With Etchant Gas Supply Or Exhaust Structure Located Outside Of Etching Chamber (e.g., Supply Tank, Pipe Network, Exhaust Pump, Particle Filter) Patents (Class 156/345.29)
  • Publication number: 20020124961
    Abstract: An integrated fluid delivery system (IFDS) is provided for delivering fluid streams such as high purity fluid streams to a processing destination, such as a wafer processing chamber. The delivery system includes a first modular manifold for internally channeling the high purity fluid streams along seamless slots. The first modular manifold receives each of the high purity fluid streams at a corresponding porting aperture. At least one fluid device from a group consisting of a flow controller, a valve, a filter and a pressure transducer is provided. The at least one fluid device is in fluidic communication with a corresponding one of the high purity liquid streams of the first modular manifold to dispense the high purity fluid streams from the integrated liquid delivery system to the wafer processing chamber.
    Type: Application
    Filed: February 28, 2002
    Publication date: September 12, 2002
    Inventors: George K. Porter, Seth B. Wolf, Charles W. Albrecht
  • Publication number: 20020117112
    Abstract: An object of the disclosure is to provide a vacuum processing apparatus capable of minimizing the size of the whole apparatus by reducing a floor area occupied by a vacuum pump. An etching apparatus 20 for applying an etching process on an object to be processed in a vacuum includes a processing vessel 21 for applying the etching process on a semiconductor wafer W introduced into the vessel 21 and a vacuum pump 30 arranged below the processing vessel 21 so as to be coaxial with the processing vessel 21, for sucking exhaust gas in the processing vessel 21 to form the vacuum.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 29, 2002
    Inventors: Makoto Okabe, Hidetoshi Kimura
  • Publication number: 20020088542
    Abstract: A plasma processing apparatus includes a reaction chamber for processing a workpiece with plasma which is generated by using one or more gases, a gas supplying means which pulsatively supplies the gases to the reaction chamber, and an exhaust means for exhausting the reaction chamber, wherein a gas supplying direction by said gas supplying means is arranged to correspond with an exhausting direction by said exhausting means.
    Type: Application
    Filed: February 1, 2000
    Publication date: July 11, 2002
    Inventors: Kazuyasu Nishikawa, Hiroki ootera, Masakazu Taki, Kenji Shintani, Shingo Tomohisa, Tatsuo Oomori
  • Publication number: 20020066535
    Abstract: The present invention relates to a process chamber 25 for processing a substrate 35 in process gas and reducing emissions of hazardous gas to the environment. The process chamber 25 comprises a support 30 for supporting the substrate 35, and a gas distributor 55 for introducing process gas into the process chamber 25. A gas treatment apparatus 75 is provided to treat and exhaust an effluent from the process chamber 25. The gas treatment apparatus 75 comprises an exhaust system having an exhaust tube 85, and a gas energizer 90 for energizing the effluent in the exhaust tube 85 by microwaves or by RF energy, while a continuous flow of effluent flows through the exhaust tube 85 to reduce the hazardous gas content of the effluent. A computer controller system comprising computer program code operates the process chamber and gas treatment apparatus 75.
    Type: Application
    Filed: April 3, 1998
    Publication date: June 6, 2002
    Inventors: WILLIAM BROWN, HARALD HERCHEN, MICHAEL D. WELCH
  • Publication number: 20020053403
    Abstract: A system and method for integrating gas components that combines together, either in an in-line or modular fashion, at least two gas components used in a gas stick for flowing a gas from a first point to an end point. In one embodiment, the present invention can be used to combine a pressure transducer, a filter, and a display into a single unit that will reduce the gas stick size along the gas flow axis of the gas stick. The gas components can be integrated using VCR connections for an in-line use of the present invention. In the modular form, the present invention can use a number of different connections to connect the gas components vertically on a modular base block (i.e., stacked approximately perpendicular to the modular base block). Thus, the gas components will stack vertically with respect to the traditional horizontal gas flow path axis.
    Type: Application
    Filed: November 5, 2001
    Publication date: May 9, 2002
    Inventor: Christ A. Tsourides