With Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/693)
-
Patent number: 12000026Abstract: Provided are an aluminum alloy sheet for automotive structural member which is excellent and well-balanced in strength, formability, and crushability, an automotive structural member, and a method for manufacturing an aluminum alloy sheet for automotive structural member. An aluminum alloy sheet for automotive structural member is an Al—Mg—Si-based aluminum alloy sheet containing, in mass %, Mg: 0.4% or more and 1.0% or less, Si: 0.6% or more and 1.2% or less, and Cu: 0.6% or more and 1.3% or less with the remainder being Al and inevitable impurities and having an earing ratio of ?13.0% or less.Type: GrantFiled: November 24, 2020Date of Patent: June 4, 2024Assignee: Kobe Steel, Ltd.Inventors: Tomoki Hosokawa, Takahiko Nakamura
-
Patent number: 11802325Abstract: The present disclosure relates to metallurgy, more particularly to a composition and a process for producing part blanks and finished parts from aluminum-based alloys including but not limited to using selective laser melting processes. The proposed aluminum-based alloy comprising magnesium, zirconium and scandium for atomization an aluminum powder therefrom and subsequent producing finished parts by additive technologies has a reduced content of scandium and further comprises oxygen and calcium with a limited size of the oxide film and a moister content.Type: GrantFiled: May 21, 2018Date of Patent: October 31, 2023Assignee: OBSHCHESTVO S OGRANICHENNOY OTVETSTVENNOST'YU OBEDINENNAYA KOMPANIYA RUSAL “INZHERNO-TEKHNOLOGICHESKIY TSENTR”Inventors: Viktor Khrist'yanovich Mann, Aleksandr Yur'evich Krokhin, Roman Olegovich Vakhromov, Dmitrij Konstantinovich Ryabov, Vladimir Aleksandrovich Korolev, Dmitrij Vladimirovich Tsisar'
-
Patent number: 10661330Abstract: A method for producing a flat spiral spring formed as an annular disk-shaped segment, wherein a strip-shaped material is supplied in a tangential alignment to the lateral surface of the drum such that a lateral wall which determines the thickness of the strip-shaped material rests against some sections of a contact surface on the lateral surface of the drum. The contact surface of the drum has a radius which substantially corresponds to an internal radius of the strip-shaped material, and at least one deflecting device is aligned at a distance to the drum such that the strip-shaped material is guided in a forced manner between the drum and the deflecting device, and the strip-shaped material is bent so as to follow the drum by means of the deflecting device.Type: GrantFiled: July 31, 2015Date of Patent: May 26, 2020Assignee: Adolf Schnorr GmbH + Co. KGInventors: Knut Naue, Andy Haunholter
-
Patent number: 9399808Abstract: This aluminum alloy sheet has increased BH properties under low-temperature short-time-period conditions after long-term room-temperature aging by means of causing aggregates of specific atoms to be contained having a large effect in BH properties, the distance between atoms being no greater than a set distance, and containing either Mg atoms or Si atoms measured by 3D atom probe field ion microscopy in a 6000 aluminum alloy sheet containing a specific amount of Mg and Si.Type: GrantFiled: March 13, 2012Date of Patent: July 26, 2016Assignee: Kobe Steel, Ltd.Inventors: Katsushi Matsumoto, Yasuhiro Aruga, Hidemasa Tsuneishi
-
Patent number: 9394596Abstract: Aluminum-magnesium alloys are ideal for ship construction; however, these alloys can become sensitized and susceptible to intergranular corrosion when exposed to moderately elevated temperatures. A stabilization treatment has been developed to reverse sensitization and restore corrosion resistance, such that in-service plate can be refurbished rather than replaced. This treatment involves a short exposure to a specific elevated temperature range and can be implemented with portable units onboard a ship.Type: GrantFiled: March 9, 2012Date of Patent: July 19, 2016Assignee: Concurrent Technologies CorporationInventors: Lawrence S. Kramer, Catherine Wong
-
Patent number: 9242678Abstract: In a car body or component thereof with at least one first component of sheet metal of a first aluminum alloy and at least one second component of sheet metal of a second aluminum alloy, the first and second aluminum alloys are of type AlMgSi and in the sheet metal of the second aluminum alloy a substantial part of the elements Mg and Si, which are required to achieve artificial ageing in solid solution, is present in the form of separate Mg2Si and/or Si particles in order to avoid artificial ageing. By reduction of the hardening capacity of the second component during artificial ageing of the body as part of the paint baking cycle, the car body has an improved impact protection for pedestrians in comparison with solutions according to the prior art.Type: GrantFiled: September 16, 2013Date of Patent: January 26, 2016Assignee: Novelis Inc.Inventors: Corrado Bassi, Juergen Timm
-
Patent number: 9085328Abstract: In a car body or component thereof with at least one first component of sheet metal of a first aluminum alloy and at least one second component of sheet metal of a second aluminum alloy, the first and second aluminum alloys are of type AlMgSi and in the sheet metal of the second aluminum alloy a substantial part of the elements Mg and Si, which are required to achieve artificial ageing in solid solution, is present in the form of separate Mg2Si and/or Si particles in order to avoid artificial ageing. By reduction of the hardening capacity of the second component during artificial ageing of the body as part of the paint baking cycle, the car body has an improved impact protection for pedestrians in comparison with solutions according to the prior art.Type: GrantFiled: May 9, 2012Date of Patent: July 21, 2015Assignee: Novelis Inc.Inventors: Corrado Bassi, Juergen Timm
-
Patent number: 8764920Abstract: New 2xxx aluminum alloys containing vanadium are disclosed. In one embodiment, the aluminum alloy includes 3.3-4.1 wt. % Cu, 0.7-1.3 wt. % Mg, 0.01-0.16 wt. % V, 0.05-0.6 wt. % Mn, 0.01 to 0.4 wt. % of at least one grain structure control element, the balance being aluminum, incidental elements and impurities. The new alloys may realize an improved combination of properties, such as in the T39 or T89 tempers.Type: GrantFiled: September 11, 2012Date of Patent: July 1, 2014Assignee: Alcoa Inc.Inventors: Jen C. Lin, Ralph R. Sawtell, Gary H. Bray, Cindie Giummarra, Andre Wilson, Gregory B. Venema
-
Patent number: 8747580Abstract: New 7XXX alloys having improved ballistics performance are disclosed. The new alloys generally are resistant to armor piercing rounds at 2850 fps, resistant to fragment simulated particles at 2950 fps, and are resistant to spalling. To achieve the improved ballistics properties, the alloys are generally overaged so as to obtain a tensile yield strength that is (i) at least about 10 ksi lower than peak strength and/or (ii) no greater than 70 ksi.Type: GrantFiled: March 30, 2012Date of Patent: June 10, 2014Assignee: Alcoa Inc.Inventors: Dustin M. Bush, Ian Murray, Roberto J. Rioja, Ralph R. Sawtell
-
Publication number: 20130068351Abstract: Multi-alloy composite sheets and methods of producing the composite sheets for use in automotive applications are disclosed. The automotive application may include an automotive panel having a bi-layer or a tri-layer composite sheet with 3xxx and 6xxx aluminum alloys. The composite sheets may be produced by roll bonding or multi-alloy casting, among other techniques. Each of the composite sheets may demonstrate good flat hem rating and mechanical properties, long shelf life, and high dent resistance, among other properties.Type: ApplicationFiled: September 14, 2012Publication date: March 21, 2013Applicant: Alcoa Inc.Inventors: Rajeev G. Kamat, John F. Butler, JR.
-
Patent number: 8328963Abstract: An aluminum alloy sheet of specific Al—Mg—Si composition, which, owing to preliminary aging treatment under adequate conditions, has a specific metallographic structure in which there are a large number of clusters of specific size (each being an aggregate of atoms) expressed in terms of number density, which, when observed under a transmission electron microscope of 1,000,000 magnifications, appear as dark contrast in the bright field image. It is superior in paint baking hardenability and is invulnerable to room temperature aging during storage for a comparatively long period of 1 to 4 months.Type: GrantFiled: March 31, 2009Date of Patent: December 11, 2012Assignee: Kobe Steel, Ltd.Inventors: Yasuo Takaki, Kwangjin Lee
-
Publication number: 20120227873Abstract: A process for tempering large aluminum lithium alloy component parts to achieve high strength capability and resistance to stress corrosion cracking without the need for the prior art step of cold working the alloy components parts. The process achieves the desired material properties by the use of two novel soaking time periods and the use of novel controlled temperature selection at the two respective soaking times as well as carefully controlling the temperature decrease from one soaking time period to the other.Type: ApplicationFiled: April 12, 2012Publication date: September 13, 2012Applicant: Standex International CorporationInventor: Richard J. Morganti
-
Patent number: 8043445Abstract: The invention relates to an aluminium alloy wrought product with high strength and fracture toughness and high fatigue resistance and low fatigue crack growth rate, and having a composition for the alloy comprising, in weight %, about 0.3 to 1.0% magnesium (Mg), about 4.4 to 5.5% copper (Cu), about 0 to 0.20% iron (Fe), about 0 to 0.20% silicon (Si), about 0 to 0.40% zinc (Zn), and Mn in a range 0.15 to 0.8 as a dispersoids forming element in combination with one or more of dispersoids forming elements selected from the group consisting of: (Zr, Sc, Cr, Hf, Ag, Ti, V), in ranges of: about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 1.0% silver (Ag), the balance being aluminium (Al) and other incidental elements, and whereby there is a limitation of the Cu—Mg content such that ?1.1[Mg]+5.38?[Cu]?5.5. The invention further relates to a method of manufacturing such a product.Type: GrantFiled: May 28, 2004Date of Patent: October 25, 2011Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Hinrich Johannes Wilhelm Hargarter
-
Patent number: 7993474Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe<0.15; Si<0.15; Zr?0.05; Ag<0.01, other elements <0.05 each and <0.15 total, remainder Al, treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.Type: GrantFiled: October 1, 2007Date of Patent: August 9, 2011Assignee: Alcan Rhenalu/Constellium FranceInventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
-
Publication number: 20110108170Abstract: The present invention relates to aluminum-lithium alloys in general and, in particular, such products as used in the aircraft industry and the welding of these.Type: ApplicationFiled: July 3, 2009Publication date: May 12, 2011Applicant: ALCAN RHENALUInventors: Frank Eberl, Stephane Jambu, Christian Barthelemy, Gaelle Pouget
-
Publication number: 20110017055Abstract: Improved 5xxx aluminum alloys and products made therefrom are disclosed. The new 5xxx aluminum alloy products may achieve an improved combination of properties due to, for example, the presence of copper. In one embodiment, the new 5xxx aluminum alloy products are able to achieve an improved combination of properties by solution heat treatment.Type: ApplicationFiled: July 23, 2010Publication date: January 27, 2011Applicant: Alcoa Inc.Inventors: Dirk C. Mooy, Roberto J. Rioja, Ralph R. Sawtell, Francine S. Bovard, Gregory B. Venema, David A. Linde
-
Patent number: 7871477Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, magnesium, lithium, at least one of scandium, erbium, thulium, ytterbium, and lutetium, and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.Type: GrantFiled: April 18, 2008Date of Patent: January 18, 2011Assignee: United Technologies CorporationInventor: Awadh B. Pandey
-
Patent number: 7837808Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenisation, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.Type: GrantFiled: December 17, 2003Date of Patent: November 23, 2010Assignee: Alcan RhenaluInventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphaël Muzzolini, Sjoerd Van Der Veen
-
Patent number: 7815758Abstract: Disclosed is a high damage tolerant Al—Cu alloy of the AA2000 series having a high toughness and an improved fatigue crack growth resistance, including the following composition (in weight percent) Cu 3.8-4.7, Mg 1.0-1.6, Zr 0.06-0.18, Cr<0.15, Mn>0-0.50, Fe?0.15, Si?0.15, and Mn-containing dispersoids, the balance essentially aluminum and incidental elements and impurities, wherein the Mn-containing dispersoids are at least partially replaced by Zr-containing dispersoids. There is also disclosed a method for producing a rolled high damage tolerant Al—Cu alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.Type: GrantFiled: November 30, 2007Date of Patent: October 19, 2010Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
-
Patent number: 7763128Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenization, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.Type: GrantFiled: March 26, 2007Date of Patent: July 27, 2010Assignee: Alcan RhenaluInventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphaël Muzzolini, Sjoerd Van Der Veen
-
Patent number: 7744704Abstract: A low density aluminum based alloy useful in aircraft structure for fuselage sheet or light-gauge plate applications which has high strength, high fracture toughness and high corrosion resistance, comprising 2.7 to 3.4 weight percent Cu, 0.8 to 1.4 weight percent Li, 0.1 to 0.8 weight percent Ag, 0.2 to 0.6 weight percent Mg and a grain refiner such as Zr, Mn, Cr, Sc, Hf, Ti or a combination thereof, the amount of which being 0.05 to 0.13 wt. % for Zr, 0.1 to 0.8 wt. % for Mn, 0.05 to 0.3 wt. % for Cr and Sc, 0.05 to 0.5 wt. % for Hf and 0.05 to 0.15 wt. % for Ti. The amount of Cu and Li preferably corresponds to the formula Cu(wt. %)+5/3 Li(wt. %)<5.2.Type: GrantFiled: June 5, 2006Date of Patent: June 29, 2010Assignee: Alcan RhenaluInventors: Bernard Bés, Hervé Ribes, Christophe Sigli, Timothy Warner
-
Publication number: 20090263275Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, magnesium, lithium, at least one of scandium, erbium, thulium, ytterbium, and lutetium, and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.Type: ApplicationFiled: April 18, 2008Publication date: October 22, 2009Applicant: United Technologies CorporationInventor: Awadh B. Pandey
-
Patent number: 7604704Abstract: The present invention concerns a balanced Al—Cu—Mg—Si alloy having a high toughness, good strength levels and an improved fatigue crack growth resistance, comprising essentially the following composition (in weight percent): Cu: 3.6-4.9, Mg: 1.0-1.8, Mn:?0.50, preferably <0.30, Si: 0.10-0.40, Zr:?0.15, Cr:?0.15, Fe:?0.10, the balance essentially aluminum and incidental elements and impurities. There is also disclosed a method for producing the balanced Al—Cu—Mg—Si alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.Type: GrantFiled: August 18, 2003Date of Patent: October 20, 2009Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
-
Patent number: 7597770Abstract: This invention relates to the field of metallurgy, in particular to high strength weldable alloys with low density, of aluminium-copper-lithium system. These alloys can be used in air- and spacecraft engineering. The alloy comprises copper, lithium, zirconium, scandium, silicon, iron, beryllium, and at least one element from the group including magnesium, zinc, manganese, germanium, cerium, yttrium, titanium. A method for fabricating semiproducts is also provided.Type: GrantFiled: January 23, 2008Date of Patent: October 6, 2009Assignees: EADS Deutschland GmbH, All Russian Institute of Aviation Materials VIAMInventors: Thomas Pfannen-Mueller, Rainer Rauh, Peter-Juergen Winkler, Roland Lang, Iosif Naumovitch Fridlyander, Evgeny Nikolaevitch Kablov, Vladimir Solomonovitch Sandler, Svetlana Nikolaevna Borovskikh, Valentin Georgievitch Davydov, Valery Vladimirovitch Zakharov, Marina Vladimirovna Samarina, Viktor Ignatovitch Elagin, Leonid Borisovitch Ber
-
Publication number: 20090242088Abstract: An aluminum alloy sheet of specific Al—Mg—Si composition, which, owing to preliminary aging treatment under adequate conditions, has a specific metallographic structure in which there are a large number of clusters of specific size (each being an aggregate of atoms) expressed in terms of number density, which, when observed under a transmission electron microscope of 1,000,000 magnifications, appear as dark contrast in the bright field image. It is superior in paint baking hardenability and is invulnerable to room temperature aging during storage for a comparatively long period of 1 to 4 months.Type: ApplicationFiled: March 31, 2009Publication date: October 1, 2009Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuo Takaki, Kwangjin Lee
-
Patent number: 7520945Abstract: The present invention is directed to optimization of recrystallization rates on the fatigue crack growth resistance, in the particular case of a Al—Zn—Cu—Mg plate products, and especially on the evolution of da/dN.Type: GrantFiled: December 16, 2004Date of Patent: April 21, 2009Assignees: Alcan Rhenalu, Alcan Rolled Products - Ravenswood, LLCInventors: David Dumont, Vic Dangerfield
-
Publication number: 20090084474Abstract: A recrystallized aluminum alloy having brass texture and Goss texture, wherein the amount of brass texture exceeds the amount of Goss texture, and wherein the recrystallized aluminum alloy exhibits at least about the same tensile yield strength and fracture toughness as a compositionally equivalent unrecrystallized alloy of the same product form and of similar thickness and temper.Type: ApplicationFiled: October 1, 2007Publication date: April 2, 2009Applicant: Alcoa Inc.Inventors: Soonwuk Cheong, Roberto J. Rioja, Paul E. Magnusen, Cagatay Yanar, Dirk C. Mooy, Gregory B. Venema, Edward Llewellyn
-
Patent number: 7494552Abstract: Disclosed is an Al—Cu alloy of the AA2000-series alloys with high toughness and an improved strength, including the following composition (in weight percent) Cu 4.5-5.5, Mg 0.5-1.6, Mn?0.80, Zr?0.18, Cr?0.18, Si?0.15, Fe?0.15, the balance essentially aluminum and incidental elements and impurities, and wherein the amount (in weight %) of magnesium is either: (a) in a range of 1.0 to 1.6%, or alternatively (b) in a range of 0.50 to 1.2% when the amount of dispersoid forming elements such as Cr, Zr or Mn is controlled and (in weight %) in a range of 0.10 to 0.70%.Type: GrantFiled: August 13, 2003Date of Patent: February 24, 2009Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler, Hinrich Johannes Wilhelm Hargarter
-
Publication number: 20080289728Abstract: A low density aluminum based alloy useful in aircraft structure for fuselage sheet or light-gauge plate applications which has high strength, high fracture toughness and high corrosion resistance, comprising 2.7 to 3.4 weight percent Cu, 0.8 to 1.4 weight percent Li, 0.1 to 0.8 weight percent Ag, 0.2 to 0.6 weight percent Mg and a grain refiner such as Zr, Mn, Cr, Sc, Hf, Ti or a combination thereof, the amount of which being 0.05 to 0.13 wt. % for Zr, 0.1 to 0.8 wt. % for Mn, 0.05 to 0.3 wt. % for Cr and Sc, 0.05 to 0.5 wt. % for Hf and 0.05 to 0.15 wt. % for Ti. The amount of Cu and Li preferably corresponds to the formula Cu(wt. %)+5/3 Li(wt. %)<5.2.Type: ApplicationFiled: June 5, 2006Publication date: November 27, 2008Inventor: Bernard Bes
-
Publication number: 20080236708Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenisation, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.Type: ApplicationFiled: March 26, 2007Publication date: October 2, 2008Inventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphael Muzzolini, Sjoerd Van Der Veen
-
Patent number: 7320736Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 200 ?m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than ?50 ° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200 ° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.Type: GrantFiled: October 19, 2004Date of Patent: January 22, 2008Assignee: Praxair Technology, Inc.Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
-
Patent number: 7294213Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe<0.15; Si<0.15; Zr?0.05; Ag<0.01, other elements <0.05 each and <0.15 total, remainder Al treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.Type: GrantFiled: July 7, 2003Date of Patent: November 13, 2007Assignee: Pechiney RhenaluInventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
-
Publication number: 20070246137Abstract: A process for fabricating a worked product or a monolithic multi-functional structural element comprising aluminium alloy includes a hot working step and at least one transformation step by cold plastic deformation after the hot transformation step. At least two zones of the structural element have imposed generalized average plastic deformations and the imposed deformations are different by at least 2%. Structural elements can be fabricated, particularly for aeronautical construction, with properties that are variable while their geometric characteristics are identical to those of existing components. The process is economic and controllable, and properties can be varied for parts not requiring any artificial ageing.Type: ApplicationFiled: April 13, 2007Publication date: October 25, 2007Inventors: Philippe Lequeu, Fabrice Heymes, Armelle Danielou
-
Patent number: 7252723Abstract: New alloys for potential use in applications such as in lower wing skins and fuselage skins are disclosed. Specifically, Mn-free 2×24 alloys potentially suitable for thick plate and thin plate and sheet applications are believed to be novel and to provide unexpectedly superior properties.Type: GrantFiled: July 9, 2003Date of Patent: August 7, 2007Assignee: Pechiney RhenaluInventors: Ronan Dif, Timothy Warner, Bernard Bes
-
Patent number: 7189294Abstract: A method for manufacturing an Al—Mg—Si series alloy plate includes the steps of hot-rolling and subsequently cold-rolling an Al—Mg—Si series alloy ingot. The Al—Mg—Si series alloy ingot consists of Si: 0.2 to 0.8 mass %, Mg: 0.3 to 1 mass %, Fe: 0.5 mass % or less, Cu: 0.5 mass % or less, at least one of elements selected from the group consisting of Ti: 0.1 mass % or less and B: 0.1 mass % or less and the balance being Al and inevitable impurities. Heat-treating for holding a rolled ingot at 200 to 400° C. for 1 hour or more is performed after a completion of the hot-rolling but before a completion of the cold-rolling.Type: GrantFiled: March 3, 2003Date of Patent: March 13, 2007Assignee: Showa Denko K.K.Inventors: Kazuo Kimura, Nobuhiko Akagi
-
Patent number: 7037391Abstract: The process is for ageing heat treatment of an age-hardenable aluminium alloy which has alloying elements in solid solution. The process includes holding the alloy at an elevated ageing temperature which is appropriate for ageing the alloy to promote precipitation of at least one solute element, herein termed “primary precipitation” for a period of time which is short relative to a T6 temper. Resultant underaged alloy then is cooled from the ageing temperature to a lower temperature and at a sufficiently rapid rate to substantially arrest the primary precipitation. The cooled alloy then is exposed to an ageing temperature, lower than the elevated ageing temperature for primary precipitation, so as to develop adequate mechanical properties as a function of time, by further solute element precipitation, herein termed “secondary precipitation”.Type: GrantFiled: September 3, 2003Date of Patent: May 2, 2006Assignee: Commonwealth Scientific and Industrial Research OrganizationInventors: Roger Neil Lumley, Ian James Polmear, Allan James Morton
-
Patent number: 7029543Abstract: A process is described for producing an aluminum alloy sheet having excellent bendability for use in forming panels for automobiles. An aluminum alloy containing 0.50 to 0.75 by weight Mg, 0.7 to 0.85% by weight Si, 0.1 to 0.3% by weight Fe, 0.15 to 0.35% by weight Mn, and the balance Al and incidental impurities, is used and is semi-continuously cast into ingot. The cast alloy ingot is subjected to hot rolling and cold rolling, followed by solution heat treatment of the formed sheet. The heat treated sheet is quenched to a temperature of about 60–120° C. and the sheet is then coiled. This coil is then pre-aged by slowly cooling the coil from an initial temperature of about 60–120° C. to room temperature at a cooling rate of less than 10° C./hr.Type: GrantFiled: June 8, 2004Date of Patent: April 18, 2006Assignee: Novelis, Inc.Inventors: Michael Jackson Bull, David James Lloyd
-
Patent number: 7025839Abstract: The heat treatment of an age-hardenable aluminium alloy, having alloying elements in solid solution includes the stages of holding the alloy for a relatively short time at an elevated temperature TA appropriate for ageing the alloy; cooling the alloy from the temperature TA at a sufficiently rapid rate and to a lower temperature so that primary precipitation of solute elements is substantially arrested; holding the alloy at a temperature TB for a time sufficient to achieve a suitable level of secondary nucleation or continuing precipitation of solute elements; and heating the alloy to a temperature which is at, sufficiently close to, or higher than temperature TA and holding for a further sufficient period of time at temperature TC for achieving substantially maximum strength.Type: GrantFiled: June 14, 2002Date of Patent: April 11, 2006Assignee: Commonwealth Scientific and Industrial Research OrganizationInventors: Roger Neil Lumley, Ian James Polmear, Allan James Morton
-
Patent number: 6994760Abstract: The present invention relates to a method for producing high strength balanced Al—Mg—Si alloy with an improved fatigue crack growth resistance and a low amount of intermetallics, comprising the steps of a) casting an ingot with the following composition (in weight percent) Si: 0.75–1.3, Cu: 0.6–1.1, Mn: 0.2–0.8, Mg: 0.45–0.95, Fe: 0.01–0.3, Zr: <0.25, Cr: <0.25, Zn: <0.35, Ti: <0.25, impurities each less than 0.05 and less than 0.20 in total, balance aluminum, b) optional homogenization of the cast ingot, c) pre-heating the ingot after casting for 4 to 30 hours with temperatures above 520° C., d) hot working the ingot and optionally cold working, e) solution heat treating, and f) quenching the worked product. The pre-heating is preferably performed for 6 to 18 hours with temperatures between 530° C. and 560° C. The alloy has a fatigue crack growth rate at ?K=20 MPa?m of below 9.0E?04 and at ?K=40 MPa?m of below 9.Type: GrantFiled: June 2, 2003Date of Patent: February 7, 2006Assignee: Corus Aluminium Walzprodukte GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Guido Weber, Alfred Johann Peter Haszler
-
Patent number: 6991689Abstract: An aluminum based alloy having a composition within the following ranges, all of the ranges being in weight percent: lithium 2.0 to 2.8, magnesium 0.4 to 1.0, copper 2.0 to 3.0, manganese 0.7 to 1.2, zirconium up to 0.2 and the balance aluminum, save for incidental impurities and up to 2.0 in total of one or more grain controlling elements to provide microstructural optimization and control.Type: GrantFiled: March 27, 2003Date of Patent: January 31, 2006Assignee: Qinetiq LimitedInventors: Wendy J Vine, Donald S McDarmaid, Christopher J Peel
-
Publication number: 20040182483Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenisation, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.Type: ApplicationFiled: December 17, 2003Publication date: September 23, 2004Inventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphael Muzzolini, Sjoerd Van Der Veen
-
Patent number: 6780259Abstract: A process is described for producing an aluminum alloy sheet having excellent bendability for use in forming panels for automobiles. An aluminum alloy containing 0.50 to 0.75 by weight Mg, 0.7 to 0.85% by weight Si, 0.1 to 0.3% by weight Fe, 0.15 to 0.35% by weight Mn, and the balance Al and incidental impurities, is used and is semi-continuously cast into ingot. The cast alloy ingot is subjected to hot rolling and cold rolling, followed by solution heat treatment of the formed sheet. The heat treated sheet is quenched to a temperature of about 60-120° C. and the sheet is then coiled. This coil is then pre-aged by slowly cooling the coil from an initial temperature of about 60-120° C. to room temperature at a cooling rate of less than 10° C./hr.Type: GrantFiled: May 2, 2002Date of Patent: August 24, 2004Assignee: Alcan International LimitedInventors: Michael Jackson Bull, David James Lloyd
-
Patent number: 6764559Abstract: Disclosed is a method for producing aluminum vehicular frame members such as frame members from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 2.7 to 3.6 wt. % Mg, 0.1 to 0.4 wt. % Mn, 0.02 to 0.2 wt. % Si, 0.05 to 0.30 wt. % Fe, 0.1 wt. % max. Cu, 0.1 wt. % max. Cr, 0.2 wt. % max. Zr, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster for continuously casting the molten aluminum alloy. The molten aluminum alloy is cast into a slab which is rolled into a sheet product and then annealed. The sheet has an improved distribution of intermetallic particles (Al—Fe—Mn) and improved formability. Thereafter, the sheet product is formed into a tube having a seam which is welded to provide a seam welded tube. The seam welded tube is placed in a forming die and hydroformed to form the frame member.Type: GrantFiled: November 15, 2002Date of Patent: July 20, 2004Assignee: Commonwealth Industries, Inc.Inventors: Zhong Li, Paul Platek
-
Publication number: 20040118493Abstract: An Al—Mg—Si series alloy ingot consisting essentially of Si: 0.2 to 0.8 wt %, Mg: 0.3 to 0.9 wt %, Fe: 0.5 wt % or less, Cu: 0.20 wt % or less and the balance being aluminum and inevitable impurities, or an Al—Mg—Si series alloy ingot consisting essentially of Si: 0.2 to 0.8 wt %, Mg: 0.3 to 0.9 wt %, Fe: 0.5 wt % or less, Cu: 0.20 wt % or less, Zn: 0.5 wt % or less and the balance being aluminum and inevitable impurities, is prepared. The alloy ingot is homogenized, then subjected to rough hot rolling and finish hot rolling, and finally to cold rolling. One of plural passes performed at the rough hot rolling is controlled such that material temperature immediately before the aforementioned one of passes is from 350 to 440 ° C., cooling rate during the aforementioned one of plural passes is 50° C./min or more, material temperature immediately after the aforementioned one of passes is from 250 to 340° C.Type: ApplicationFiled: October 24, 2003Publication date: June 24, 2004Applicant: SHOWA DENKO K.K.Inventors: Kazuo Kimura, Ichizo Tsukuda, Kyohei Taguchi, Ryosuke Shimao
-
Publication number: 20040094249Abstract: A sheet of a 6000 type aluminum alloy containing Si and Mg as main alloy components and having excellent formability sufficient to allow flat hemming, excellent resistance to denting, and good hardenability during baking a coating, which exhibits an anisotropy of Lankford values of more than 0.4 or the strength ratio for cube orientations of the texture thereof of 20 or more, and exhibits a minimum bend radius of 0.5 mm or less at 180° bending even when the offset yield strength thereof exceeds 140 MPa through natural aging; and a method for producing the sheet of the aluminum alloy, which comprises subjecting an ingot to a homogenization treatment, cooling to a temperature lower than 350° C. at a cooling rate of 100° C./hr or more, optionally to room temperature, heating again to a temperature of 300 to 500° C. and subjecting it to hot rolling, cold rolling the hot rolled product, and subjecting the cold rolled sheet to a solution treatment at a temperature of 400° C.Type: ApplicationFiled: August 22, 2003Publication date: May 20, 2004Inventors: Hidetoshi Uchida, Tadashi Minoda, Mineo Asano, Yoshikazu Ozeki, Tsutomu Furuyama
-
Publication number: 20040079457Abstract: A method for manufacturing an Al—Mg—Si series alloy plate includes the steps of hot-rolling and subsequently cold-rolling an Al—Mg—Si series alloy ingot. The Al—Mg—Si series alloy ingot consists of Si: 0.2 to 0.8 mass %, Mg: 0.3 to 1 mass %, Fe: 0.5 mass % or less, Cu: 0.5 mass % or less, at least one of elements selected from the group consisting of Ti: 0.1 mass % or less and B: 0.1 mass % or less and the balance being Al and inevitable impurities. Heat-treating for holding a rolled ingot at 200 to 400° C. for 1 hour or more is performed after a completion of the hot-rolling but before a completion of the cold-rolling.Type: ApplicationFiled: March 3, 2003Publication date: April 29, 2004Applicant: SHOWA DENKO K.K.Inventors: Kazuo Kimura, Nobuhiko Akagi
-
Patent number: 6702907Abstract: A process for producing an aluminum alloy-made forged scroll part includes a step of casting an aluminum alloy material into a round bar having a diameter of 130 mm or less, the aluminum alloy material comprising 8.0-12.5 mass % of Si, 1.0-5.0 mass % of Cu and 0.2-1.3 mass % of Mg; a step of cutting the aluminum alloy round bar into a stock material for forging; a step of subjecting the stock material to upsetting at an upsetting ratio of 20-70% to form a pre-shaped product that is a workpiece; and a forging step of applying pressure onto the workpiece with a punch at a temperature of 300-450° C. to form a scroll wrap in a direction of the punch pressure, and wherein the forging step includes a single step in which a forged scroll part is press-formed while a back pressure smaller than the punch pressure is applied to an end of the scroll wrap in a direction opposite to the punch pressure direction.Type: GrantFiled: March 20, 2002Date of Patent: March 9, 2004Assignee: Showa Denko K.K.Inventors: Masahiro Sato, Fumihiko Ohmi, Yuichi Ogura
-
Patent number: 6696175Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.Type: GrantFiled: January 16, 2003Date of Patent: February 24, 2004Assignee: Pechiney Rolled ProductsInventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich
-
Patent number: 6675475Abstract: A method of producing a shoe for a swash plate type compressor, the shoe being disposed between a swash plate and a piston of the swash plate type compressor and formed of an aluminum alloy, the method comprising: a main forging step of forging a blank for producing the shoe into a roughly-shaped precursor shoe; a thermal refining step of thermally refining the roughly-shaped precursor shoe; and a size-adjustment forging step of forging the roughly-shaped precursor shoe which has been thermally refined, into a size-adjusted shoe.Type: GrantFiled: May 9, 2002Date of Patent: January 13, 2004Assignee: Kabushiki Kaisha Toyota JidoshokkiInventors: Manabu Sugiura, Takahiro Sugioka, Akira Onoda, Tomohiro Murakami, Shino Ohkubo
-
Patent number: 6666933Abstract: A can end is manufactured by forming an end shell comprising a radially outer seaming flange, a chuck wall adjacent the seaming flange, a center panel, and an axially downward countersink joining the center panel to the chuck wall below the level of the seaming flange. The end shell is converted to an easy-open can end by forming a score on a portion of the center panel, raising a rivet on the center pane, and forming a tab and attaching the tab to the rivet. The end is subsequently formed by moving the center panel and the seaming flange one with respect to the other to raise the center panel above the level of the seaming flange.Type: GrantFiled: May 22, 2001Date of Patent: December 23, 2003Assignee: Crown Cork & Seal Technologies CorporationInventors: David Andrew Roberts, Andrew Osborne Blow, John Alfred Perigo