Direct Application Of Vacuum Or Fluid Pressure During Bonding Patents (Class 156/285)
-
Patent number: 11947276Abstract: A light emitting device includes: a base that extends in one direction, and has an opening; plural light emitting units that are disposed to be displaced from each other in the one direction on the front surface side of the base, the light emitting units each including a support that extends in the one direction, and plural light sources that are disposed in the one direction on the support; and an air blowing unit that blows air toward the light emitting units through the opening.Type: GrantFiled: September 8, 2022Date of Patent: April 2, 2024Assignee: FUJIFILM Business Innovation Corp.Inventor: Yosuke Kasuya
-
Patent number: 11845251Abstract: A preparation device and a process for an anisotropic conductive film (ACF) bonding structure are provided. The preparation device includes a negative-pressure adsorption device, a positioning assembly, and a hot-pressing module, where the negative-pressure adsorption device is configured to adsorb a first metal plate; the positioning assembly includes a first positioning module, at least two second positioning modules, and at least one third positioning module; and the hot-pressing module is configured to release a hot-pressing pressure, such that the second metal plate is connected to the first metal plate through an ACF to form a bonding structure. The present disclosure ensures reference positioning of the negative-pressure adsorption device on a mounting plate through the second positioning modules. The present disclosure further ensures that a side of the first metal plate is fully adhered to a side surface of an adsorption plate through the first positioning module.Type: GrantFiled: November 17, 2021Date of Patent: December 19, 2023Assignee: JIANGSU TELILAN COATING TECHNOLOGY CO., LTD.Inventors: Zhengliang Xu, Liang Zheng, Zheng Xu
-
Patent number: 11745423Abstract: Methods and apparatus for additive manufacturing. In a method for additive manufacturing, a build sheet can be positioned on a print substrate of a printer. An object can be printed on the build sheet. The object can be detached from the build sheet. Advantageously, the build sheet can prevent the object from shifting on the build sheet during printing. Removing the build sheet from the object does not result in significant deformation or bending of the object. Damage to the object can be prevented. The object does not require additional cleaning or finishing for removing any residual or material. The build sheet can be ready for reuse. The build sheet can advantageously have mechanical strength to sustain removal of the build sheet from the object.Type: GrantFiled: April 23, 2019Date of Patent: September 5, 2023Assignee: RapidFlight Holdings, LLCInventors: David Riha, Alexis Fiechter, Robert Bedsole, Charles Hill, Timofei Novikov, Kyle Rowe
-
Patent number: 11717914Abstract: The invention relates to tooling for holding parts in position to enable them to be friction welded together in order to construct a hollow structure, the tooling comprises: a framework made up of two frames for receiving the parts for welding together in their positions for forming the hollow structure, the parts comprising preformed parts and an intermediate section; shape-holder members for holding the hollow structure, associating backing thrust members and lateral grip members for gripping the outsides of the preformed parts; anvils suitable for being placed inside the set of preformed parts beside the section; and clamping means operable to take up a clamping position in which they cause opposing thrust to be applied against the anvil and the inside face of a preformed part, its part itself bears against the shape-holder members.Type: GrantFiled: September 17, 2021Date of Patent: August 8, 2023Assignee: AIRBUS HELICOPTERSInventors: Delphine Allehaux, Jean-Loup Gatti, Laurent Marchione, Philippe Durand
-
Patent number: 11584675Abstract: A processing fixture can be employed for processing a glass cover plate and include: a fixture body, a first sensing component, a roller component, and a control module connected with the first sensing component. The fixture body is made from flexible materials and provided with a positioning groove matched with shape of an outer surface of the glass cover plate. The first sensing component is configured to detect current dimension parameter of the glass cover plate and/or an attaching layer attached to the glass cover plate in the positioning groove, and transmit the detected current dimension parameter to the control module. The control module is configured to control cooperation of the roller component and the fixture body according to the current dimension parameter, so as to correct the current dimension parameter of the glass cover plate or the attaching layer as a target dimension parameter.Type: GrantFiled: April 13, 2020Date of Patent: February 21, 2023Assignee: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.Inventors: Jing Gao, Xun Zhu
-
Patent number: 11491735Abstract: An apparatus for cold-shaping a glass sheet that includes: a plurality of vacuum chucks configured within a moveable table; a first automated pick mechanism proximate the table; an automated dispensing mechanism proximate the table; and a pressing apparatus. The first pick mechanism is configured to shape a glass sheet onto one of the chucks. The dispensing mechanism is configured to dispense a curable adhesive onto the glass sheet or a frame. One of the first pick mechanism and the dispensing mechanism is configured to position the frame onto the glass sheet such that the adhesive is disposed between the glass sheet and the frame. The pressing apparatus is configured to press the frame and the adhesive onto the glass sheet to define a finished glass sheet assembly. The glass sheet is bendable at ambient temperature. Methods for cold-shaping a glass sheet are also included in the disclosure.Type: GrantFiled: March 31, 2021Date of Patent: November 8, 2022Assignee: Corning IncorporatedInventors: Ki Nam Kim, Peter Knowles, Christopher Lee Timmons
-
Patent number: 11493963Abstract: An electronic device includes a transparent cover and a flexible display screen. The transparent cover has a transparent cover having a fixed shape and including a plate-shape flat surface and a sidewall, the sidewall being formed by extending an edge of the flat surface away from the flat surface, the sidewall having a curved structure, and the sidewall and the flat surface forming an inverted structure; and a flexible display screen being fitted to an inner surface of the transparent cover, a display output surface of the flexible display screen facing the transparent cover, the flexible display screen including a non-deformable portion and a deformable portion, the non-deformable portion being fitted to the flat surface, and the deformable portion being fitted to the sidewall.Type: GrantFiled: September 28, 2020Date of Patent: November 8, 2022Assignee: LENOVO (BEIJING) CO., LTD.Inventors: Zhi Chen, Xiaojing Yuan, Zhaokao Tian, Yunchao Zhang, Jun Liang
-
Patent number: 11432372Abstract: A method includes placing a first package component over a vacuum boat, wherein the vacuum boat comprises a hole, and wherein the first package component covers the hole. A second package component is placed over the first package component, wherein solder regions are disposed between the first and the second package components. The hole is vacuumed, wherein the first package component is pressed by a pressure against the vacuum boat, and wherein the pressure is generated by a vacuum in the hole. When the vacuum in the hole is maintained, the solder regions are reflowed to bond the second package component to the first package component.Type: GrantFiled: October 11, 2019Date of Patent: August 30, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ming-Da Cheng, Hsiu-Jen Lin, Cheng-Ting Chen, Wei-Yu Chen, Chien-Wei Lee, Chung-Shi Liu
-
Patent number: 11377190Abstract: A method for manufacturing an aircraft rear section including a tail cone and a vertical tail plane, the method includes: providing pre-cured frames (1) each of which includes a section of the tail cone (2) and a section of the vertical tail plane (3); providing pre-cured stringers (4); placing the pre-cured stringers (4) each in respective positions within the pre-cured frames (1); placing a skin (5) around an external surface of the pre-cured frames (1); and curing the pre-cured frames (1), the pre-cured stringers (4), and the skin (5), forming the final aircraft rear section.Type: GrantFiled: June 13, 2019Date of Patent: July 5, 2022Assignee: AIRBUS OPERATIONS S.L.Inventors: Esteban Martino-Gonzalez, Alberto Arana Hidalgo, Melania Sanchez Perez, Carlos Garcia Nieto, Jesus Javier Vazquez Castro, Edouard Menard, Fernando Iniesta Lozano, Maria Almudena Canas Rios
-
Patent number: 11351743Abstract: Systems and methods are provided for consolidating thermoplastic parts. One embodiment is a method of automatically forming a thermoplastic composite structure. The method includes heating a thermoplastic preform to a forming temperature, forming the thermoplastic preform into a thermoplastic part having a desired shape, aligning multiple thermoplastic parts together, and consolidating the multiple thermoplastic parts together while controlling crystallization to form a complex thermoplastic part.Type: GrantFiled: July 24, 2018Date of Patent: June 7, 2022Assignee: The Boeing CompanyInventors: Blair Alexandra Lim, Young Zeon, Gerfried Rudolf Achtner
-
Patent number: 11227787Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.Type: GrantFiled: July 3, 2018Date of Patent: January 18, 2022Assignee: Industrial Technology Research InstituteInventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
-
Patent number: 11214021Abstract: A method for manufacturing a cured composite structure from first stringers, second stringers and a panel comprising a first side and a second side, the method includes, for each first stringer, supporting the first stringer on the first side of the panel using a substantially rigid mandrel positioned within a first cavity defined between the first stringer and the first side of the panel, for each second stringer, supporting the second stringer on the second side of the panel using a flexible mandrel positioned within a second cavity defined between the second stringer and the second side of the panel, and co-curing the first stringers, the panel, and the second stringers while each of the one or more first stringers are supported by the respective substantially rigid mandrel and each of the one or more second stringers are supported by the respective flexible mandrel.Type: GrantFiled: March 6, 2020Date of Patent: January 4, 2022Assignee: The Boeing CompanyInventors: Richard E. Heath, Richard A. Prause, Andrew E. Modin
-
Patent number: 11217464Abstract: The present invention relates to a system for transferring a micro LED, the system not only releasing a grip force of a transfer head when transferring a micro LED to a substrate but also applying an additional force to the micro LED from below the substrate to attract the micro LED onto the substrate.Type: GrantFiled: March 29, 2019Date of Patent: January 4, 2022Assignee: Point Engineering Co., Ltd.Inventors: Bum Mo Ahn, Seung Ho Park, Sung Hyun Byun
-
Patent number: 11183401Abstract: An industrial-scale system and method for handling precisely aligned and centered semiconductor substrate (e.g., wafer) pairs for substrate-to-substrate (e.g., wafer-to-wafer) aligning and bonding applications is provided. Some embodiments include an aligned substrate transport device having a frame member and a spacer assembly. The centered semiconductor substrate pairs may be positioned within a processing system using the aligned substrate transport device, optionally under robotic control. The centered semiconductor substrate pairs may be bonded together without the presence of the aligned substrate transport device in the bonding device. The bonding device may include a second spacer assembly which operates in concert with that of the aligned substrate transport device to perform a spacer hand-off between the substrates. A pin apparatus may be used to stake the substrates during the hand-off.Type: GrantFiled: August 18, 2017Date of Patent: November 23, 2021Assignee: SUSS MICROTEC LITHOGRAPHY GMBHInventors: Hale Johnson, Gregory George, Aaron Loomis
-
Patent number: 11156104Abstract: The present disclosure provides methods and systems for the bonding of dissimilar substrates. For example, a first substrate may be coupled to a second substrate by a composite joint between the first substrate and the second substrate. The composite joint may be comprised of a first adhesive material and a second adhesive material. The first adhesive material may be disposed on the first substrate, and the second adhesive material may be disposed to the first adhesive material. The composite joint between the first substrate and the second substrate may provide an isolation layer therebetween, preventing galvanic corrosion.Type: GrantFiled: January 24, 2019Date of Patent: October 26, 2021Assignee: Raytheon Technologies CorporationInventors: Jesse C. Meyer, Joseph Jalowka, John D. Riehl, Raymond P. Martina, James O. Hansen
-
Patent number: 11148384Abstract: The invention regards a press for soldering multilayer stacks for printed circuits, with an outer muffle that encloses soldering chambers where multilayer stacks are arranged to be heated, inducing a magnetic flux. For such purpose, the press is provided with an inductor having winding form which is arranged on a mobile piston adapted to apply a force on the multilayer stack, such to generate a magnetic flux at its interior that is spatially uniform and regular over time.Type: GrantFiled: December 5, 2016Date of Patent: October 19, 2021Assignee: CEDAL EQUIPMENT CO., LTD.Inventor: Marco Bianchi
-
Patent number: 11152328Abstract: A uniform pressure gang bonding device and fabrication method are presented using an expandable upper chamber with an elastic surface. Typically, the elastic surface is an elastomer material having a Young's modulus in a range of 40 to 1000 kilo-Pascal (kPA). After depositing a plurality of components overlying a substrate top surface, the substrate is positioned over the lower plate, with the top surface underlying and adjacent (in close proximity) to the elastic surface. The method creates a positive upper chamber medium pressure differential in the expandable upper chamber, causing the elastic surface to deform. For example, the positive upper chamber medium pressure differential may be in the range of 0.05 atmospheres (atm) and 10 atm. Typically, the elastic surface deforms between 0.5 millimeters (mm) and 20 mm, in response to the positive upper chamber medium pressure differential.Type: GrantFiled: December 13, 2018Date of Patent: October 19, 2021Assignee: eLux, Inc.Inventors: Wei-Yuan Ma, Jong-Jan Lee
-
Patent number: 11131791Abstract: One or more aspects of the present disclosure provide articles of manufacture and components of articles that incorporate an optical element that imparts structural color to the component or the article. The component comprises a cured or curable material, and can include or be made to have a textured surface.Type: GrantFiled: September 28, 2018Date of Patent: September 28, 2021Assignee: NIKE, Inc.Inventors: Jennifer Bee, Jeremy Gantz, Kim Kovel
-
Patent number: 11097522Abstract: A method for manufacturing a wing-box for aircraft comprises: arranging, on a curing surface, a first panel of composite material comprising a skin a plurality of longitudinal stringers, and arranging, on each stringer, a caul plate; arranging, on the first panel, pluralities of support inserts so that each support insert rests on a respective caul plate, and on the skin of the first panel, and arranging, on the first panel, a plurality of ribs of non-polymerized composite material, each rib comprising a plate, a first pair of flanges and a second pair of flanges arranged at opposed ends of the plate, and having openings on an edge of the plate, by placing the respective first pair of flanges on the first panel and the respective plurality of openings on the plurality of support inserts, and having the first panel and the plurality of ribs undergo a curing process in autoclave with vacuum bag.Type: GrantFiled: November 12, 2019Date of Patent: August 24, 2021Assignee: LEONARDO S.p.A.Inventors: Gianni Iagulli, Marco Raffone, Alberto Russolillo, Tommaso Nanula, Giuseppe Totaro
-
Patent number: 11040502Abstract: A method for producing a fiber-reinforced resin molded article includes disposing a suction medium, a resin barrier aeration medium and a fiber base material in a cavity such that the suction medium is disposed between an end part of the fiber base material and a mold, and the resin barrier aeration medium is disposed between the suction medium and the end part of the fiber base material. The method further includes: impregnating the fiber base material with a resin by injecting the resin from an injection part, while reducing a pressure in the cavity by suction from a suction part; curing the resin with which the fiber base material is impregnated; and releasing a fiber-reinforced resin in which the fiber base material and the resin are integrated.Type: GrantFiled: August 9, 2017Date of Patent: June 22, 2021Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventors: Mitsutoshi Maeda, Kazuma Takeno, Hiroshi Tokutomi, Tetsuya Sato, Kazunori Kuga
-
Patent number: 11040496Abstract: A method of bonding composite structures includes positioning a second structure at a bonding site on a first structure and coupling a first vacuum bag to the first structure such that the first vacuum bag covers the bonding site. The method also includes applying a vacuum to the first vacuum bag to induce a first mechanical force to the second structure via the first vacuum bag. A second vacuum bag is coupled to the first structure such that second vacuum bag covers the second structure and at least a portion of the first vacuum bag. The method further includes applying a vacuum to the second vacuum bag to induce a second mechanical force to the second structure via the second vacuum bag.Type: GrantFiled: December 19, 2017Date of Patent: June 22, 2021Assignee: The Boeing CompanyInventors: Steven Donald Blanchard, Gary D. Oakes, Arne K. Lewis
-
Patent number: 11034064Abstract: A caul plate assembly for applying compaction pressure to a composite structure includes caul plates arranged side-by-side on the surface of the composite structure. The caul plates include overlapping edges of compliant material which form a continuous face applying even pressure and shear across gaps between the caul plates.Type: GrantFiled: August 29, 2018Date of Patent: June 15, 2021Assignee: The Boeing CompanyInventors: Eileen E. Miller, Daniel Johnson
-
Patent number: 11027478Abstract: A thermoform packaging machine comprising a forming station. The forming station comprises at least one forming tool lower part, the forming tool lower part may be movable transversely to an operating direction of the thermoform packaging machine. The forming tool lower part may comprise at least one reception unit with one or a plurality of troughs for receiving cardboard elements. At a forming position the forming tool lower parts are in contact with the forming tool upper parts such that the first film web may be formed-in into the forming tool lower parts. Further, the first film web may be formed-in into the cardboard elements during the forming process and, in the case of a skin film, an adhering or an adhesive connection may be established between the skin film and the inner surfaces of the cardboard elements.Type: GrantFiled: September 13, 2018Date of Patent: June 8, 2021Assignee: MULTIVAC SEPP HAGGENMUELLER SE & CO. KGInventors: Martin Haggenmüller, Konrad Mößnang
-
Patent number: 11014273Abstract: A device (1) for producing a moulding of surface properties comprises a housing (3) having a pressure plunger (4) mounted on or in the housing (3), which can be moved and can be pressed on a surface (2), which pressure plunger has a blank carrier (5) comprising a pressure surface (6) which can be pressed on the surface (2), on which pressure surface a moulding blank (7) comprising a moulding layer (9) made of a curable material can be secured in a detachable manner. The device further comprises a curing device (12) arranged on or in housing (3), with which the curable material of the moulding blank (7) can be cured while being pressed on the surface (2).Type: GrantFiled: May 25, 2016Date of Patent: May 25, 2021Assignee: Technische Universität DarmstadtInventors: Lars-Oliver Heim, Dmytro Golovko
-
Patent number: 11007724Abstract: A skin-to-core bond line mapping system and method is disclosed. Layered composite components formed by “sandwiching” multiple materials together require a continuous bond between those materials with voids below particular thresholds that can vary by application. The skin-to-core bond line mapping system can include a laminate, an adhesive, a separator film, a core, a breather, a layup tool, bagging material, sealant, and a vacuum port. By employing systems and processes that layer separator film over adhesive and applying a core proximate the adhesive, a bagging material can be disposed over the materials to facilitate vacuum compaction, thereby impressing core impressions on the adhesive to map the areas between the skin and core that have good contact. An iterative process is disclosed, in which additional adhesive can be used to build the bond line until contact is made (or engineering tolerance is reached).Type: GrantFiled: August 8, 2018Date of Patent: May 18, 2021Assignee: Textron Innovations Inc.Inventors: Kelly Knowles, Clyde Gibson
-
Patent number: 10974357Abstract: A chuck unit as a rotating member of a spindle device includes a base portion fixed to one end of the spindle shaft, an attaching portion detachably attached to a side of the base portion that is located on an opposite side of the base portion from the one end of the spindle shaft, and an accommodation space arranged on a communication passage so as to accommodate a filter.Type: GrantFiled: October 29, 2019Date of Patent: April 13, 2021Assignee: FANUC CORPORATIONInventor: Masahiro Murota
-
Patent number: 10974472Abstract: A method of composite part manufacturing includes inserting a tooling pin of a magnet into a ply charge. The method also includes coupling the ply charge to a tool using the magnet and a second magnet of the tool. The magnet positions the ply charge on the tool. The tooling pin provides a retaining force to resist movement of the ply charge. The method further includes applying resin to the ply charge and curing the resin to form a cured composite material.Type: GrantFiled: October 18, 2018Date of Patent: April 13, 2021Assignee: THE BOEING COMPANYInventor: Max Marley Osborne
-
Patent number: 10961603Abstract: The invention provides a hot stamped structural component (20) for an automotive vehicle, such as a B-pillar, including a first part (22) formed of a high strength steel material joined to a second part (24) formed of a high ductility steel material. The structural component (20) also includes a locally tempered transition zone (26) along the joint (28) to reduce the potential for failure along the joint (28). The transition zone (26) has strength and ductility levels between the strength and ductility levels of the remaining portions of the first and second parts (22, 24). The tempering step can be incorporated into a laser trimming cell or assembly cell, and thus the transition zone (26) can be created without adding an additional process step or increasing cycle time.Type: GrantFiled: July 1, 2017Date of Patent: March 30, 2021Assignee: MAGNA INTERNATIONAL INC.Inventor: Richard Allen Teague
-
Patent number: 10960616Abstract: Various embodiments of the present application are directed towards a method for forming a reusable vacuum bag, as well as the reusable vacuum bag resulting from the method. In some embodiments, the method comprises providing a mold. The mold comprises a pair of plates that collectively define a cavity with layout of a reusable vacuum bag. A vacuum bag material is added to the cavity. For example, silicone may be added (e.g., injected or poured) into a cavity. The vacuum bag material is cured within the cavity to form the reusable vacuum bag. The reusable vacuum bag is thereafter removed from the mold. In some embodiments, the reusable vacuum bag resulting from the method comprises an integrated vacuum seal, an integrated sensor pad, an integrated vacuum port pad, an integrated vacuum track, uniform wall thicknesses, tapered or rounded edges, or any combination of the foregoing.Type: GrantFiled: March 13, 2018Date of Patent: March 30, 2021Assignee: Industrial Technologies Inc.Inventors: Gregg Caprez, Maxwell Caprez, Joel Morrison
-
Patent number: 10960617Abstract: Apparatus and methods for manufacturing and repairing fibre-reinforced composite materials are disclosed. In various embodiments, the apparatus and methods disclosed herein use a resin retaining/releasing device comprising resin having a viscosity that is temperature dependent for infusion into a region of a part. The resin retaining/releasing device may include a first sheet and an opposite second sheet at least partially enclosing the quantity of resin. The first sheet and the second sheet may be gas-permeable. The second sheet may be substantially resin-impermeable when the viscosity of the resin is above a threshold viscosity and resin-permeable when the viscosity of the resin is below the threshold viscosity.Type: GrantFiled: October 22, 2015Date of Patent: March 30, 2021Assignee: SHORT BROTHERS PLCInventor: Andrew McKibbin
-
Patent number: 10913252Abstract: The present disclosure provides a bonding device for a flexible panel including: a transport element, a vacuum chamber, a cover jig, and a bonding jig; wherein the transport element is configured to move the flexible panel into the vacuum chamber or move the flexible panel out of the vacuum chamber; wherein both the cover jig and the bonding jig are disposed in the vacuum chamber, the cover jig is opposite to the bonding jig, and the cover jig is configured to secure thereon a cover plate to be bonded; and wherein the bonding jig has a curved hump protruding toward the cover jig, and the hump is configured to raise the flexible plate up to the cover plate to bond the cover plate with the flexible panel when the transport element transports the flexible plate to a location below the cover plate.Type: GrantFiled: August 22, 2018Date of Patent: February 9, 2021Assignee: Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd.Inventor: Wu Li
-
Patent number: 10889025Abstract: Provided is a method for manufacturing a fiber-reinforced resin molding material having excellent productivity at low cost for manufacturing a fiber-reinforced resin molded article having excellent strength properties. Provided is a method for manufacturing a sheet-shaped fiber-reinforced resin molding material containing a plurality of cut fiber bundles and a resin impregnated between filaments of the cut fiber bundles, the method comprising an integrated material manufacturing step for obtaining an integrated material by collecting a sheet-shaped fiber bundle aggregate obtained by arranging and spreading a plurality of consecutive fiber bundles in a width direction.Type: GrantFiled: May 4, 2018Date of Patent: January 12, 2021Assignee: Mitsubishi Chemical CorporationInventors: Tadao Samejima, Yukihiro Mizutori, Yasushi Watanabe, Junji Kanehagi, Masatoshi Kamata
-
Patent number: 10882262Abstract: A composite manufacturing system for aircraft structures is provided. The composite manufacturing system comprises a tool for forming a composite structure, a vacuum bag, and a tool base. The tool comprises cured composite planks and layers of flexible material. The cured composite planks run parallel to each other. The layers of flexible material are positioned between and bonded to the cured composite planks. The vacuum bag surrounds the tool and is configured to apply pressure to the tool during curing of the composite structure. The tool is configured to deform in response to the pressure and prevent poor quality laminate and/or anomalies from developing in the composite structure during curing. The tool base is configured to hold the tool in place as it deforms.Type: GrantFiled: August 22, 2018Date of Patent: January 5, 2021Assignee: The Boeing CompanyInventors: Michael A. Lee, Jennifer Sue Noel, John Dempsey Morris
-
Patent number: 10874545Abstract: A heat exchanger, and method of manufacture of a heat exchanger configured to be placed into contact with an object to regulate the temperature of the object. The heat exchanger comprises a layer of material defining a passage through which a heat transfer fluid may flow. The material layer has a first side for contact with the object; and a second side which, in use, will face away from the object. The first side has a relatively high coefficient of thermal conduction. The second side has a relatively low coefficient of thermal conduction compared to the first side.Type: GrantFiled: September 22, 2015Date of Patent: December 29, 2020Assignee: PAXMAN COOLERS LIMITEDInventors: Ertugrul Unver, Glenn Alan Paxman, Neil Eric Paxman
-
Patent number: 10857741Abstract: A repair method for a workpiece of a plastics material is provided, wherein an induction heating apparatus is positioned at a repair region of the workpiece. The induction heating apparatus comprises a magnetic field generating device and a heat source. The heat source is arranged between the magnetic field generating device and the repair region. A repair material is positioned on the repair region and heated by way of the heat source. The heat source is inductively heated by the magnetic field generating device. A temperature (T) is measured by which an application of heat to the repair material by the heat source is characterized. The temperature (T) is controlled by means of a control device. The control of the temperature (T) by the control device occurs according to a temperature profile specification, which has a heating region and a working region following the heating region.Type: GrantFiled: February 13, 2019Date of Patent: December 8, 2020Assignee: Deutsches Zentrum fuer Luft—und Raumfahrt e.V.Inventors: Marvin Schneider, Markus Kaden
-
Patent number: 10850474Abstract: A method of fabricating a panel includes laying up a first laminate on a tooling surface, laying a first layer of thermoplastic on an inner surface of the first laminate, laying a large cell carbon core on the first layer of thermoplastic, laying a second layer of thermoplastic across the large cell carbon core, laying a second laminate on the second layer of thermoplastic, creating a sealed core pocket by bonding the edges of the first and second layers of the thermoplastic surrounding a perimeter of the core, increasing pressure within the core pocket, increasing pressure on the outer surface of the second laminate, heating the panel to a desired curing temperature, and maintaining the increased pressures and temperature for a desired curing duration.Type: GrantFiled: January 23, 2018Date of Patent: December 1, 2020Assignee: Textron Innovations Inc.Inventors: James Everett Kooiman, David M. Carlson, Douglas K. Wolfe, Jonathan Alexander Freeman
-
Patent number: 10849192Abstract: Systems and methods for environmentally sealing electrical connections of window assemblies are disclosed. A mechanically protective enclosure assembly is adhered to a transparent pane including glass. The enclosure assembly includes a first member, a second member, and an opening. The first member includes a transparent-pane engaging surface, a first interface surface, and a plurality of first walls extending therebetween. The second member is attached to the first member. The second member includes a top member, a second interface surface, and a plurality of second walls extending therebetween. The first interface surface engages the second interface surface to provide a first fluid-tight seal. The opening is defined by at least one of the plurality of first walls and at least one of the plurality of second walls. The opening engages the wiring harness to provide a second fluid-tight seal therebetween.Type: GrantFiled: April 26, 2017Date of Patent: November 24, 2020Assignee: AGC Automotive Americas R&D, Inc.Inventors: Eric Rogers, Christopher A. Imeson, William C. Schuch
-
Patent number: 10843417Abstract: Resin infusing a composite preform includes locating the preform on an upper tool surface having a resin reservoir element on a downstream side of the composite preform. A vacuum bagging film is placed over the tool surface to cover the composite preform and the resin reservoir element, and is sealed relative to the tool surface to define a sealed resin infusion chamber. A resin supply is provided along with a resin flow path from the resin supply to the resin infusion chamber on an upstream side of the composite preform, through the composite preform and through the reservoir inlet to the resin reservoir. At least partial vacuum pressure applied to the reservoir outlet establishes a pressure differential between the resin supply and reservoir outlet to drive resin from the resin supply through the resin flow path, infusing the composite preform with resin and collecting excess resin in the resin reservoir.Type: GrantFiled: May 10, 2017Date of Patent: November 24, 2020Assignee: The Boeing CompanyInventor: Richard Roberts
-
Patent number: 10836001Abstract: A pressure tool for rotor blade repair including a mobile support system including a support surface, a first bladder support assembly including a first inflatable bladder fixedly mounted to the support surface, a second bladder support assembly including a second inflatable bladder pivotally mounted relative to the support surface, and an activation mechanism operatively coupled to the second bladder support assembly. The activation mechanism is operable to selectively shift the second bladder support assembly relative to the first bladder support assembly. A fluid delivery system is operable to direct a fluid into each of the first inflatable bladder and the second inflatable bladder.Type: GrantFiled: July 7, 2017Date of Patent: November 17, 2020Assignee: SIKORSKY AIRCRAFT CORPORATIONInventors: Ryan Lehto, David W. Littlejohn, Sven R. Lofstrom
-
Patent number: 10830062Abstract: A composite airfoil is disclosed. The composite airfoil includes a first ply having a first plurality of strips of fiber oriented at a first angle with respect to a longitudinal axis and a second plurality of strips of fiber oriented at a second angle with respect to the longitudinal axis at least a first subset of the first plurality of strips of fibers have fibers intersecting and oriented at an angle to the fibers in at least a second subset of the second plurality of strips of fibers within a ply boundary.Type: GrantFiled: March 20, 2018Date of Patent: November 10, 2020Assignee: RAYTHEON TECHNOLOGIES CORPORATIONInventors: Bradley L. Paquin, Nicholas D Stilin
-
Patent number: 10821628Abstract: An apparatus for vacuum vibro-compression of mixes arranged on a support comprises a press (12) provided with a press ram (18) having vibratory devices (22), and a pressing surface (16). The press (12) comprises a vacuum bell (24). The apparatus is characterized in that it comprises an entry chamber (44) in the region of the inlet opening (36) of the bell (24) having a first opening (48) which can be controllably closed and opened with a first gate (50) adapted to prevent fluid communication between the outside and inside of the entry chamber (44) and a second gate (52) able to be controllably opened and closed, in the region of the inlet opening (36) of the bell (24), and adapted to prevent fluid communication between entry chamber (36) and the inside of the bell (24) or to allow the passage of the support with the mix from the entry chamber (36) to the inside of the bell (24).Type: GrantFiled: July 7, 2015Date of Patent: November 3, 2020Inventor: Luca Toncelli
-
Patent number: 10813661Abstract: In one aspect, the present disclosure pertains to ultrasonic treatment devices that comprise: (a) a flexible elongate body having a proximal end and a distal end, the flexible elongate body being configured for insertion to a target site within a patient; (b) an effector assembly disposed at the distal end of the flexible elongate body, the effector assembly comprising a piezoelectric transducer and an end effector; and (c) flexible electrical conductors in electrical communication with the piezoelectric transducer, the flexible electrical conductors extending along a length of the flexible elongate body, wherein transference of electrical energy to mechanical motion takes place via the piezoelectric transducer at the target site. Other aspects of the present disclosure pertain to systems employing such ultrasonic treatment devices and methods of treatment using such ultrasonic treatment devices.Type: GrantFiled: October 24, 2016Date of Patent: October 27, 2020Assignee: Boston Scientific Scimed, Inc.Inventors: Paul Smith, Ray Tong
-
Patent number: 10800113Abstract: Disclosed embodiments provide automated fiber placement techniques for fabrication of parts made from composite materials. Tape plies are wound around a mandrel while a polymer is dispensed on a tape ply shortly before compaction. A bead monitoring system monitors the size and placement of the bead on the tape ply and feeds back information to various process control systems to maintain an optimal bead size.Type: GrantFiled: October 31, 2017Date of Patent: October 13, 2020Inventors: David E. Hauber, Zachary A. August
-
Patent number: 10796939Abstract: A temporary adhesive film roll for substrate processing, includes: a roll axis and a composite film-shaped temporary-adhesive material for temporarily bonding a substrate to a support, the composite film-shaped temporary-adhesive material being rolled up around the roll axis; wherein the composite film-shaped temporary-adhesive material includes a first temporary adhesive layer composed of a thermoplastic resin, a second temporary adhesive layer composed of a thermosetting resin, and a third temporary adhesive layer composed of a thermosetting resin which is different from that of the second temporary adhesive layer.Type: GrantFiled: May 29, 2018Date of Patent: October 6, 2020Assignee: SHIN-ETSU CHEMICAL CO., LTD.Inventors: Masahito Tanabe, Michihiro Sugo, Kazunori Kondo, Hiroyuki Yasuda
-
Patent number: 10780611Abstract: A method for fabricating a composite structure is provided. A first number of layers of composite material is laid up to form a first set of stiffeners. A second number of layers of composite material is laid up to form a panel. The first set of stiffeners is associated with a first side of the panel. A pre-cured composite strip is positioned on a second side of the panel, opposite the first side. A third number of layers of composite material is laid up on the second side of the panel to form a second set of stiffeners running perpendicular to the first set of stiffeners. The pre-cured composite lies at an intersection between one of the first set of stiffeners and one of the second set of stiffeners. All the layers of composite material are co-cured to form the composite structure.Type: GrantFiled: June 18, 2018Date of Patent: September 22, 2020Assignee: The Boeing CompanyInventors: Kristofer L. Peterson, Eileen E. Miller, Mark Allen Ulvin, Ronald Leroy McGhee, David A. Lilienthal
-
Patent number: 10777433Abstract: A wafer bonding method includes placing a first wafer on a first bonding framework including a plurality of outlet holes around a periphery of the first bonding framework. A second wafer is placed on a second bonding framework that includes a plurality of inlet holes around a periphery of the second bonding framework. The first bonding framework is in overlapping relation to the second bonding framework such that a gap exist between the first wafer and the second wafer. A gas stream is circulated through the gap between the first wafer and the second wafer entering the gap through one or more of the plurality of inlet holes and exiting the gap through one or more of the plurality of outlet holes. The gas stream replaces any existing ambient moisture from the gap between the first wafer and the second wafer.Type: GrantFiled: July 23, 2018Date of Patent: September 15, 2020Assignee: ELPIS TECHNOLOGIES INC.Inventors: Wei Lin, Spyridon Skordas, Robert R. Young, Jr.
-
Patent number: 10773431Abstract: A structural polymeric composite includes a stiffening layer. The composite is made in a continuous extrusion process in which the stiffening layer is pulled through a cross-head die as a polymer is extruded over it. The layer includes a film or textile carrier, a filler of carbon fibers, fiberglass, organic fibers or minerals forming a mat. A binder may be dispersed over the mat and a second carrier applied. The mat is subjected to heat and pressure to soften the carriers and binder so they penetrate into the interstices of the filler and binds mechanically with them and the carriers and binder bind chemically with each other to form the stiffening layer. A polymer is then extruded over the stiffening layer, which may be used flat, provided with holes or punches for composite action with the polymer, formed into a profile, or segmented to provide spaced-apart stiffening layers.Type: GrantFiled: July 8, 2019Date of Patent: September 15, 2020Assignee: Marhaygue, LLCInventor: Guerry E. Green
-
Patent number: 10759124Abstract: A method of infusing liquid resin into a preform involves positioning a preform on a planar section of a tool surface and a trough section of the tool surface, where the planar section of the tool surface is positioned vertically above the trough section of the tool surface and with there being a plurality of grooves in the planar section of the tool surface and a bottom of the trough section of the tool surface. At least one of a fluid impervious sheet, a second tool and a vacuum bag is secured on the tool surface over the preform forming a sealed volume on the tool surface. A pressure differential and a flow of resin is supplied onto the tool surface and the liquid resin is infused into the preform by the pressure differential.Type: GrantFiled: November 21, 2017Date of Patent: September 1, 2020Assignee: The Boeing CompanyInventors: Kaustubh Dongre, Paul Evans, Peter J. Lockett, Jason J. McBain, Max M. Osborne, Manning Scarfe
-
Patent number: 10746752Abstract: A specimen processing system is capable of processing specimens carried on slides. The specimen processing system can sequentially deliver slides and opposables to specimen processing stations. The specimen processing stations can use the opposables to apply a series of liquids to the specimens. The applied liquid can be moved along the slide using capillary action while the specimen processing stations control the processing temperatures. The applied liquid can be in a fluid-carrying gap. The opposable can contact the slide to vary a cross section of the fluid-carrying gap.Type: GrantFiled: December 19, 2016Date of Patent: August 18, 2020Assignee: Ventana Medical Systems, Inc.Inventors: Michael Otter, Brian Howard Kram, Carl David Martin, Jessica Wifall, Kevin David Marshall, Christine Tse, Josh Harrison
-
Patent number: 10695958Abstract: A method and apparatus for forming a radius filler. A lattice is formed of connecting elongate members having a three-dimensional shape of the radius filler. A resin is placed within the lattice.Type: GrantFiled: June 13, 2014Date of Patent: June 30, 2020Assignee: The Boeing CompanyInventors: Charles William Thomas, Benjamin Jeffrey Stephenson