Zinc(zn) Containing Patents (Class 148/701)
  • Patent number: 11766846
    Abstract: Provided herein are new clad aluminum alloy products and methods of making these alloys. These alloy products possess a combination of strength and other key attributes, such as corrosion resistance, formability, and joining capabilities. The alloy products can be used in a variety of applications, including automotive, transportation, and electronics applications.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 26, 2023
    Assignee: Novelis Inc.
    Inventors: Rajeev G. Kamat, Hashem Mousavi-Anijdan, Rahul Vilas Kulkarni, Juergen Timm, Corrado Bassi, Robert Bruce Wagstaff, Guillaume Florey, Cyrille Bezencon, Samuel R. Wagstaff, David Leyvraz
  • Patent number: 11692255
    Abstract: Described herein are 7xxx series aluminum alloys with unexpected properties and novel methods of producing such aluminum alloys. The aluminum alloys exhibit high strength and are highly formable. The alloys are produced by continuous casting and can be hot rolled to a final gauge and/or a final temper. The alloys can be used in automotive, transportation, industrial, and electronics applications, just to name a few.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 4, 2023
    Assignee: Novelis Inc.
    Inventors: Milan Felberbaum, Sazol Kumar Das, Duane E. Bendzinski, Rajeev G. Kamat, Tudor Piroteala, Rajasekhar Talla
  • Patent number: 10752980
    Abstract: A high fatigue strength aluminum alloy comprises in weight percent copper 3.0-3.5%, iron 0-1.3%, magnesium 0.24-0.35%, manganese 0-0.8%, silicon 6.5-12.0%, strontium 0-0.025%, titanium 0.05-0.2%, vanadium 0.20-0.35%, zinc 0-3.0%, zirconium 0.2-0.4%, a maximum of 0.5% other elements and balance aluminum plus impurities. The alloy defines a microstructure having an aluminum matrix with the Zr and the V in solid solution after solidification. The matrix has solid solution Zr of at least 0.16% after heat treatment and solid solution V of at least 0.20% after heat treatment, and both Cu and Mg are dissolved into the aluminum matrix during the heat treatment and subsequently precipitated during the heat treatment. A process for heat treating an Al—Si—Cu—Mg—Fe—Zn—Mn—Sr-TMs alloy comprises heat treating the alloy to produce a microstructure having a matrix with Zr and V in solid solution after solidification.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 25, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Mei Li, Jacob Wesley Zindel, Larry Alan Godlewski, Bita Ghaffari, Yang Huo, Carlos Engler-Pinto, Wei-jen Lai
  • Patent number: 10730266
    Abstract: Provided herein are new clad aluminum alloy products and methods of making these alloys. These alloy products possess a combination of strength and other key attributes, such as corrosion resistance, formability, and joining capabilities. The alloy products can be used in a variety of applications, including automotive, transportation, and electronics applications.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: August 4, 2020
    Assignee: NOVELIS INC.
    Inventors: Rajeev G. Kamat, Hashem Mousavi-Anijdan, Rahul Vilas Kulkarni, Juergen Timm, Corrado Bassi, Robert Bruce Wagstaff, Guillaume Florey, Cyrille Bezencon, Samuel R. Wagstaff, David Leyvraz
  • Patent number: 9365917
    Abstract: A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: June 14, 2016
    Assignee: The United States of America as Represented by the Administrator of the National Aeronatics and Space Administration
    Inventors: Po-Shou Chen, Carolyn Kurgan Russell
  • Publication number: 20150101718
    Abstract: A method of age hardening a 7xxx series aluminum alloy is provided that includes heat treating the alloy at a first temperature for a first exposure time and heat treating the alloy at a second temperature that is higher than the first temperature for a second exposure time. The age hardening process may be used to form an alloy having a yield strength of at least 490 MPa and the total age hardening time may be 8 hours or less. In one example, the first heat treatment is performed at 100° C. to 150° C. for 0.2 to 3 hours and the second heat treatment is be performed at 150° C. to 185° C. for 0.5 to 5 hours.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Nia R. Harrison, S. George Luckey, JR.
  • Patent number: 8876993
    Abstract: A casted ingot of a heat treatment type Al—Zn—Mg series aluminum alloy comprising Zn: 4.0-8.0% by mass, Mg: 0.5-2.0% by mass, Cu: 0.05-0.5% by mass, Ti: 0.01-0.1% by mass, and any one or more of Mn: 0.1-0.7% by mass, Cr: 0.1-0.5% by mass and Zr: 0.05-0.3% by mass, and the balance being aluminum and incidental impurities is extruded at a homogenization treatment temperature after a homogenization treatment without cooled, and a resulted extruded material is die quenched at a cooling rate equal to or more than 100° C./min and then subjected to an artificial aging treatment, wherein the homogenization treatment is carried out by heating to the homogenization treatment temperature as 430-500° C. at a heating rate less than 750° C./hr or by heating to the homogenization treatment temperature and held the homogenization treatment temperature for 3 hours.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: November 4, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yukimasa Miyata, Shinji Yoshihara, Minwoo Kang
  • Patent number: 8758530
    Abstract: Aluminum alloy products having improved ballistics performance are disclosed. The aluminum alloy products may be underaged. In one embodiment, the underaged aluminum alloy products realize an FSP resistance that it is better than that of a peak strength aged version of the aluminum alloy product. In one embodiment, ballistics performance criteria is selected and the aluminum alloy product is underaged an amount sufficient to achieve a ballistics performance that is at least as good as the ballistics performance criteria.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 24, 2014
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Dirk C. Mooy, Jiantao T. Liu, Francine S. Bovard
  • Patent number: 8747580
    Abstract: New 7XXX alloys having improved ballistics performance are disclosed. The new alloys generally are resistant to armor piercing rounds at 2850 fps, resistant to fragment simulated particles at 2950 fps, and are resistant to spalling. To achieve the improved ballistics properties, the alloys are generally overaged so as to obtain a tensile yield strength that is (i) at least about 10 ksi lower than peak strength and/or (ii) no greater than 70 ksi.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 10, 2014
    Assignee: Alcoa Inc.
    Inventors: Dustin M. Bush, Ian Murray, Roberto J. Rioja, Ralph R. Sawtell
  • Publication number: 20140096879
    Abstract: Disclosed herein is an aluminum alloy composition and a method of heat treating the aluminum alloy, to improve process control and strength of the aluminum alloy for a rear safety plate mounted on a truck, etc., complying with safety regulations wherein the aluminum alloy composition includes Silicon (Si) about 0.8 to 1.3% by weight, Iron (Fe) up to about 0.5% by weight, Copper (Cu) about 0.15 to 0.4% by weight, Manganese (Mn) up to about 0.15% by weight, Magnesium (Mg) about 0.8 to 1.2% by weight, Chromium (Cr) up to about 0.25% by weight, Zinc (Zn) up to about 0.2% by weight, Titanium (Ti) up to about 0.1% by weight and the remaining percent by weight of Aluminum (Al) of the entire composition.
    Type: Application
    Filed: December 18, 2012
    Publication date: April 10, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Nak-Young Kim
  • Patent number: 8673209
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 18, 2014
    Assignee: Alcoa Inc.
    Inventors: Gary H. Bray, Dhurba J. Chakrabarti, Diana Denzer, Jen Lin, John Newman, Greg Venema, Cagatay Yanar
  • Patent number: 8636855
    Abstract: Methods of enhancing mechanical properties of aluminum alloy high pressure die castings are disclosed herein. An aluminum alloy composition forming a casting comprises, by weight of the composition, at least one of a magnesium concentration greater than about 0.2%, a copper concentration greater than about 1.5%, a silicon concentration greater than about 0.5%, and a zinc concentration greater than about 0.3%. After solidification, a casting is cooled to a quenching temperature between about 300° C. and about 500° C. Upon attainment of the quenching temperature, the casting is removed from the die and immediately quenched in a quench media. Following quenching, the casting is pre-aged at a reduced temperature between about room temperature and about 100° C. Thereafter, the casting is aged via at least one substantially isothermal aging at one or more elevated temperatures between about 150° C. and about 240° C.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang
  • Patent number: 8613820
    Abstract: A method of manufacturing a formed aluminum alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminum sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminum sheet product has a substantially recrystallized microstructure, (b) forming the aluminum alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminum alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignees: Aleris Aluminum Duffel BVBA, Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpfl, Sunil Khosla
  • Patent number: 8496764
    Abstract: A system and a method of processing an F-temper aluminum alloy. An F-temper aluminum alloy blank may be heated and positioned in the die set such that the blank does not touch the die set. The blank may be formed into a part and quenched when the die set is closed.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 30, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: George S. Luckey, Peter A. Friedman, Yingbing Luo, Rosa Lynda Nuno, Nia R Harrison, Ronald P. Cooper
  • Patent number: 8491733
    Abstract: An aluminum alloy of the AlZnMg type, which is suitable for producing low-stress, high-strength aluminum input materials, and to a method for producing such aluminum input materials.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: July 23, 2013
    Assignee: Aluminium Lend Gesellschaft m.b.H.
    Inventor: Günther Trenda
  • Publication number: 20120325382
    Abstract: Aluminum alloys having an improved combination of properties are provided. In one aspect, a method for producing the alloy includes preparing an aluminum alloy for artificial aging and artificially aging the alloy. In one embodiment, the artificially aging step includes aging the aluminum alloy at a temperature of at least about 250° F., and final aging the aluminum alloy at a temperature of not greater than about 225° F. and for at least about 20 hours.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: Alcoa Inc.
    Inventors: Cindie Giummarra, Roberto J. Rioja, Gary H. Bray, Paul E. Magnusen
  • Patent number: 8263233
    Abstract: A frame member for use in a two-wheeled vehicle and an all-terrain vehicle that includes a plurality of Al members each made of a 7000 series Al alloy having a high strength is provided in which weld crack sensitivity is reduced and a weld joint having an excellent strength is provided. The alloy composition of the 7000 series Al alloy, which provides the Al member, containing Cu: 0.01 to 0.50%, Mg: 0.5 to 2.1%, and Zn: 4.0 to 8.5%, with the balance being Al and inevitable impurities. Further, in the production of the frame member, the plurality of Al members are integrated by welding using a filler metal containing Mg: 5.5 to 8.0%, Cr: 0.05 to 0.25%, Ti: 0.25% or less, Si: 0.4% or less, Fe: 0.4% or less, Cu: 0.1% or less, Zr: 0.05% or less and Zn: 0.25% or less, and with the balance being Al and inevitable impurities.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 11, 2012
    Assignees: Sumitomo Light Metal Industries, Ltd., Honda Motor Co., Ltd.
    Inventors: Toshihiko Fukuda, Tadashi Minoda, Kyo Takahashi, Yukihide Fukuda
  • Publication number: 20120090742
    Abstract: A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, (b) forming the aluminium alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Application
    Filed: June 1, 2010
    Publication date: April 19, 2012
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpel, Sunil Khosla
  • Patent number: 8043445
    Abstract: The invention relates to an aluminium alloy wrought product with high strength and fracture toughness and high fatigue resistance and low fatigue crack growth rate, and having a composition for the alloy comprising, in weight %, about 0.3 to 1.0% magnesium (Mg), about 4.4 to 5.5% copper (Cu), about 0 to 0.20% iron (Fe), about 0 to 0.20% silicon (Si), about 0 to 0.40% zinc (Zn), and Mn in a range 0.15 to 0.8 as a dispersoids forming element in combination with one or more of dispersoids forming elements selected from the group consisting of: (Zr, Sc, Cr, Hf, Ag, Ti, V), in ranges of: about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 1.0% silver (Ag), the balance being aluminium (Al) and other incidental elements, and whereby there is a limitation of the Cu—Mg content such that ?1.1[Mg]+5.38?[Cu]?5.5. The invention further relates to a method of manufacturing such a product.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 25, 2011
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Hinrich Johannes Wilhelm Hargarter
  • Publication number: 20110126947
    Abstract: The subject of the invention is a cast part with high static mechanical strength, and for fatigue and hot creep, made of aluminum alloy of composition: Si: 3-11%, preferably 5.0-9.0% Fe <0.50%, preferably <0.30%, preferably still <0.19% or even 0.12% Cu: 2.0-5.0%, preferably 2.5-4.2%, preferably still 3.0-4.0% Mn: 0.05-0.50%, preferably 0.08-0.20% Mg: 0.10-0.25%, preferably 0.10-0.20% Zn: <0.30%, preferably <0.10% Ni: <0.30%, preferably <0.10% V: 0.05-0.19%, preferably 0.08-0.19%, preferably still 0.10-0.19% Zr: 0.05-0.25%, preferably 0.08-0.20% Ti: 0.01-0.25%, preferably 0.05-0.20% other elements <0.05% each and 0.15% in total, the rest aluminum. It more particularly relates to cylinder heads for supercharged diesel or petrol internal combustion engines.
    Type: Application
    Filed: July 1, 2009
    Publication date: June 2, 2011
    Applicant: RIO TINTO ALCAN INTERNATIONAL LIMITED
    Inventor: Michel Garat
  • Patent number: 7901522
    Abstract: An aluminium alloy having high mechanical strength and low quench sensitivity comprising 4.6 to 5.2 wt. % Zn, 2.6 to 3.0 wt. % Mg, 0.1 to 0.2 wt. % Cu, 0.05 to 0.2 wt. % Zr, max. 0.05 wt. % Mn, max. 0.05 wt. % Cr, max. 0.15 wt. % Fe, max. 0.15 wt. % Si, max. 0.10 wt. % Ti and aluminium as the remainder along with production related impurities, individually max. 0.05 wt. %, in total max. 0.15 wt. %. A process for producing plates having a thickness of more than 300 mm for manufacturing moulds for injection-moulding plastics is made up of the following steps: continuous casting the alloy into ingots having a thickness greater than 300 mm, heating the ingots to a temperature of 470 to 490° C. with a max. heating rate of 20° C./h between 170 and 410° C., homogenising the ingots for 10 to 14 h at a temperature of 470 to 490° C., cooling the ingots in still air to an intermediate temperature of 400-410° C., cooling the ingots by means of forced air cooling from the intermediate temperature of 400-410° C.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 8, 2011
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Gunther Hollrigl, Christophe Jaquerod
  • Patent number: 7837808
    Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenisation, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 23, 2010
    Assignee: Alcan Rhenalu
    Inventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphaël Muzzolini, Sjoerd Van Der Veen
  • Publication number: 20100224293
    Abstract: Methods and technologies to maximize the aging response and the mechanical properties of aluminum alloys are provided. In one embodiment, the aging process for the slowly-quenched aluminum alloys includes, but is not limited to, at least a two-stage solution treatment and a two-stage aging hardening. In the solution treatment, the components are first heat treated at an initial solution treatment temperature and then gradually heated up to about 5° C. to about 30° C. above the initial solution treatment temperature for the material. For the aging treatment, the castings/components are first aged at a lower temperature followed by a higher temperature for the subsequent aging stages. The temperature increase during solution treatment and/or aging can be in steps, in a continuous manner, or combinations thereof. Another embodiment includes a two stage aging process in which there is a non-isothermal aging step.
    Type: Application
    Filed: January 6, 2010
    Publication date: September 9, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Qigui Wang, Dale A. Gerard
  • Patent number: 7776167
    Abstract: In accordance with the present invention, there are provided methods for the manufacture of aluminum alloy plates having reduced levels of residual stress as well as plates and products employing such plates. Processes of the present invention involve providing a solution heat-treated and quenched aluminum alloy plate with a thickness of at least 5 inches, and stress relieving the plate by performing at least one compressing step at a total rate of 0.5 to 5% permanent set along the longest or second longest edge of the plate. In the method, the dimension of the plate where the compression step is performed is along the longest or second longest edge of the plate, which is preferably no less than twice and no more than eight times the thickness of the plate. In further accordance with the present invention, there are provided stress-relieved alloys and plates that are provided with superior Wtot properties as well as reduced residual stress and heterogeneity values.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 17, 2010
    Assignee: Alcan Rhenalu, Inc.
    Inventors: Frederic Catteau, Julien Boselli
  • Patent number: 7763128
    Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenization, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 27, 2010
    Assignee: Alcan Rhenalu
    Inventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphaël Muzzolini, Sjoerd Van Der Veen
  • Publication number: 20100108209
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: February 27, 2007
    Publication date: May 6, 2010
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Publication number: 20100089506
    Abstract: An aluminum alloy of the AlZnMg type, which is suitable for producing low-stress, high-strength aluminum input materials, and to a method for producing such aluminum input materials.
    Type: Application
    Filed: September 3, 2007
    Publication date: April 15, 2010
    Inventor: Günther Trenda
  • Patent number: 7666267
    Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminium alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9Mg?0.6)?Cu?(0.9Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: February 23, 2010
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Nedia Telioui
  • Publication number: 20090165906
    Abstract: A method of casting a metal ingot with a microstructure that facilitates further working, such as hot and cold rolling. The metal is cast in a direct chill casting mold, or the equivalent, that directs a spray of coolant liquid onto the outer surface of the ingot to achieve rapid cooling. The coolant is removed from the surface at a location where the emerging embryonic ingot is still not completely solid, such that the latent heat of solidification and the sensible heat of the molten core raises the temperature of the adjacent solid shell to a convergence temperature that is above a transition temperature for in-situ homogenization of the metal. A further conventional homogenization step is then not required. The invention also relates to the heat-treatment of such ingots prior to hot working.
    Type: Application
    Filed: February 27, 2009
    Publication date: July 2, 2009
    Inventors: Robert Bruce Wagstaff, Wayne J. Fenton
  • Publication number: 20080283163
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended.
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana Denzer, Jen Lin, John Newman, Greg Venema, Cagatay Yanar
  • Patent number: 7425765
    Abstract: A high melting point solder alloy superior in oxidation resistance, in particular a solder alloy provided with both a high oxidation resistance and high melting point suitable for filling fine through holes of tens of microns in diameter and high aspect ratios and forming through hole filling materials, comprising a zinc-aluminum solder alloy containing 0.001 wt % to 1 wt % of aluminum and the balance of zinc and unavoidable impurities.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: September 16, 2008
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Tadaaki Shono, Ryoji Matsuyama
  • Publication number: 20080000561
    Abstract: A cast aluminum alloy excellent in the relaxation resistance property, comprising 9 to 17% by mass of Si, 3 to 6% by mass of Cu, 0.2 to 1.2% by mass of Mg, 0.2 to 1.5% by mass of Fe, 0.1 to 1% by mass of Mn, a balance consists of Al and unavoidable impurities, wherein a Ni content is not more than 0.5% by mass. The average hardness is adjusted to HV130 to HV160 by performing, after casting, solution heating by retaining the alloy at a treatment temperature of 450 to 510° C. for 0.5 hour or longer, performing water quenching and, thereafter, performing aging treatment by retaining the alloy at a treatment temperature of 170 to 230° C. for 1 to 24 hours.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 3, 2008
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hajime IKUNO, Akira Yamada, Hiroshi Hohjo, Hiroshi Kawahara, Shoji Hotta, Isamu Ueda
  • Patent number: 7214281
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: May 8, 2007
    Assignee: Universal Alloy Corporation
    Inventors: Iulian Gheorghe, Dean C. Malejan, Rene Mächler
  • Patent number: 7048815
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 23, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Patent number: 7018489
    Abstract: A method of artificially aging an aluminum alloy product to achieve a property in the product having the steps of aging the product to achieve the property by heating the product over an aging period, the aging period including a time period where the product is in an underaged state, and terminating the heating when the property is achieved according to a mathematical formula. The property is calculated as a function of time and product temperature measured over the aging period. Calculation of the property includes integration of the thermal effects on the product over the entire aging period including during the time period of underaged product state.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 28, 2006
    Assignee: Alcoa Inc.
    Inventors: William D. Bennon, Vivek M. Sample, Dhruba J. Chakrabarti
  • Publication number: 20040089382
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Patent number: 6669792
    Abstract: A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0 Copper (Cu) 5.5-8.0 Iron (Fe)   0-0.8 Magnesium (Mg) 0.5-1.5 Nickel (Ni) 0.05-1.2  Manganese (Mn)   0-1.0 Titanium (Ti) 0.05-1.2  Zirconium (Zr) 0.12-1.2  Vanadium (V) 0.05-1.2  Zinc (Zn)   0-0.9 Phosphorus (P) 0.001-0.1  Aluminum balance In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400° F. to 500° F. for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 30, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Publication number: 20030213537
    Abstract: A process for thermally treating an article made from an aluminum alloy. The process comprises providing the aluminum alloy that consists essentially of from about 5.7 to about 6.7 wt. % of zinc, less than 2.2 wt. % copper, less than 4.2 wt. % of the total weight percent of magnesium and copper combined, and less than 10.60 wt. % of the total weight percent of magnesium, copper and zinc combined, the balance being substantially aluminum, incidental elements and impurities. The article is artificially aged at a first temperature. The article is heated to a second temperature, wherein the second temperature is higher than the first temperature. The article is artificially aged at the second temperature of from about 290 to about 360° F. for a duration of at least 6 hours. The article is cooled from the second temperature to 200° F. at a cooling rate of from about 20 to about 40° F./hour.
    Type: Application
    Filed: March 6, 2003
    Publication date: November 20, 2003
    Inventor: Alex Cho
  • Patent number: 6569271
    Abstract: A process for thermally treating an article made from an aluminum alloy. The process comprises providing the aluminum alloy that consists essentially of from about 5.7 to about 6.7 wt. % of zinc, less than 2.2 wt. % copper, less than 4.2 wt. % of the total weight percent of magnesium and copper combined, and less than 10.60 wt. % of the total weight percent of magnesium, copper and zinc combined, the balance being substantially aluminum, incidental elements and impurities. The article is artificially aged at a first temperature. The article is heated to a second temperature, wherein the second temperature is higher than the first temperature. The article is artificially aged at the second temperature of from about 290 to about 360° F. for a duration of at least 6 hours. The article is cooled from the second temperature to 200° F. at a cooling rate of from about 20 to about 40° F./hour.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Pechiney Rolled Products, LLC.
    Inventor: Alex Cho
  • Patent number: 6565684
    Abstract: A process for manufacturing a hollow pressure vessel, in which a billet is cast from an alloy with a composition in % by weight, Zn=6.25-8.0, Mg=1.2-2.2, Cu=1.7-2.8, Fe<0.20, Fe+Si<0.40, at least one of the elements selected from the group consisting of Cr, Zr, V, Hf and Sc in an amount of 0.05-0.3, and other elements <0.05 each and <0.15 total. The cast billet is homogenized with a temperature profile such that metal temperature is slightly less than incipient melting temperature at all times, cooled to ambient temperature and softening annealed for a duration of 20 to 40 h between 200 and 400° C. with cooling at a rate of less than 50° C./h down to a temperature of below 100° C., resulting in a billet hardness <54 HB. A slug is cut out of the softened billet, cold or slightly warm extruded with an extrusion start temperature <300° C.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: May 20, 2003
    Assignee: Societe Metallurgique de Gerzat
    Inventors: Christophe Sigli, Pierre Sainfort
  • Patent number: 6528183
    Abstract: Clad sheet made up of a core sheet and a cladding layer on one or two core sheet surfaces. The core sheet is formed of an alloy having the composition (% by weight) Si: 0.7-1.3, Mg: 0.6-1.2, Cu: 0.5-1.1, Mn: 0.15-1.0, Zn<0.5, Fe<0.5, Zr<0.2, Cr<0.25, other elements <0.05 each and <0.15 total, the remainder aluminum. The cladding is formed of an AlZn alloy having a thickness of between 1 and 15% of the clad sheet thickness, having the composition (% by weight) Zn: 0.25-0.7, Fe<0.40, Si<0.40, Cu, Mn, Mg, V or Ti <0.10, other elements <0.05 each and 0.15 total.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: March 4, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Bernard Bes, Philippe Lassince, Herve Ribes
  • Patent number: 6524410
    Abstract: The present invention relates to a method for fabricating lightweight alloy feedstock for welded structures. Specifically, the method for producing the tubular stock proposed in the present invention enables a bicycle manufacturer to readily weld a lightweight yet high strength bicycle frame. The properties attained in the final product allow the bicycle manufacturer to reduce the overall weight of the bicycle without sacrificing durability.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: February 25, 2003
    Assignee: Tri-Kor Alloys, LLC
    Inventors: Lawrence Stevenson Kramer, William Troy Tack
  • Publication number: 20020162609
    Abstract: The purpose of the invention is a process for the manufacture of a work-hardened product made of a high mechanical strength Al—Zn—Mg—Cu aluminium alloy consisting of:
    Type: Application
    Filed: February 6, 2002
    Publication date: November 7, 2002
    Inventor: Timothy Warner
  • Publication number: 20020157742
    Abstract: A process for thermally treating an article made from an aluminum alloy. The process comprises providing the aluminum alloy that consists essentially of from about 5.7 to about 6.7 wt. % of zinc, less than 2.2 wt. % copper, less than 4.2 wt. % of the total weight percent of magnesium and copper combined, and less than 10.60 wt. % of the total weight percent of magnesium, copper and zinc combined, the balance being substantially aluminum, incidental elements and impurities. The article is artificially aged at a first temperature. The article is heated to a second temperature, wherein the second temperature is higher than the first temperature. The article is artificially aged at the second temperature of from about 290 to about 360° F. for a duration of at least 6 hours. The article is cooled from the second temperature to 200° F. at a cooling rate of from about 20 to about 40° F./hour.
    Type: Application
    Filed: February 28, 2001
    Publication date: October 31, 2002
    Inventor: Alex Cho
  • Patent number: 6302976
    Abstract: The disclosure relates to a method of coating a high-strength aluminum object with polymer and surface-treating it, for improved corrosion resistance. A polymer composition is coated onto the surface of the aluminum object and is sintered or melted fast, at the same time as solution treatment for precipitation hardening takes place. The polymer composition substantially comprises a fluorine-containing polymer, preferably PTFE. According to one preferred embodiment of the invention, the polymer coating is sintered or melted fast on the aluminum surface during a time period of approx. 15 minutes at approx. 420 degrees C. After solution treatment and simultaneous surface treatment at elevated temperature, the aluminum object is rapidly cooled to room temperature and precipitation hardened thereafter by means of artificial aging preferably at approx. 120-150 degrees C. for approx. 24 hours.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: October 16, 2001
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventor: Esko Heinonen-Person
  • Patent number: 6258463
    Abstract: The invention relates to a process for producing anodic coatings with superior corrosion resistance and other properties on aluminum and aluminum alloy surfaces by cryogenically treating the aluminum prior to anodizing. The invention also relates to the anodic coatings and to the anodically coated articles produced by the process. The anodized coating has a thickness of 0.001 to 0.5 mm and a time to penetration of at least 5 hours for aqueous solutions of HCl.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: July 10, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: Michael Kevin Corridan
  • Patent number: 5954897
    Abstract: A die-casting aluminum base alloy consisting of, by weight %,Zn:10.about.25%, Si:6.about.10%,Cu:0.5.about.3.0%, Mn:0.1.about.0.5%,Mg:0.02.about.0.08%, Fe:less than 1.3%,and the rest of Al and unavoidable impurity.This alloy can be heat treated at low temperature from 260.degree. C. to 450.degree. C., at which steel parts inserted in this alloy will not deteriorate.This alloy has excellent mechanical strength, stress corrosion cracking resistance and wear resistance, and can be used for ball joints apparatus such as a stabilizer conrod for automobile.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: September 21, 1999
    Assignee: Nisso Metalochemical Co., Ltd.
    Inventors: Minoru Ohtake, Yutaka Fujiwara
  • Patent number: 5865911
    Abstract: Rolled plate products up to 6 inches thick or more and other products in an aluminum alloy consisting essentially of about 5.2 to 6.8% zinc, 1.7 to 2.4% copper, 1.6 to 2% magnesium, 0.03 to 0.3% zirconium, balance substantially aluminum and incidental elements and impurities, are useful in making structural members for commercial airplanes especially by machining or shaping such members from the plate. Such members include lower wing skins and wing spars and other members. The plate is made by operations comprising homogenization, hot rolling, solution heat treatment, stretching and artificial aging. Alternatively, the plate is shaped after stretching, which may include machining, and is then artificially aged.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: February 2, 1999
    Assignee: Aluminum Company of America
    Inventors: Shelly M. Miyasato, Gary H. Bray, John Liu, James T. Staley
  • Patent number: 5858134
    Abstract: The invention concerns a process for the production of rolled or extruded products of high strength AlSiMgCu aluminium alloy with good intergranular corrosion resistance, comprising the following steps:casting a plate or billet with the following composition (by weight):Si: 0.7-1.3%Mg: 0.6-1.1%Cu: 0.5-1.1%Mn: 0.3-0.8%Zr: <0.20%Fe: <0.30%Zn: <1%Ag: <1%Cr: <0.25%other elements: <0.05% each and <0.15% in total remainder: aluminium; with: Mg/Si<1homogenising in the range 470.degree. C. to 570.degree. C.;hot working, and optionally cold working;solution heat treating in the range 540.degree. C. to 570.degree. C.;quenching;annealing, comprising at least one temperature plateau in the range 150.degree. C. to 250.degree. C., preferably in the range 165.degree. C. to 220.degree. C., the total period measured as the equivalent time at 175.degree. C. being in the range 30 h to 300 h.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: January 12, 1999
    Assignee: Pechiney Rhenalu
    Inventors: Denis Bechet, Timothy Warner
  • Patent number: 5810952
    Abstract: A process for making an essentially lead-free screw machine stock alloy, comprising the steps of providing a cast aluminum ingot having a composition consisting essentially of about 0.55 to 0.70 wt. % silicon, about 0.15 to 0.45 wt. % iron, about 0.30 to 0.40 wt. % copper, about 0.8 to 0.15 wt. % manganese, about 0.80 to 1.10 wt. % magnesium, about 0.08 to 0.14 wt. % chromium, nor more than about 0.25 wt. % zinc, about 0.007 to 0.07 wt. % titanium, about 0.20 to 0.8 wt. % bismuth, about 0.15 to 0.25 wt. % tin, balance aluminum and unavoidable impurities; homogenizing the alloy at a temperature ranging from about 900.degree. to 1060.degree. F. for a time period of at least 1 hour; cooling to room temperature; cutting the ingot into billets; heating and extruding the billets into a desired shape; and thermomechanically treating the extruded alloy shape.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: September 22, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Larry E. Farrar, Jr., Norman LeRoy Coats, II