Continuous Casting Patents (Class 148/551)
  • Patent number: 5833775
    Abstract: An aluminum alloy sheet and a method for producing an aluminum alloy sheet. The aluminum alloy sheet is useful for forming into drawn and ironed container bodies. The sheet preferably has an after-bake yield strength of at least about 37 ksi and an elongation of at least about 2 percent. Preferably the sheet also has earing of less than about 2 percent.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: November 10, 1998
    Assignee: Golden Aluminum Company
    Inventors: William Newton, Mark S. Selepack, Jackie S. Ivy
  • Patent number: 5788784
    Abstract: This invention relates to a process for heat treating light-metal castings, particularly cylinder heads for piston engines, in which, after solidifying and removing the castings from the mold, they are solution treated with the residual casting heat at approximately 530.degree. C., are quenched, aged at approximately 170 to 210.degree. C. and are then cooled to room temperature. The castings are quenched individually with a mist-type fine mixture of air and water, which is nozzle sprayed on all sides by forced convection flow only to approximately 130 to 160.degree. C., and are charged at this temperature, while utilizing the residual heat, into an aging furnace. The evaporation heat of the water is utilized as latent cooling heat. The forming water vapor, carried away by the workpieces, is condensed and the condensed water is guided back to moisten the air/water mixture.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: August 4, 1998
    Assignee: Mercedes-Benz AG
    Inventors: Ralph Koppenhoefer, Siegfried Weimer
  • Patent number: 5772802
    Abstract: Can or lid stock and a method for its manufacture in which a low alloy content aluminum alloy is strip cast to form a hot strip cast feedstock, the hot feedstock is rapidly quenched to prevent substantial precipitation, annealed and quenched rapidly to prevent substantial precipitation of alloying elements and then cold rolled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: June 30, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: T. C. Sun, William Betts
  • Patent number: 5762729
    Abstract: A continuously cast and rolled aluminum alloy substrate for an electrolytically grainable lithographic printing plate, consisting of 0.20 to 0.80 wt. % of Fe and the balance of Al, grain-refining elements and unavoidable impurities including 0.3 wt. % or less of Si and 0.05 wt. % or less of Cu, the amount of Fe present in solid solution being not more than 250 ppm, the amount of Si present in solid solution being not more than 150 ppm, and the amount of Cu present in solid solution being not more than 120 ppm.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: June 9, 1998
    Assignees: Nippon Light Metal Company Ltd., Fuji Photo Film Company Ltd.
    Inventors: Yasuhisa Nishikawa, Hideki Suzuki, Hirokazu Sakaki, Yoshinori Hotta
  • Patent number: 5733389
    Abstract: A method for manufacturing an aluminum alloy conductor for use at ultra low temperature which involves the steps of adding at least one of the metallic and semimetallic effective elements selected from the group consisting of B, Ca, Ce, Ga, Y, Yb and Th, in a total amount of 6 to 200 weight ppm, into a previously prepared molten high purity aluminum having a purity of not less than 99.98 wt % to thereby obtain a molten metal mixture; casting the molten metal mixture to thereby obtain a casting; subjecting the casting to extrusion working at 150.degree. C. to 350.degree. C. in an area reduction ratio of 1:10 to 1:150 whereby an extrusion worked product is formed; and annealing the extrusion worked product at a temperature of 250.degree. C. to 530.degree. C. for 3 to 120 minutes, whereby an aluminum alloy conductor for use at ultra low temperature is obtained.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: March 31, 1998
    Assignees: Sumitomo Chemical Co., Ltd., Texas A & M University System
    Inventors: Akihiko Takahashi, Hitoshi Yasuda, Karl Theodore Hartwig, Lacy Clark McDonald
  • Patent number: 5728239
    Abstract: A process for hardening aluminum comprises the steps of adding a magnesium hardener to molten aluminum wherein the hardener has a magnesium content in the range of 64-72 wt % based on the weight of the hardener, with a remaining portion of the hardener comprising aluminum. The process may further include the steps of preheating the hardener prior to adding the hardener to the aluminum for decreasing a temperature differential between the hardener and the aluminum so as to stabilize the hardener and prevent shattering thereof.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 17, 1998
    Assignee: KBAlloys, Inc.
    Inventors: William C. Setzer, Richard J. Malliris, David K. Young, Francis P. Koch
  • Patent number: 5681405
    Abstract: An aluminum alloy sheet and a method for producing an aluminum alloy sheet. The aluminum alloy sheet is useful for forming into drawn and ironed container bodies. The sheet preferably has an after-bake yield strength of at least about 37 ksi and an elongation of at least about 2 percent. Preferably the sheet also has earing of less than about 2 percent.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: October 28, 1997
    Assignee: Golden Aluminum Company
    Inventors: William Newton, David A. Tomes
  • Patent number: 5634991
    Abstract: A method for making aluminum alloy can stock from continuously cast aluminum alloy slabs includes the steps of continuous casting, hot rolling, hot line annealing, cold rolling, intermediate annealing and cold rolling to final gauge. After the material is cold rolled to final gauge, it is subjected to a heat treatment step which improves its formability. The method is suited for improved AA3000 series type alloys. Besides improved formability, the inventive method also provides increased alpha phase content and low earing percentage for improvements in can manufacture. An improved aluminum alloy product also is disclosed.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: June 3, 1997
    Assignee: Reynolds Metals Company
    Inventor: Rajeev G. Kamat
  • Patent number: 5618358
    Abstract: A new aluminum based alloy having properties which mimic homogenized DC cast 3003 alloy and a low-cost method for manufacturing it are described. The alloy contains 0.40% to 0.70% Fe, 0.10% to less than 0.30% Mn, more than 0.10% to 0.25% Cu, less than 0.10% Si, optionally up to 0.10% Ti and the balance Al and incidental impurities. The alloy achieves properties similar to homogenized DC cast 3003 when continuously cast followed by cold rolling and if desired annealing at final gauge. Suprisingly no other heat treatments are required.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: April 8, 1997
    Inventors: Thomas Davisson, Sadashiv Nadkarni, Douglas Reesor
  • Patent number: 5616190
    Abstract: The invention relates to a process for producing, by casting between rolls, an aluminum alloy sheet suitable for making up constituent elements of cans for food use, the aluminum alloy containing (by weight) between 1 and 4% of Mg and between 0 and 1.6% of Mn, the process being characterized in that said sheet is obtained by casting of said alloy in the liquid state between two rolls in the form of a strip having a thickness of at most 4 mm followed by at least one heat treatment at a temperature between 400.degree. and 580.degree. C. so that the sheet is at least partially recrystallized and cold-rolling to a final thickness of less than 0.3 mm.The sheet obtained has a yield stress, a formability index and a resistance of the coating to delamination which are improved and make it suitable for application to can manufacture and, in particular, to can lids.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: April 1, 1997
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Marc Legresy, Guy-Michel Raynaud
  • Patent number: 5571347
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 5, 1996
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5562784
    Abstract: An aluminum alloy substrate for an electrolytically grainable lithographic printing plate, consisting of an aluminum alloy cold-rolled sheet, produced by a continuous casting and rolling process, comprising 0.20 to 0.80 wt % of Fe with the balance consisting of aluminum, grain refining elements, and unavoidable impurities including 0.3 wt % or less of Si and 0.05 wt % or less of Cu, grains in a surface layer portion having a width of not more than 150 .mu.m in a direction parallel to the sheet surface and normal to the direction of cold rolling and a length, in a direction parallel to the direction of cold rolling, of not more than 8 times the width.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: October 8, 1996
    Assignees: Nippon Light Metal Company, Ltd., Fuji Photo Film Company, Ltd.
    Inventors: Yasuhisa Nishikawa, Hideki Suzuki, Hirokazu Sakaki, Yoshinori Hotta
  • Patent number: 5554234
    Abstract: The present invention provides a high strength aluminum alloy suitable for use in the manufacture of a fin, said aluminum alloy containing at most 0.1% by weight of Si, 0.10 to 1.0% by weight of Fe, 0.1 to 0.50% by weight of Mn, 0.01 to 0.15% by weight of Ti, and the balance of Al and unavoidable impurities, intermetallic compounds having a diameter not larger than 0.1 .mu.m being distributed within the metal texture of the alloy in a number density of at least 10/.mu.m.sup.3. The present invention also provides a method of manufacturing a high strength aluminum alloy suitable for use in the manufacture of a fin, comprising the steps of heating to 430.degree. to 580.degree. C. an aluminum alloy ingot of the composition noted above, applying a hot rolling treatment to said aluminum alloy ingot to obtain a plate material before the temperature of the aluminum alloy ingot is lowered by at most 50.degree. C.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: September 10, 1996
    Assignee: Furukawa Aluminum Co., Ltd.
    Inventors: Hiroaki Takeuchi, Hiroshi Kano
  • Patent number: 5547633
    Abstract: The specification describes a ternary alloy of aluminium. The alloy described comprises from 80 to 96% by weight of aluminium and from 4 to 20% by weight of titanium and a third element selected from the group consisting of cobalt, chromium, copper, magnesium, nickel and iron. The weight ratio of titanium to ternary alloying element lies in the range from 1:1 to 6:1. The alloy can be aged at a temperature in the range from 300.degree. to 450.degree. C.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: August 20, 1996
    Assignee: Monash University
    Inventors: Barry C. Muddle, Jianfeng Nie
  • Patent number: 5547522
    Abstract: A support for a planographic printing plate support in which variations in the quality of the material of the aluminum support are reduced to thereby improve the yield in an electrolytic graining treatment and which is excellent in susceptibility to graining, has no stripe irregularities, and excellent appearance, and a method for producing such a planographic printing plate. An aluminum plate material is formed through a twin-roller continuous casting apparatus and subjected to cold rolling. Successively, the plate is subjected to heat treatment so as to form a surface portion of a depth of at least 15 .mu.m in the thickness direction having no recrystallization in the surface layer. If necessary, the plate may be subjected to cold rolling again as final rolling. Thereafter, the plate is subjected to correction.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: August 20, 1996
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Masaya Matsuki, Hirokazu Sawada, Akio Uesugi
  • Patent number: 5531840
    Abstract: A method of producing a support for a planographic printing plate, which comprises after continuous casting an aluminum plate having a thickness of not more than 3 mm from molten aluminum by a twin roller continuous casting method, heat-treating the aluminum plate and then reducing the thickness of the plate to 0.5 mm or less by cold rolling.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: July 2, 1996
    Assignee: Fuji Photo Film Co., LTD.
    Inventors: Akio Uesugi, Tsutomu Kakei
  • Patent number: 5514228
    Abstract: A method for manufacturing aluminum sheet stock which includes hot rolling an aluminum alloy sheet stock, annealing and solution heat treating it without substantial intermediate cooling and rapid quenching.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: May 7, 1996
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Gavin F. Wyatt-Mair, Donald G. Harrington
  • Patent number: 5507887
    Abstract: Disclosed is a support for planographic printing plate prepared by a process which comprises subjecting molten aluminum alloy to continuous casting by a twin-roll continuous casting machine to directly caste a plate, subjecting the plate to cold rolling and heat treatment once or more times, respectively, reforming the plate, and then surface graining the plate, wherein crystalline grains on a cross section of the finished plate (a) have an average diameter in circle equivalence of 15 .mu.m to 35 .mu.m, (b) contain those having an average diameter in circle equivalence of not less than 40 .mu.m in a proportion of not more than 30% and (c) assume a shape factor of not less than 4.0.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: April 16, 1996
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Akio Uesugi, Tsutomu Kakei
  • Patent number: 5503689
    Abstract: An aluminum alloy composition for sheet product consists essentially of 0.3 to 1.1 wt. % silicon, 0.4 to 1.0 wt. % iron, 0.009 to 0.25 wt. % copper and optionally, minor amounts of manganese, magnesium, chromium, zinc, titanium and other incidental impurities with the balance aluminum. In making aluminum sheet from this composition, the aluminum alloy is continuously cast into an intermediate gauge sheet product and directly cold rolled without an intermediate thermal treatment to final gauge. Optionally, the final gauge sheet product can be subjected to a known temper practice. Using the iron, silicon and copper-containing aluminum alloy composition, a sheet product is produced which has acceptable mechanical properties for use as general purpose aluminum sheet, semi-rigid aluminum container stock, consumer wrap container cutter bars and the like.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: April 2, 1996
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Stanley M. Boyd, James P. Martin
  • Patent number: 5496423
    Abstract: A method for manufacturing aluminum alloy sheet stock including two sequences of continuous, in-line operations. The first sequence includes the continuous, in-line steps of hot rolling, coiling, coil self-annealing and the second sequence includes the continuous, in-line steps of uncoiling, quenching without intermediate cooling, cold rolling, and coiling.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: March 5, 1996
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Gavin F. Wyatt-Mair, Donald G. Harrington
  • Patent number: 5469912
    Abstract: An aluminum alloy is formed by continuously casting an aluminum alloy having a magnesium concentration of at least about 4.7 percent. Controlled forming and annealing steps in conjunction with the alloy form an aluminum sheet product that is useful for forming beverage container ends and tabs.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: November 28, 1995
    Assignee: Golden Aluminum Company
    Inventor: Donald C. McAuliffe
  • Patent number: 5470405
    Abstract: A method for manufacturing aluminum alloy can body stock including a continuous, in-line sequence of hot rolling, annealing and solution heat treating without intermediate cooling and rapid quenching.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: November 28, 1995
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Gavin F. Wyatt-Mair, Donald G. Harrington
  • Patent number: 5466312
    Abstract: A method for making aluminum foil comprises providing an aluminum-based alloy composition consisting essentially of about 0.05 to 0.20 weight percent silicon, about 0.02 to 0.50 weight percent iron, about 0.05 to 0.30 weight percent copper and balance aluminum and inevitable impurities and grain refining elements, wherein the ratio of iron to silicon ranges between about 2:1 and 4:1. The aluminum-alloy composition is continuously cast using a unitary and chilled casting wheel to form a cast strip product of desired width and gauge. The cast strip product is then homogenized, cold rolled and recrystallized annealed into an aluminum foil product. The aluminum-based alloy composition produces a single roll cast product having minimum microshrinkage porosity on the air surface thereof. Reducing or eliminating the microshrinkage porosity in the cast product results in an aluminum foil product having a minimum of pinholes in the final foil product.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: November 14, 1995
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Jr., Sander A. Levy, George A. Sloan
  • Patent number: 5462614
    Abstract: A method of producing a support for a planographic printing plate, which reduces the scattering in the material of the aluminum support, improves the yield of the electrolytic surface graining treatment, and is able to produce lithographic printing plates having superior surface graining aptitude. Aluminum material with a width of 1000 mm and a thickness of 6 mm is formed in the continuous casting twin-roller thin plate device. It is then cold rolled to a plate thickness of 3 mm, and after conducting annealing at 400.degree. C., cold rolling (including correction) is further conducted to bring it to 0.3 mm and form the samples. The temperature distribution of the molten metal at the outlet of the molten metal supply nozzle is kept within a predetermined range.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: October 31, 1995
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi, Masaya Matsuki
  • Patent number: 5456772
    Abstract: A support for a planographic printing plate support in which variations in the quality of the material of the aluminum support are reduced to thereby improve the yield in an electrolytic graining treatment and which is excellent in susceptibility to graining, has no stripe irregularities, and excellent appearance, and a method for producing such a planographic printing plate. An aluminum plate material is formed through a twin-roller continuous casting apparatus and subjected to cold rolling. Successively, the plate is subjected to heat treatment so as to form a surface portion of a depth of at least 15 .mu.m in the thickness direction having no recrystallization in the surface layer. If necessary, the plate may be subjected to cold rolling again as final rolling. Thereafter, the plate is subjected to correction.
    Type: Grant
    Filed: October 7, 1993
    Date of Patent: October 10, 1995
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Masaya Matsuki, Hirokazu Sawada, Akio Uesugi
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi
  • Patent number: 5431751
    Abstract: A high strength aluminum alloy is expressed by a general formula, Al.sub.a X.sub.b Mm.sub.c, in which "X" stands for at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zr, "Mm" stands for a misch metal, a content "a" of aluminum falls in a range of from 95.2 to 97.5 atomic %, and a content "b" of "X" and a content "c" of the "Mm" fall in a hatched area enclosed by points "A," "B," "C" and "D" of accompanying FIG. 1 on atomic % basis, and whose metallic phase includes microcrystalline phases or mixed phases containing amorphous phases in a volume content of less than 50% and the balance of microcrystalline phases. As a result, the amorphous phases or the microcrystalline phases are dispersed uniformly in its base microcrystalline phases appropriately, and at the same time the thus generating base microcrystalline phases are reinforced by forming solid solutions including the "Mm" and the transition metal element "X" as well.
    Type: Grant
    Filed: February 5, 1993
    Date of Patent: July 11, 1995
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Okochi, Kazuaki Sato, Tetsuya Suganuma, Akira Kato, Tsuyoshi Masumoto, Akihisa Inoue
  • Patent number: 5356495
    Abstract: A method for manufacturing aluminum alloy can body stock including two sequences of continuous, in-line operations. The first sequence includes the continuous, in-line steps of hot rolling, coiling, coil self-annealing and the second sequence includes the continuous, in-line steps of uncoiling, quenching without intermediate cooling, cold rolling, and coiling.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: October 18, 1994
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Gavin F. Wyatt-Mair, Donald G. Harrington
  • Patent number: 5350010
    Abstract: A method of producing a planographic printing plate support in which after aluminum is continuously cast directly from molten aluminum into a thin aluminum plate, the aluminum thin plate is subjected to cold rolling, heat treatment and flattening to obtain an aluminum support. The aluminum support is then subjected to surface toughening. The components of the aluminum support areFe: 0.4%-0.2%,Si: 0.20%-0.05%,Cu: not larger than 0.02%, and the Al purity is not smaller than 99.5%. After continuous casting, Fe in a range of from 20% to 90% of the Fe total content exists in a grain boundary and the rest of Fe exists as a solid solution in grains. In this case, it is preferable that in a section perpendicular to the direction of continuous casting, the grain size is in a range of from 2 .mu.m to 500 .mu.m.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: September 27, 1994
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Tsutomu Kakei, Masaya Matsuki, Akio Uesugi
  • Patent number: 5318642
    Abstract: A high-strength rolled sheet of an aluminum alloy having a composition represented by the general formula Al.sub.bal Ni.sub.a X.sub.b, Al.sub.bal Ni.sub.a X.sub.b M.sub.c or Al.sub.bal Ni.sub.a X.sub.b M.sub.c Q.sub.d, wherein X represents at least one element selected from among La, Ce, Mm, Ti and Zr; M represents at least one element selected from among V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q represents at least one element selected from among Mg, Si, Cu and Zn; and a, b, c and d are, in atomic percentages, 2.ltoreq.a.ltoreq.10, 0.1.ltoreq.b.ltoreq.3.ltoreq.0.1.ltoreq.c.ltoreq.2 and 0.01.ltoreq.d.ltoreq.2, wherein intermetallic compounds crystallized therefrom have a maximum particle size of 10 .mu.m or less. The rolled sheet can be easily produced by subjecting a melt of an alloy having the above-described composition to rolling simultaneously with cooling and solidification to provide a rolled sheet and has high strength and rigidity and excellent heat resistance and ductility.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: June 7, 1994
    Assignee: Yoshida Kogyo K.K.
    Inventor: Kazuhiko Kita
  • Patent number: 5286315
    Abstract: The present invention relates to a process for preparing a metal sheet having an excellent rolling property, i.e., a rollable metal sheet, which process comprises the basic steps of: continuously feeding a molten metal on a cooling material having one or two cooling surfaces being transferred and renewed for quench solidification, to thereby prepare a thin cast sheet; impinging a small rigid body particle against the surface of the resultant thin cast sheet, to work the cast sheet; heat-annealing the worked sheet in such a manner that the worked region becomes a fine recrystallized grain layer; and subjecting the cast sheet to a cold or warm rolling, optionally after a removal of oxides present on the surface; and an optional step of heat-treating the rolled sheet for working. The process of the present invention is applicable to the production of various known rollable metal or alloy sheets, such as soft steel, stainless steel, silicon steel, nickel-iron, cobalt-iron, nickel, aluminum, and copper sheets.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: February 15, 1994
    Assignee: Nippon Steel Corporation
    Inventors: Kenzo Iwayama, Isao Iwanaga, Kenichi Miyazawa, Toshiaki Mizoguchi, Hidehiko Sumitomo
  • Patent number: 5266130
    Abstract: A process for manufacturing an aluminum alloy material having excellent shape fixability and bake hardenability, the process comprising: conducting semicontinuous casting of an aluminum alloy comprising 0.4 to 1.7% (wt.%) Si and 0.2 to 1.4% Mg, optionally further comprising 0.05% or less Ti and 100 pm or less B and optionally further comprising at least one member selected from the group of 1.00% or less Cu, 0.50% or less Mn, 0.20% or less Cr and 0.20% or less V, with the balance consisting of Al and unavoidable impurities, subjecting the cast alloy to conventional hot rolling; conducting solution heat treatment by holding the hot-rolled alloy at a temperature of from 450 to 580.degree. C. for 10 minutes or less; conducting first-stage cooling of the alloy at a cooling rate of 200.degree. C./min or more to a quenched temperature in the range of from 60 to 250.degree. C.; and subjecting the alloy to second-stage cooling at a cooling rate selected within the zone ABCD shown in the attached FIG. 2.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: November 30, 1993
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Hidetoshi Uchida, Hideo Yoshida
  • Patent number: 5244516
    Abstract: Disclosed herein is an aluminum alloy plate for discs superior in Ni-P platability and adhesionability of plated layer and having a high surface smoothness with a minimum of nodules and micropits, said aluminum alloy plate comprising an aluminum alloy containing as essential elements Mg in an amount more than 3% and equal to or less than 6%, Cu in an amount equal to or more than 0.03% and less than 0.3%, and Zn in an amount equal to or more than 0.03% and equal to or less than 0.4%, and as impurities Fe in an amount equal to or less than 0.07% and Si in an amount equal to or less than 0.06% in the case of semi-continuous casting, or Fe in an amount equal to or less than 0.1% and Si in an amount equal to or less than 0.1% in the case of strip casting, and also containing Al-Fe phase intermetallic compounds, with the maximum size being smaller than 10 .mu.m and the number of particles larger than 5 .mu.m being less than 5 per 0.2 mm.sup.
    Type: Grant
    Filed: August 12, 1992
    Date of Patent: September 14, 1993
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventor: Masahiro Kawaguchi
  • Patent number: 5192377
    Abstract: In a process of producing strip or wire, which consists of a monotectic aluminum-silicon alloy comprising a matrix consisting of aluminum and an aluminum-silicon eutectic system and as a minority phase 1 to 50% by weight lead or bismuth included in said matrix, which strip or wire has been continuously cast at a high casting velocity and a high cooling rate from a molten material which has been heated to a temperature above the segregation temperature, and which strip or wire has been subjected to plastic deformation and to a heat treatment, the minority phase which is embedded in the form of elongate platelets in the strip or wire is transformed to more compact shapes by a heat treatment at temperatures of 550.degree. to 600.degree. C.
    Type: Grant
    Filed: April 22, 1991
    Date of Patent: March 9, 1993
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Bruno Prinz, Alberto Romero, Ingrid Muller