To Remove Gas From Between Assembled Laminae Patents (Class 156/286)
  • Patent number: 9314976
    Abstract: Systems and methods for compacting a charge of composite material. These systems and methods may utilize a vacuum compaction device to compact the charge of composite material on a supporting surface. The vacuum compaction device may be reusable and may be configured to define an enclosed volume when positioned on the supporting surface and may include a barrier structure and a sealing structure that is configured to form a fluid seal when compressed between the supporting surface and the barrier structure. The vacuum compaction device also may include a vacuum distribution manifold that is in fluid communication with and configured to selectively apply a vacuum to the enclosed volume. Application of the vacuum to the enclosed volume may decrease a pressure within the enclosed volume and transition the vacuum compaction device from an undeformed configuration to a deformed configuration, thereby compacting the charge of composite material on the supporting surface.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 19, 2016
    Assignee: The Boeing Company
    Inventors: Brian Gregory Robins, Daniel M. Rotter, Kieran P. Davis, Mark E. King
  • Patent number: 9221201
    Abstract: A reinforced fiber base material is placed on a forming die having a concave part and fixed to the forming die by at least a pair of fixing members disposed on either side of the concave part so as to form a gap between the reinforced fiber base material and a bottom surface of the concave part of the forming die. Subsequently, the reinforced fiber base material fixed to the forming die is covered by a bag film, a forming space that is formed between the forming die and the bag film is decompressed, and a matrix resin is allowed to flow inside the decompressed forming space. The matrix resin is then hardened so as to obtain a composite material in which the reinforced fiber base material and the matrix resin are integrally formed.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 29, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takeshi Fujita, Kentaro Shindo, Nozomu Kawasetsu
  • Patent number: 9138976
    Abstract: A method for obtaining a composite material part from a preform of layers of fibers pre-impregnated with resin stacked on top of one another on a tool, the preform being delimited by a lower surface, an upper surface, and a peripheral flank. The method includes attaching to the tool, after the last layer has been laid, a peripheral part comprising a wing adapted to cover the peripheral edge of the upper surface, so as to create, in the periphery of the preform, a peripheral cavity adjacent to the flank of the preform and, before the polymerization phase, to withdraw the gas present in the peripheral cavity so as to tension filaments of the preform by exerting a traction force at the ends of the filaments.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 22, 2015
    Assignee: Airbus Operations SAS
    Inventor: Denis De Mattia
  • Patent number: 9034128
    Abstract: A method and apparatus are used to fit a metallic or composite doubler on an uneven surface. A three dimensional digital map of the gap between the doubler and the uneven surface is generated by digitally scanning the uneven surface. The digital map is then used to fabricate a stack of adhesive plies tailored to substantially fill the gap between the doubler and the uneven surface.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: May 19, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Scott W. Lea, Gary E. Georgeson, Michael D. Fogarty, Michael W. Evens, Jeffrey M. Hansen
  • Patent number: 9034137
    Abstract: A method for fabricating a repair laminate for a composite part having an exposed surface includes applying a bonding material to the exposed surface and forming an uncured ply stack assembly on the bonding material. The uncured ply stack assembly is formed by forming and compacting a series of uncured ply stacks. The ply stack assembly and bonding material are then cured.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 19, 2015
    Assignee: Textron Innovations Inc.
    Inventors: Denver R. Whitworth, Vance N. Cribb, Dumitru R. Jitariu
  • Patent number: 9023176
    Abstract: An apparatus for laminating a fabric material to a part broadly comprises a cutting element, a heating system, a vertical pressure unit, and a compaction roller assembly. The cutting element may cut scrap material from the sides of the fabric material. The heating system may heat the fabric material after the material exits the vacuum conveyor assembly. The vertical pressure unit may apply a downward force on the compaction roller assembly, which may receive the fabric material and press the fabric material against a surface of the part. The compaction roller assembly may include a roller operable to have a variable curvature along its longitudinal axis and an actuating device operable to apply a variable torque to opposing ends of the roller to vary the curvature of the roller.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 5, 2015
    Assignee: Spirit AeroSystems, Inc.
    Inventors: C. Timothy Harbaugh, Patrick William Daley, Teddy Lee Kellums, W. Robert Nelson
  • Patent number: 9023163
    Abstract: A method for laminating essentially plate-shaped work pieces with a thermally activated adhesive layer, particularly photovoltaic modules. Work pieces are inserted into a vacuum chamber having a compression element dividing the vacuum chamber in a gas tight fashion that can be raised and lowered by pressure differences. The compression element presses against the work piece which in turn presses against a heating plate which forms a lower side of the vacuum chamber, with processing heat being transferred into the work piece to soften the adhesive. The work piece is first impinged by the compression element with a slight load from approx. 2% to 10% of the defined processing load, and is simultaneously kept below the adhesive activation temperature. Thereafter, the slight load is lifted off the work piece and the work piece is heated to the activation temperature and impinged via the compression element with the processing load.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 5, 2015
    Assignee: Robert Bürkle GmbH
    Inventor: Norbert Damm
  • Publication number: 20150118434
    Abstract: A vacuum insulated panel includes a fiberglass insulation blanket and a barrier layer. The barrier layer is sealed around the fiberglass insulation blanket. Gas inside the barrier layer is evacuated such that the fiberglass insulation blanket is compressed.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Inventors: Venkata S. Nagarajan, William J. Grieco
  • Patent number: 9017510
    Abstract: An airfoil is fabricated by assembling cured skins with spars having cured spar webs and uncured spar chords. The skins are bonded to the spars by curing the spar chords.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: April 28, 2015
    Assignee: The Boeing Company
    Inventor: Martin Wayne Hansen
  • Patent number: 9011618
    Abstract: A method for adhesive application in vehicle construction during joining of joining partners which are subject to tolerances comprises the following steps: detecting the geometric data of the joining partners in an automated manner, detecting the joint gap dimensions of the joining partners from the detected geometric data, joining the joining partners in the joining position thereof, and applying the adhesive in the joint gap.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Dirk Niermann, Holger Frauen
  • Patent number: 9005381
    Abstract: A method of molding a wind turbine blade in a mold is provided. The method includes applying a film to an inside surface of a mold, assembling component layers for the wind turbine blade on the film, performing curing to harden the component layers, and subsequently removing the cured wind turbine blade from the mold. Also provided is a film suitable for use in a wind turbine blade molding process and a mold suitable for molding a wind turbine blade.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 14, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Karsten Schibsbye
  • Patent number: 9005390
    Abstract: A room temperature bonding apparatus includes angle adjustment means supporting a first sample stage holding a first substrate so as to be able to change a direction of the first sample stage; a first driving device driving the first stage in a first direction; a second driving device driving a second sample stage holding a second substrate in a second direction not parallel to the first direction; and a carriage support table supporting the second sample stage in the first direction when the second substrate and the first substrate are brought into contact. The apparatus can impose a load exceeding a withstand load of the second driving device on the first and second substrates. Further, the apparatus uses angle adjustment means to change direction of the first substrate to be parallel with the second substrate and uniformly impose the larger load on a bonding surface.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takeshi Tsuno, Takayuki Goto, Masato Kinouchi, Satoshi Tawara, Jun Utsumi, Yoichiro Tsumura, Kensuke Ide, Takenori Suzuki
  • Patent number: 9005389
    Abstract: The invention relates to a method and a device for a bubble-free bonding of large-surface glass panes in an automatic production process. An embodiment of the device comprises: a) a pivoting bench plate having a securing device for receiving a glass pane, b) a barrier material application head having a camera for monitoring, at least one ventilation element being mounted by a mounting head, c) an adhesive metering and application head having a process control sensor for the application of adhesive, d) a gripping device having a covering plate gripper for receiving a covering plate, and e) a vacuum suction device and a closing device for the ventilation system.
    Type: Grant
    Filed: October 31, 2010
    Date of Patent: April 14, 2015
    Assignee: Grenzebach Maschinenbau GmbH
    Inventor: Wolfgang Ritzka
  • Patent number: 8999099
    Abstract: A substrate attachment system, including a portable chamber for receiving a pair of substrates which are aligned; a conveyor transportation device which continuously moves the portable chamber and to which a vacuum generator that is connected to a vacuum port of the portable chamber to evacuate the inside of the portable chamber is provided; and a heating device for performing a heating process in which the aligned substrates are attached to each other in the portable chamber, wherein the conveyor transportation device is arranged to pass through the heating device. The substrate attachment system may contribute to high attachment accuracy, and also, since the size of a chamber is reduced, a spatial utilization rate may be high, and also, since an attachment process is continuously performed by using a conveyor transportation device, a process time may be reduced.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: April 7, 2015
    Assignee: Ltrin. Co., Ltd.
    Inventors: Yong-Won Cha, Sang Wook Yoo, Gun-Woo Park, Seung-Hee Jung
  • Patent number: 8999100
    Abstract: The invention relates to a method for applying a label to an article travelling along an article path, said label being received on a movable surface at an input location to be retained against said surface whilst being glued and advanced to an output location, at which the label is transferred to the article; the article being rotated with a tangential speed about an axis whilst travelling at a speed along the path including providing at least three portions of surface with independent and controllable vacuum means for retaining the label, including curtailing the application of vacuum means at the first portion of the surface upon the first portion reaching the output location and interrupting the application of vacuum means at the third portion of the surface, with the trailing edge of the label being retained at the second portion of the surface.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: April 7, 2015
    Assignee: SIDEL S.p.A. con Socio Unico
    Inventor: James Carmichael
  • Patent number: 8992715
    Abstract: An embodiment of the present invention provides a method for manufacturing a composite preform from tape material, including feeding a tape section into a tape section guide that suspends the tape across a tooling surface, moving at least one of the tape section guide and the tooling surface relative to each other to position the tape section at a desired location and orientation relative to the tooling surface, moving the tape section toward a pre-existing tape section disposed on the tooling surface, and tacking the tape section to the pre-existing tape section. A corresponding apparatus for manufacturing composite preforms is also disclosed.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 31, 2015
    Assignee: Dieffenbacher GmbH Maschinen-und Anlagenbau
    Inventors: David R. Cramer, Neal J. Beidleman, Colin R. Chapman, Don O. Evans, Michael K. Passmore, Michael L. Skinner
  • Patent number: 8993079
    Abstract: An insulated container includes a first laminated structure having a metal layer and a second laminated structure having a metal layer. The metal layer of the first laminated structure faces the metal layer of the second laminated structure. The insulated container also includes a foam material layer disposed between the first laminated structure and the second laminated structure. The metal layer of the first laminated structure is bonded to the metal layer of the second laminated structure at a plurality of locations.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: March 31, 2015
    Inventor: Alice K. Duong
  • Patent number: 8986479
    Abstract: An in-situ double vacuum debulk (DVD) composite repair system designed to produce partially or fully cured autoclave-quality hot-bond composite repairs on contoured structures. The system provides vacuum pressure for hot bond repairs to be performed on flat and contoured structures using one set-up capable of debulking (partially curing) and then fully curing composite repairs on composite and metallic aircraft structures. The use of in-situ DVD also eliminates handling of the patch/adhesive when transferring from an off-aircraft DVD chamber to the repair site on the aircraft. This can increase the probability of successful repairs because the possibility of contaminating and misaligning the adhesive and repair patch are eliminated.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 24, 2015
    Assignee: The Boeing Company
    Inventors: Michael W. Evens, Karl Edward Nelson, John F. Spalding, Jr., James D. Chanes, Joel P. Baldwin, Paul S. Rutherford
  • Patent number: 8986490
    Abstract: A method of manufacturing a component having first and second layers, the first and/or second layers including one or more depressions provided on a surface of the respective layer. The method including: arranging the first and second layers so that they face one another and with the depressions on inner facing surfaces of the layers; diffusion bonding the first and second layers together about their edges; applying a first differential pressure across each of the first and second layers to evacuate an inner space defined by the layers, thereby forming one or more depressions on an outer facing surface of the first or second layer; and applying a second differential pressure across each of the first and second layers to expand the inner space defined by the layers.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 24, 2015
    Assignee: Rolls-Royce PLC
    Inventor: Oliver M. Strother
  • Publication number: 20150075713
    Abstract: A method for applying fibre material on a vertical surface is provided. The method has the following steps: spraying an adhesive on the vertical surface; applying the fibre material on the sprayed surface; spraying additional adhesive on the fibre material for another layer of fibre material; applying another layer of fibre material on the sprayed fibre material; and injecting the layers of fibre material with a resin.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventor: Kristian Lehmann Madsen
  • Patent number: 8974623
    Abstract: Disclosed is a method for placing fiber-reinforced, pre-impregnated, planar semi-finished products on a placement tool for the manufacture of a non-crimp fabric, wherein a placement film is clamped on the placement tool for purposes of holding the non-crimp fabric, and by means of evacuation and/or the application of pressure is fixed in position on the placement tool and/or can be released from the latter. Also disclosed is a placement tool for the execution of such a method.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: March 10, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Thomas Lemckau, Sönke Harders, Sophie Kerchnawe
  • Patent number: 8974624
    Abstract: A label applicator that includes an applicator housing having a flow chamber and a suction side. The suction side has one or more openings that allow air to pass therethrough. The label applicator also includes first and second air flow generators that are fluidly coupled with the flow chamber. The first and second air flow generators are configured to generate first and second air flows, respectively, through the flow chamber. The label applicator also includes a valve mechanism that is positioned in the flow chamber to direct the first and second air flows through the flow chamber of the applicator housing. The valve mechanism includes a diverter valve and an electric actuator. The actuator is configured to move the diverter valve within the flow chamber to different positions during a label application operation.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 10, 2015
    Assignee: Illinois Tool Works Inc.
    Inventor: Robert W. Bixen
  • Patent number: 8968500
    Abstract: A method for joining, by adhesive bonding, at least two large joining partners in vehicle construction, in particular in aircraft construction, comprises the following steps: detecting the geometric data of the joining partners in an automated manner, detecting the joint gap dimensions of the joining partners from the geometric data, applying adhesive to one or both joint faces of the two joining partners to be joined as a function of the joint gap dimensions, joining the joining partners in the joining position, and sequentially applying joining pressure to the joint faces along the joint gap to bring the joining partners into the final joining position.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Dirk Niermann, Holger Frauen
  • Patent number: 8961724
    Abstract: A structural panel includes a closed-cell foam core formed of a metallic material; a first carbon-fiber panel bonded to a first side of the closed-cell foam core; and a second carbon-fiber panel bonded to a second side of the closed-cell foam core such that the foam core is disposed between the first carbon-fiber panel and the second carbon-fiber panel.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Joseph M. Polewarczyk, Paul E. Krajewski
  • Patent number: 8961732
    Abstract: A bow wave in a composite laminate generated during part consolidation is reduced by transmitting atmospheric pressure loads to a region of the part having low compaction pressure due to bridging of a vacuum bag at an edge of the part.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: February 24, 2015
    Assignee: The Boeing Company
    Inventors: Thomas J. Kennedy, David A. Fucci
  • Publication number: 20150047693
    Abstract: An electricity-generating coating for commercial aircraft window surfaces and methods for fabricating organic photovoltaic-based electricity-generating aircraft fuselage surfaces are provided. The coating includes a conformal organic photovoltaic device having one or more cells connected in series and/or parallel, adhered to an aircraft window surface, along with wires and power electronics such that the coating provides electricity for mission-critical systems and/or maintenance loads on-board the aircraft.
    Type: Application
    Filed: June 27, 2014
    Publication date: February 19, 2015
    Applicant: NEW ENERGY TECHNOLOGIES, INC.
    Inventors: John Anthony CONKLIN, Scott Ryan HAMMOND
  • Publication number: 20150047692
    Abstract: A variety of methods for fabricating organic photovoltaic-based electricity-generating military aircraft windows are described. In particular, a method for fabricating curved electricity-generating military aircraft windows utilizing lamination of highly flexible organic photovoltaic films is described. High-throughput and low-cost fabrication options also allow for economical production.
    Type: Application
    Filed: June 27, 2014
    Publication date: February 19, 2015
    Applicant: NEW ENERGY TECHNOLOGIES, INC.
    Inventors: John Anthony CONKLIN, Scott Ryan HAMMOND
  • Patent number: 8956495
    Abstract: A method of manufacturing “T” shaped stringers for an aircraft whereby the “T” shaped stringers have a stringer web and a stringer foot, the method comprising: a first step of hot-forming a carbon fiber laminate in order to achieve semi-stringers with an “L” shaped cross-section, a second step of placing together two hot-formed “L” shaped semi-stringers in order to form a “T” shaped stringer, a third step of co-bonding the resulting “T” shaped stringer on a cured skin with an adhesive line between them, and a fourth step of curing the obtained “T” shaped stringer inside a vacuum bag using invar alloy angles as curing tools. The invar alloy angles are cut at a radius area eliminating a part of the invar alloy angles covering the stringer foot in order to define an invar alloy piece having no foot.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 17, 2015
    Assignee: Airbus Operations, S.L.
    Inventors: Augusto Pérez Pastor, Julián Sánchez Fernández, Fernando Esquivias Garía
  • Patent number: 8945321
    Abstract: An area of a structure is reworked using resin infusion of a fiber preform. A resin flow hole is formed through the structure from a first side of the structure to a second side of the structure. The fiber preform is placed on the first side of the structure and substantially saturated with resin by flowing resin into the preform and out through the resin flow hole to the second side of the structure.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Dennis James Hanks, Jack Allen Woods, Gregory Robert Gleason
  • Patent number: 8936694
    Abstract: The disclosure provides in one embodiment a method of applying a high temperature hybridized molecular functional group adhesion barrier coating to a surface of a structure. The method includes providing a structure having at least one surface to be bonded, preparing the at least one surface to expose active reactive surface sites, providing one or more liquid or solid phase chemical derivatization compounds, applying heat to the one or more liquid or solid phase chemical derivatization compounds to vaporize the one or more liquid or solid chemical derivatization compounds, depositing the one or more vaporized chemical derivatization compounds on the prepared surface to form a derivatized composite surface having hybridized molecular functional groups, and heat curing the derivatized composite surface to form a high temperature hybridized molecular functional group adhesion barrier coating.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 20, 2015
    Assignee: The Boeing Company
    Inventors: Eugene A. Dan-Jumbo, Joel P. Baldwin
  • Patent number: 8936057
    Abstract: The present disclosure is directed to a substrate lamination system and method. A substrate lamination apparatus may comprise: (a) a vacuum chamber; (b) a flexible membrane; and (c) a substrate support. A system for laminating substrates may comprise: (a) a vacuum chamber; (b) a flexible membrane; (c) a substrate support; (d) a vacuum pump; (e) a compressor; and (f) a control unit, wherein the control unit is configured to carry out the steps: (i) evacuating the vacuum chamber; and (ii) applying pressure to at least one of a first substrate and a second substrate.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: January 20, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: James D. Sampica, Paul R. Nemeth, Tracy J. Barnidge, Vincent P. Marzen
  • Patent number: 8936695
    Abstract: A composite layup is formed on a tool and placed on a contoured part. The tool is contoured to substantially match the contour of the part. A set of location data is generated which represents the location of the part in space relative to the tool. An automated manipulator uses the location data to move the tool into proximity to the part and place the contoured layup on the part.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 20, 2015
    Assignee: The Boeing Company
    Inventors: Daniel M. Rotter, Kurtis S. Willden, William S. Hollensteiner, Brian G. Robins
  • Patent number: 8931535
    Abstract: An attaching method for attaching a support plate to a surface of a substrate with an adhesive involves the steps of applying an adhesive to the surface of the substrate, heating and thereafter cooling the substrate, positioning centers of the substrate and the supporting plate to coincide with each other, and forming a layered structure by pushing the supporting plate onto the substrate with the adhesive therebetween in a pressure-reduced atmosphere. In the positioning step, after the supporting late has been placed on the substrate, it is possible to finely adjust the alignment of the supporting plate and a semiconductor wafer when attached because the adhesive is applied to the surface of the substrate, and thereafter the substrate is heated and cooled.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: January 13, 2015
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Akihiko Nakamura, Atsushi Miyanari, Yoshihiro Inao
  • Patent number: 8932427
    Abstract: It comprises applying a mould release agent on a compaction tool (1), carrying out its curing and applying a layer with adhesive properties (2) on the mould release agent. It is characterized in that it also comprises extending an aerator blanket (4) along the layer (2) with dimensions larger than the adhesive layer (2), extending a membrane with resilient properties (5) on the entire surface of the tool (1) by applying vacuum to the membrane (5) for compacting the adhesive layer. This method reduces the number of stages required to perform the compaction and avoids the generation of waste materials thus reducing the cost of the process.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: January 13, 2015
    Assignee: Airbus Operations, S.L.
    Inventors: Gerardo Gonzalez Fernandez, Victor Sanchez Montes
  • Patent number: 8926784
    Abstract: A resin laminate manufacturing method includes providing a pair of split mold blocks one of which has a cavity provided with a plurality of protrusions extending toward the other mold block, preparing two molten thermoplastic resin sheets each having an adjusted thickness, feeding the two molten thermoplastic resin sheets between the pair of split mold blocks with a predetermined gap left therebetween, forming a hermetic space between one of the sheets and the cavity of the one mold block opposed to an outer surface of the one sheet, sucking air in the hermetic space from the side of the one mold block, pressing the outer surface of the one sheet against the cavity of the one mold block to shape the one sheet, forming cup-shaped portions, and clamping the pair of mold blocks.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 6, 2015
    Assignee: Kyoraku Co., Ltd.
    Inventors: Takehiko Sumi, Yoshitaka Matsubara
  • Patent number: 8926778
    Abstract: A manufacturing apparatus for an organic light emitting diode (OLED) display includes a stage mounted with an organic light emitting display panel and a supporting substrate of the organic light emitting display panel, a porous sheet attachable to and detachable from a thin film encapsulation layer of the organic light emitting display panel, and a porous sheet attaching/detaching apparatus configured to be separable from the organic light emitting display panel and to attach and detach the porous sheet to and from the thin film encapsulation layer of the organic light emitting display panel. The porous sheet attaching/detaching apparatus is configured to remove an attaching/detaching gas from between the porous sheet and the thin film encapsulation layer to attach the porous sheet to the thin film encapsulation layer.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jun Namkung
  • Publication number: 20140374018
    Abstract: A prepreg for manufacturing a fibre-reinforced composite material, the prepreg comprising a body comprising a layer of fibrous reinforcement impregnated with a matrix resin material, and a powder coating layer of resin material on at least one major surface of the body and adhered to the matrix resin material
    Type: Application
    Filed: January 17, 2013
    Publication date: December 25, 2014
    Inventors: Benjamin Edward Creaser, Paul John Spencer
  • Patent number: 8916017
    Abstract: A contoured glass sheet laminating system may include a glass-side vacuum bed, a laminate-side vacuum bed and a lamination actuator. The glass-side vacuum bed may include a vacuum backside and a mold-receiving side and may have sufficient permeability to permit a vacuum system to pull a vacuum across a thickness of the glass-side vacuum bed between the vacuum backside and the mold-receiving side of the glass-side vacuum bed. The laminate-side vacuum bed may include a vacuum backside and a thin-film loading side and may have sufficient permeability to permit a vacuum system to pull a vacuum across a thickness of the laminate-side vacuum bed between the vacuum backside and the thin-film loading side of the of the laminate-side vacuum bed.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 23, 2014
    Assignee: Corning Incorporated
    Inventors: Govindarajan Natarajan, Nathaniel David Wetmore
  • Patent number: 8916018
    Abstract: An apparatus for fabricating an organic light emitting display panel is disclosed. In one embodiment, the apparatus includes i) a first roll around which a film is wound to be continuously drawn, ii) a second roll arranged to face the first roll and around which the film is continuously wound, iii) a plurality of chambers disposed between the first and second rolls and through which the film passes, and in which laser induced thermal imaging (LITI) is performed on a substrate by forming a transfer layer on the film, and iv) a gate unit installed at least one of the chambers and disposed at at least one of a film inlet and a film output of the chambers that are installed, to maintain a substantially vacuum state in the chambers during passing of the film.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co. Ltd.
    Inventors: Byung-Chul Lee, Jae-Seok Park, Jae-Ha Lim, Jin-Han Park, Dong-Sul Kim
  • Publication number: 20140367039
    Abstract: Systems and methods for compacting a charge of composite material. These systems and methods may utilize a vacuum compaction device to compact the charge of composite material on a supporting surface. The vacuum compaction device may be reusable and may be configured to define an enclosed volume when positioned on the supporting surface and may include a barrier structure and a sealing structure that is configured to form a fluid seal when compressed between the supporting surface and the barrier structure. The vacuum compaction device also may include a vacuum distribution manifold that is in fluid communication with and configured to selectively apply a vacuum to the enclosed volume. Application of the vacuum to the enclosed volume may decrease a pressure within the enclosed volume and transition the vacuum compaction device from an undeformed configuration to a deformed configuration, thereby compacting the charge of composite material on the supporting surface.
    Type: Application
    Filed: February 15, 2013
    Publication date: December 18, 2014
    Applicant: The Boeing Company
    Inventor: The Boeing Company
  • Patent number: 8911585
    Abstract: A device and a method for manufacturing a fiber-reinforced fuselage shell for an aircraft, which fuselage shell for the purpose of reinforcement comprises several stringers that are spaced apart from each other, wherein the device includes a base frame comprising several supporting walls of different lengths for forming a curved mounting surface for the fuselage shell to be manufactured, wherein several actuators that extend radially outwards and that are longitudinally adjustable are affixed to the mounting surface, at the distal ends of which actuators in each case mold channels for receiving the stringers are attached, which mold channels are interconnected by means of flexible intermediate elements and/or further mold channels for forming a vacuum-tight closed mold surface.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 16, 2014
    Assignees: Airbus Operations GmbH, Premium Aerotec GmbH
    Inventors: Carsten Barlag, Christian Steiger, Niels Deschauer
  • Patent number: 8906175
    Abstract: A room temperature bonding apparatus according to the present invention is provided with a load lock chamber having an internal space which is pressure-reduced; and a cartridge arranged in the load lock chamber. The cartridge includes an island portion formed to contact a substrate when the substrate is put on the cartridge. A flow passage is formed for the island portion to connect a space between the cartridge and the substrate to outside when the substrate is put on the cartridge. Therefore, in the room temperature bonding apparatus can prevent making the substrate is moved to the cartridge due to gas when the internal space is pressure-reduced.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masato Kinouchi, Takayuki Goto, Satoshi Tawara, Takeshi Tsuno, Jun Utsumi, Kensuke Ide, Takenori Suzuki
  • Publication number: 20140353320
    Abstract: A method for producing a partly transparent body with a color gradient, include: providing a transparent first casing having a first joint surface on a protrusion and including an encased object; providing a second casing which is not completely transparent and which has a second joint surface in a recess. The shape of the protrusion and the shape of the recess correspond to each other; and combining the first casing and the second casing by inserting the protrusion into the recess and melting the first joint surface of the first casing with the second joint surface of the second casing. A pressure force and a temperature are applied to the first joint surface and the second joint surface such that the first joint surface of the first casing transitions into the second joint surface of the second casing in a visually seamless manner, followed by a removal of material.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 4, 2014
    Applicant: MONTBLANC-SIMPLO GMBH
    Inventors: Manfred Martens, Dietmar Podszuweit
  • Patent number: 8899291
    Abstract: A laminating apparatus is provided which causes a resin film to completely conform to protruding and recessed portions of a substrate, and which makes the film thickness of the conforming resin film uniform on a stricter level. To this end, the laminating apparatus includes a laminating mechanism including: an enclosed space forming receiver capable of receiving a provisionally laminated body therein; and a pressure laminator for applying pressure to the provisionally laminated body in non-contacting relationship in an enclosed space formed by the enclosed space forming receiver to form an end laminated body from the provisionally laminated body.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 2, 2014
    Assignees: Nichigo-Morton Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Ryoichi Yasumoto, Kazutoshi Iwata, Kinya Kodama, Grigoriy Basin
  • Patent number: 8894784
    Abstract: A method of processing a patch includes mounting the patch on a surface of a caul plate having at least one suction hole, and drawing a vacuum through the suction hole to maintain the patch in contact with the caul plate.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 25, 2014
    Assignee: The Boeing Company
    Inventors: Megan N. Watson, Mary H. Vargas, Joel P. Baldwin
  • Publication number: 20140311667
    Abstract: At least one puck is used to manufacture a vacuum insulated panel with a shaped opening. A pair of barrier films are positioned about an insulated core having a shaped opening such as a through bore, cutout, or relief. The puck includes a protrusion having a shape similar to that of the opening of the insulated core. With the barrier films positioned about the insulated core, the pucks are inserted into the opening from opposite sides of the insulated core to thereby compress the barrier films between the shaped protrusions of the pucks to thereby prevent wrinkles and/or creases in the barrier films. The insulated core is then subjected to a vacuum to evacuate the insulated core of any gases and the barrier films are heat sealed to maintain the insulated core in the evacuated state. Excess barrier film is then removed to provide a wrinkle and/or crease free seal.
    Type: Application
    Filed: February 12, 2014
    Publication date: October 23, 2014
    Inventors: Paul A. Siudzinski, Steven R. Eakins, Ross A. Moreland
  • Patent number: 8857487
    Abstract: A room temperature bonding apparatus includes: an angle adjustment mechanism that supports a first sample stage holding a first substrate to a first stage so as to be able to change a direction of the first sample stage; a first driving device that drives the first stage in a first direction; a second driving device that drives a second sample stage holding a second substrate in a second direction not parallel to the first direction; and a carriage support table that supports the second sample stage in the first direction when the second substrate and the first substrate are brought into press contact with each other. In this case, the room temperature bonding apparatus can impose a larger load exceeding a withstand load of the second driving device on the first substrate and the second substrate.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takeshi Tsuno, Takayuki Goto, Masato Kinouchi, Satoshi Tawara, Jun Utsumi, Yoichiro Tsumura, Kensuke Ide, Takenori Suzuki
  • Publication number: 20140299255
    Abstract: A method of attaching a composite member to a structure. The method including forming a laminate of fabric impregnated with resin; applying heat at a first temperature to the impregnated laminate; applying vacuum at a first pressure to the impregnated laminate to degas the resin and form a degassed, impregnated laminate; positioning the degassed, impregnated laminate on a structure; and curing the degassed, impregnated laminate on the substrate by applying heat at a second temperature and by applying vacuum at a second pressure.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 9, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Denver WHITWORTH, Anthony Bergerson, Michael Marvin
  • Patent number: 8851134
    Abstract: A vacuum device includes a main body and an adjustment assembly connected to the main body. The main body includes a frame, a loading member, and an elastic film. The loading member and the elastic film are arranged at opposite end surfaces of the frame. A chamber is cooperatively formed by the frame, the loading member, and the elastic film. The adjustment assembly adjusts the inner air pressure of the chamber. The loading member includes an absorption area connecting the chamber to outside the main body. The absorption area changes the air pressure inside the chamber. Also provided is a bonding apparatus using the vacuum device.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: October 7, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Dong-Sheng Lin, Tzyy-Chyi Tsai, Jian-Jun Li
  • Patent number: 8845844
    Abstract: A vacuum lamination system and a vacuum lamination method are provided in which, when a laminate film and laminate base items are laminated and an excessive portion of the laminate film is cut from the laminated item having the laminate film laminated thereon, a high precision lamination is enabled and the cutting process including a conveying device for cutting the excessive portion of the laminate film can be simplified. In the vacuum lamination system, a laminate film and laminate base items that are conveyed on the carrier film are laminated by the batch type vacuum laminating device, and the laminate film is cut from the laminated item having the laminate film laminated thereon.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 30, 2014
    Assignee: Kabushiki Kaisha Meiki Seisakusho
    Inventors: Koji Ishikawa, Tomoaki Hirose