sections, high form inner sections, reinforcement sections, crash sections, large flat panel sections, and high strength sections and, when tested in a static axial crush test, a peak load of the automobile component increases at least 20% when compared to alloy 6014 in the T6 temper.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: June 30, 2015
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Brett P. Conner, Rajeev G. Kamat
  • Patent number: 8999083
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 7, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Tomohiro Sasaki, Masae Nagasawa, Nobuki Takahashi
  • Publication number: 20150090373
    Abstract: The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Brian M. Gable, James A. Wright, Charles J. Kuehmann, Brian Demers, Chune-Ching Young, Chun-Hsien Chiang
  • Patent number: 8980021
    Abstract: An aluminum alloy and a method of casting. At least one of zirconium, scandium, a nucleating agent selected from the group consisting of metal carbides, aluminides and borides, and rare earth elements are added to the alloy while in the molten state such that upon solidification, the cast alloy exhibits improved hot tear resistance. In a particular form, the nucleating agent may be titanium diboride for grain refining. Other agents that can be used for grain refining include scandium, zirconium, silicon, silver and one or more rare earth elements. In the case of rare earth elements, mischmetal may be used as a precursor. Combinations of titanium diboride and at least one other agent are especially effective in reducing the incidence of hot tearing in products cast from the modified aluminum alloy.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Herbert W. Doty, Fawzy H Samuel, Ahmed M Nabawy
  • Publication number: 20150027595
    Abstract: An aluminum material for producing light-weight components includes aluminum (Al), scandium (Sc), zirconium (Zr) and ytterbium (Yb), where a weight ratio of scandium (Sc) to zirconium (Zr) to ytterbium (Yb) [Sc/Zr/Yb] is in a range from 10/5/2.5 to 10/2.5/1.25.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventor: Frank PALM
  • Patent number: 8936688
    Abstract: An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 20, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Sanji Kitaoka, Masahiko Shioda, Toshihiro Suzuki, Takahiko Watai, Hidetoshi Kawada
  • Publication number: 20140360633
    Abstract: There are provided a method of manufacturing an aluminum product and a method of manufacturing an aluminum brake caliper each using die casting, for improving flow and run of molten metal during casting and enhancing productivity and quality. In a method of manufacturing an aluminum product provided with opposing portions opposed to each other with a hollow portion interposed in between, and connecting portions connecting the opposing portions at two sides thereof, the method includes a die casting step of performing casting by pouring molten metal of an aluminum alloy from a gate for the molten metal formed in one of the opposing portions via the connecting portions and a bridge connecting the two opposing portions, and a bridge removing step of removing the bridge.
    Type: Application
    Filed: December 4, 2012
    Publication date: December 11, 2014
    Inventors: Shinya Sato, Takaaki Ikari
  • Publication number: 20140283956
    Abstract: The disclosure is directed to a method of forming high-aspect-ratio metallic glass articles that are substantially free of defects and cosmetic flaws by means of rapid capacitive discharge forming. Metallic glass alloys that are stable against crystallization for at least 100 ms at temperatures where the viscosity is in the range of 100 to 104 Pa-s are considered as suitable for forming such high-aspect-ratio articles.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: Glassimetal Technology, Inc.
    Inventors: Joseph P. Schramm, Jong Hyun Na, Marios D. Demetriou, David S. Lee, William L. Johnson
  • Publication number: 20140271341
    Abstract: Methods of manufacturing castings are described. The method can include heating a ceramic mold comprising a gate inlet, and melting a metallic composition. The method can also include presenting the ceramic mold to a casting station such that the gate inlet is in fluid communication with the molten metallic composition, and casting against gravity the molten metallic composition into the heated mold through the gate inlet. Furthermore, the method can include rotating the mold to position with the gate inlet in an upward direction while the metallic composition is at least partially molten within the mold, and quenching the molten metallic composition in a liquid quench medium to solidify the molten metallic composition within the mold.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: PCC Structurals, Inc.
    Inventors: James Raphord Barrett, Michael Snow
  • Publication number: 20140261907
    Abstract: Copper-free aluminum alloys suitable for high pressure die casting and capable of age-hardening under elevated temperatures are provided. The allow includes about 9.5-13 wt % silicon, about 0.2 to 0.6 wt % Magnesium, about 0.1 to 2 wt % iron, about 0.1 to 2 wt % manganese, about 0.1 to 1 wt % nickel, about 0.5 to 3 wt % zinc, and 0 to 0.1 wt % strontium, with a balance of aluminum. Methods for making high pressure die castings and castings manufactured from the alloy are also provided.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang, Jason R. Traub
  • Patent number: 8833431
    Abstract: The present invention discloses an aluminum alloy material, which is made of raw material of aluminum alloy. The raw material of aluminum alloy consists of the following constituents by percentage of weight: graphene: 0.1%˜1%, carbon nano tube: 1%˜5%, the rest being Al. The aluminum alloy material of the present invention has a good performance of heat dissipation, the thermal conductivity is higher than 200 W/m. Meanwhile, the present invention further provides a method of manufacturing aluminum alloy backboard, in which method, the raw material of aluminum alloy is heated and melted in a heating furnace, afterwards, the raw material of aluminum alloy after melting is formed into an aluminum alloy backboard by die-casting, in this way, the utilization rate of material is increased and the manufacturing cost of the backboard is reduced.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: September 16, 2014
    Assignee: Enraytek Optoelectronics Co., Ltd.
    Inventors: Deyuan Xiao, Richard Rugin Chang, Mengjan Cherng, Qing Rao
  • Publication number: 20140251511
    Abstract: New heat treatable aluminum alloys having magnesium and zinc are disclosed. The new aluminum alloys generally contain 3.0-6.0 wt. % Mg, 2.5-5.0 wt. % Zn, where (wt. % Mg)/(wt. % Zn) is from 0.60 to 2.40.
    Type: Application
    Filed: March 9, 2013
    Publication date: September 11, 2014
    Applicant: ALCOA INC.
    Inventor: Jen Lin
  • Publication number: 20140224385
    Abstract: A method of manufacturing a turbocharger component for an internal combustion engine is disclosed. The method may include introducing a material into a mold, wherein the material includes at least one added alloying element. The method may further include applying a pressure to the material, and solidifying the material by cooling the material at a cooling rate, wherein the solidifying preserves an amount of the at least one added alloying element in solid solution in the material. The method may also include forming precipitates within the material by aging the material at an aging temperature.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Caterpillar Incorporated
    Inventors: Nan YANG, Jeff Alan Jensen
  • Publication number: 20140202596
    Abstract: A method of forming a bulk metallic glass is provided. The method includes overheating the alloy melt to a temperature above a threshold temperature, Ttough, associated with the metallic glass demonstrating substantial improvement in toughness compared to the toughness demonstrated in the absence of overheating the melt above Tliquidus, and another threshold temperature, TGFA, associated with the metallic glass demonstrating substantial improvement in glass-forming ability compared to the glass-forming ability demonstrated in the absence of overheating the melt above Tliquidus. After overheating the alloy melt to above Ttough and TGFA, the melt may be cooled and equilibrated to an intermediate temperature below both Ttough and TGFA but above Tliquidus, and subsequently quenched at a high enough rate to form a bulk metallic glass.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 24, 2014
    Applicant: GLASSIMETAL TECHNOLOGY, INC.
    Inventors: Jong Hyun NA, Michael FLOYD, David S. LEE, Marios D. DEMETRIOU, William L. JOHNSON, Glenn GARRETT
  • Publication number: 20140202598
    Abstract: The present invention provides a casting having increased crashworthiness including an an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
    Type: Application
    Filed: March 23, 2014
    Publication date: July 24, 2014
    Applicant: AUTOM0TIVE CASTING TECHNOLOGY, INC.
    Inventors: JEN C. LIN, Moustapha Mbaye, Jan Ove Loland
  • Patent number: 8778099
    Abstract: A method for producing high strength aluminum alloy containing L12 intermetallic dispersoids by using gas atomization to produce powder that is then consolidated into L12 aluminum alloy billets or by casting the alloy into molds to produce L12 aluminum alloy billets or by casting the alloy into directly useable parts.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 15, 2014
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8771441
    Abstract: An aluminum alloy comprising 2.1 to 2.8 wt. % Cu, 1.1 to 1.7 wt. % Li, 0.1 to 0.8 wt. % Ag, 0.2 to 0.6 wt. % Mg, 0.2 to 0.6 wt. % Mn, a content of Fe and Si less or equal to 0.1 wt. % each, and a content of unavoidable impurities less than or equal to 0.05 wt. % each and 0.15 wt. % total, and the alloy being substantially zirconium free.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 8, 2014
    Inventors: Bernard Bes, Herve Ribes, Christophe Sigli, Timothy Warner
  • Publication number: 20140182750
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicants: NIPPON LIGHT METAL COMPANY, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Patent number: 8728256
    Abstract: A heat-resistant aluminum alloy material with high strength and preparation method thereof are provided. The aluminum alloy material comprises (by weight %): Cu: 1.0˜10.0, Mn: 0.05˜1.5, Cd: 0.01˜0.5, Ti: 0.01˜0.5%, B: 0.01˜0.2 or C: 0.0001˜0.15, Zr: 0.01˜1.0, R: 0.001˜3 or (R1+R2): 0.001˜3, RE: 0.05˜5, and balance Al:, wherein, R, R1, and R2 include Be, Co, Cr, Li, Mo, Nb, Ni, W. The Al alloy has the advantages of narrow quasi-solid phases temperature range of alloys, low hot cracking liability during casting improved high temperature strength and high heat resistance.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 20, 2014
    Assignee: Guizhou Hua-Ke Aluminum-Materials Engineering Research Co., Ltd.
    Inventors: Yun Che, Zhongke Zhang, Sanquan Men, Xinmeng Chen, Guangyou Xu, Xiang Li
  • Publication number: 20140056755
    Abstract: An aluminum casting alloy contains Si: 3.0 wt.-% to 3.8 wt.-% Mg: 0.3 wt.-% to 0.6 wt.-% Cr: 0.25 wt.-% to 0.35 wt.-% Fe: <0.18 wt.-% Mn: <0.06 wt.-% Ti: <0.16 wt.-% Cu: <0.006 wt.-% Sr: 0.010 wt.-% to 0.030 wt.-% Zr: <0.006 wt.-% Zn: <0.006 wt.-% Contaminants: <0.1 wt.-%, and is supplemented to 100 wt.-%, in each instance, with Al.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: KSM Castings Group GmbH
    Inventors: Klaus GREVEN, Manikandan LOGANATHAN, Oliver GRIMM, Lutz WOLKENSTEIN, Heinrich HANEKOP, Stephan BUKOWSKI
  • Patent number: 8636855
    Abstract: Methods of enhancing mechanical properties of aluminum alloy high pressure die castings are disclosed herein. An aluminum alloy composition forming a casting comprises, by weight of the composition, at least one of a magnesium concentration greater than about 0.2%, a copper concentration greater than about 1.5%, a silicon concentration greater than about 0.5%, and a zinc concentration greater than about 0.3%. After solidification, a casting is cooled to a quenching temperature between about 300° C. and about 500° C. Upon attainment of the quenching temperature, the casting is removed from the die and immediately quenched in a quench media. Following quenching, the casting is pre-aged at a reduced temperature between about room temperature and about 100° C. Thereafter, the casting is aged via at least one substantially isothermal aging at one or more elevated temperatures between about 150° C. and about 240° C.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang
  • Patent number: 8613374
    Abstract: A fuel tank for a vehicle is made of a cast aluminum alloy and has good ductility and toughness. The cast aluminum alloy is subjected to a heat treatment at a temperature of no less than about 350° C. and no more than about 390° C. to possess a Vickers hardness of about 70 HV or less.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 24, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Toru Kitsunai, Atsushi Hirose
  • Publication number: 20130312876
    Abstract: A method for adding calcium to an aluminum-scandium alloy to produce an aluminum-scandium-calcium alloy involves combining aluminum, scandium, and calcium in a melt and the common melt is quenched at a high velocity.
    Type: Application
    Filed: November 30, 2011
    Publication date: November 28, 2013
    Applicant: EADS Deutschland GmbH
    Inventor: Frank Palm
  • Publication number: 20130307383
    Abstract: An aluminum alloy casting having high electric resistance, high toughness and high corrosion resistance and optimally usable in manufacturing of electric motor housings, and a method of manufacturing said aluminum alloy casting are provided. The aluminum alloy casting has a composition including Si: 11.0-13.0 mass %, Fe: 0.2-1.0 mass %, Mn: 0.2-2.2 mass %, Mg: 0.7-1.3 mass %, Cr: 0.5-1.3 mass % and Ti: 0.1-0.5 mass %, with the balance consisting of Al and unavoidable impurities, wherein the content of Cu as an unavoidable impurity is limited to 0.2 mass % or less. In some cases, heat treatments such as solution heat treatment or artificial aging hardening treatment are performed after casting.
    Type: Application
    Filed: January 27, 2011
    Publication date: November 21, 2013
    Applicant: Nippon Light Metal Company, Ltd.
    Inventors: Satoru Suzuki, Atsushi Kishimoto, Pizhi Zhao, Kazuhiro Oda, Tomohiro Isobe
  • Publication number: 20130284322
    Abstract: The present invention relates to an aluminum alloy for the manufacture of thick blocks comprising (as a percentage by weight), Zn: 5.3-5.9%, Mg: 0.8-1.8%, Cu: <0.2%, Zr: 0.05 to 0.12%, Ti<0.15%, Mn<0.1%, Cr<0.1%, Si<0.15%, Fe<0.20%, impurities having an individual content of <0.05% each and <0.15% in total, the rest aluminum, The alloy may be used in a process comprising the steps of: (a) casting a thick block of an alloy according to the invention (b) solution heat treating said cast block at a temperature of 500 to 560° C. for 10 minutes to 20 hours, (c) cooling said solution heat treated block to a temperature below 100° C., (d) tempering said solution heat treated and cooled block by heating to 120 to 170° C. for 4 to 48 hours, In this process, said block is not subjected to any significant deformation by working between the casting and the tempering.
    Type: Application
    Filed: December 6, 2011
    Publication date: October 31, 2013
    Applicants: CONSTELLIUM VALAIS SA (AG, LTD), CONSTELLIUM FRANCE
    Inventors: Cedric Gasqueres, Jean-Etienne Fournier
  • Patent number: 8551267
    Abstract: Aluminum or aluminum alloy sputter targets and methods of making same are provided. The pure aluminum or aluminum alloy is mechanically worked to produce a circular blank, and then the blank is given a recrystallization anneal to achieve desirable grain size and crystallographic texture. A 10-50% additional strain is provided to the blank step after the annealing to increase the mechanical strength. Further, in a flange area of the target, the strain is greater than in the other target areas with the strain in the flange area being imparted at a rate of about 20-60% strain. The blank is then finished to form a sputtering target with desirable crystallographic texture and adequate mechanical strength.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 8, 2013
    Assignee: Tosoh SMD, Inc.
    Inventors: Weifang Miao, David B. Smathers, Robert S. Bailey
  • Publication number: 20130240095
    Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum; silicon; at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Magnesium and copper are optional alloying elements.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 19, 2013
    Applicant: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20130186525
    Abstract: The invention relates to a method and device for producing motor vehicle chassis parts which can be subjected to tensile stress, compressive stress and torsion and the mechanical strength of which can be adjusted over the respective cross-section, and which furthermore have high ductility and temperature stability and are made of an AlSiZnMg alloy by means of permanent mould casting.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 25, 2013
    Applicants: TRIMET ALUMINIUM AG, KSM CASTINGS GMBH, MECO ECKEL GMBH
    Inventors: Hubert Koch, Andreas Kleine, Erhard Stark, Manikandan Loganathan, Klaus Greven, Roland Golz
  • Patent number: 8409374
    Abstract: A method for the heat treatment of a casting produced by high pressure die casting, that may exhibit blister forming porosity in the as-cast condition, of an age-hardenable aluminum alloy, includes solution treating the casting by heating the casting to and within a temperature range enabling solute elements to be taken into solid solution. The casting then is cooled to terminate the solution treatment by quenching the casting to a temperature below 100° C. The cooled casting is held in a temperature range enabling natural and/or artificial ageing. The solution treatment is conducted to achieve a level of solute element solution enabling age-hardening without expansion of pores in the casting causing unacceptable blistering of the casting.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: April 2, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Roger Neil Lumley, Robert Geoffrey O'Donnell, Dayalan Romesh Gunasegaram, Michel Givord