With Means To Cool The Workpiece Support Patents (Class 156/345.53)
  • Patent number: 12002661
    Abstract: A susceptor includes a plate part, a first heater for heating a first portion of the plate part, a second heater for heating a second portion of the plate part, and a heat insulating portion for thermally insulating the first portion and the second portion from each other on an upper surface side of the plate part.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: June 4, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Yukihiro Mori, Melvin Verbaas
  • Patent number: 10825661
    Abstract: In one embodiment, a plasma processing device may include a dielectric window, a vacuum chamber, an energy source, and at least one air amplifier. The dielectric window may include a plasma exposed surface and an air exposed surface. The vacuum chamber and the plasma exposed surface of the dielectric window can cooperate to enclose a plasma processing gas. The energy source can transmit electromagnetic energy through the dielectric window and form an elevated temperature region in the dielectric window. The at least one air amplifier can be in fluid communication with the dielectric window. The at least one air amplifier can operate at a back pressure of at least about 1 in-H2O and can provide at least about 30 cfm of air.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 3, 2020
    Assignee: Lam Research Corporation
    Inventors: Jon McChesney, Saravanapriyan Sriraman, Richard A. Marsh, Alexander Miller Paterson, John Holland
  • Patent number: 10665493
    Abstract: An electrostatic chuck including a body, an electrode, at least one dielectric layer, and a composite dielectric layer is provided. The electrode is present on the body. The dielectric layer is present on and covers the electrode. The composite dielectric layer is present on the dielectric layer. The composite dielectric layer includes a polymer layer and a plurality of inorganic dielectric particles. The inorganic dielectric particles are distributed within the polymer layer, and a permittivity of the inorganic dielectric particles is greater than a permittivity of the polymer layer. A resistivity of the dielectric layer is greater than a resistivity of the composite dielectric layer.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 26, 2020
    Assignee: MIKRO MESA TECHNOLOGY CO., LTD.
    Inventor: Li-Yi Chen
  • Patent number: 10600669
    Abstract: A substrate fixture includes a monopolar chuck main body comprising an insulated plate and an electrode embedded in the insulated plate, a tray placed on the chuck main body, having an upper surface in which a plurality of concave parts for accommodating therein a plurality of substrates is formed, and formed of an insulator having a volume resistivity equal to or lower than a volume resistivity of the insulated plate, and an yttrium oxide layer formed on the upper surface of the tray.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 24, 2020
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Norio Shiraiwa
  • Patent number: 10290529
    Abstract: A heater unit having high in-plane temperature uniformity is provided. A heater unit includes a first heater part, a second heater part controlled independently of the first heater part, a base arranged with a groove in a region between the first heater part and the second heater part, and a cover part arranged at an opening end of the groove and providing a closed space with the groove. In addition, an insulating layer covering the first heater part and the second heater part, and an electrostatic chuck attached to the base via the insulating layer may be further included. In addition, the closed space provided by the cover part and the groove may be a vacuum.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: May 14, 2019
    Assignee: NHK SPRING CO., LTD.
    Inventors: Toshihiko Hanamachi, Naoya Aikawa
  • Patent number: 9779971
    Abstract: Embodiments of methods and apparatus for rapidly cooling a substrate are provided herein.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jallepally Ravi, Steven V. Sansoni, Kirankumar Savandaiah
  • Patent number: 9508578
    Abstract: An apparatus and method for leak detection of coolant gas from a chuck. The apparatus includes a chuck having a top surface and configured to clamp a substrate to the top surface, the chuck having one or more recessed regions in the top surface, the recessed regions configured to allow a cooling gas to contact a backside of the substrate; a cooling gas inlet and a cooling gas outlet connected to the one or more recessed regions; a first measurement device connected to the cooling gas inlet and configured to measure a first amount of cooling gas entering the cooling gas inlet and a second measurement device connected to the cooling gas outlet and configured to measure a second amount of cooling gas exiting from the cooling gas outlet; and a controller configured to determine a difference between the first amount of cooling gas and the second amount of cooling gas.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Max G. Levy, Max L. Lifson, Jed H. Rankin, Timothy D. Sullivan
  • Publication number: 20150126038
    Abstract: A dry etching apparatus plasma processes a wafer held by a carrier having a frame and an holding sheet. A electrode unit of a stage includes an electrostatic chuck. An area of an upper surface of the electrostatic chuck onto which the wafer is placed via the holding sheet is a flat portion and is not subject to backside gas cooling. A first groove structure is formed in the area onto which the wafer is placed via the holding sheet as well as in an area onto which a holding sheet between the wafer and the frame. To a minute space defined by the first groove structure and the carrier, a heat transfer gas is supplied from a first heat transfer gas supply section through heat transfer gas supply hole (backside gas cooling). Both of plasma processing performance and cooling performance are improved.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 7, 2015
    Inventor: Shogo OKITA
  • Publication number: 20150122422
    Abstract: A plasma processing apparatus includes a thermally conductive silicone sheet between a mounting table and a focus ring. The thermally conductive silicone sheet has 100 parts by weight to 2000 parts by weight of thermally conductive particles with respect to 100 parts by weight of polyorganosiloxane, and the sheet has a thermal conductivity of 0.2 W/m·K to 5 W/m·K. Further, when the sheet has a shape of 38 mm in length, 38 mm in width, and 3 mm in thickness and is interposed between filter papers each having a diameter of 70 mm and kept under a load of 1 kg at 70° C. for 1 week, a bleed-out amount of a liquid component is 30 mg or less.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Yusuke Hayasaka, Katsuyuki Suzumura
  • Patent number: 8992686
    Abstract: Provided is a mounting table structure for use in forming a thin film on a surface of a target object mounted on the mounting table structure by using a raw material gas including an organic metal compound in a processing chamber. The mounting table structure includes: a mounting table main body which mounts thereon the target object and has therein a heater; and a base which supports the mounting table main body while surrounding a side surface and a bottom surface of the mounting table main body, the base having therein a coolant path where a coolant flows therethrough and being maintained at a temperature higher than the solidification temperature or the liquefaction temperature of the raw material gas, but lower than the decomposition temperature of the raw material gas.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 31, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Atsushi Gomi, Yasushi Mizusawa, Tatsuo Hatano, Masamichi Hara, Kaoru Yamamoto, Satoshi Taga, Chiaki Yasumuro
  • Publication number: 20150083333
    Abstract: An etching chamber 1 incorporates a focus ring 9 so as to surround a semiconductor wafer W provided on a lower electrode 4. The plasma processor is provided with an electric potential control DC power supply 33 to control the electric potential of this focus ring 9, and so constituted that the lower electrode 4 is supplied with a DC voltage of, e.g., ?400 to ?600 V to control the electric potential of the focus ring 9. This constitution prevents surface arcing from developing along the surface of a substrate to be processed.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akihiro KIKUCHI, Satoshi KAYAMORI, Shinya SHIMA, Yuichiro SAKAMOTO, Kimihiro HIGUCHI, Kaoru OOHASHI, Takehiro UEDA, Munehiro SHIBUYA, Tadashi GONDAI
  • Patent number: 8980044
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer evaporators inside respective inner and outer zones of the electrostatic chuck and a refrigeration loop having respective inner and cuter expansion valves for controlling flow of coolant through the inner and outer evaporators respectively. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: March 17, 2015
    Assignee: BE Aerospace, Inc.
    Inventors: Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8951353
    Abstract: A manufacturing method for semiconductor device includes: loading a wafer to a reaction chamber and placing the wafer on a support member; supplying process gas including source gas to a surface of the wafer, controlling a heater output and heating the wafer to a predetermined temperature while rotating the wafer at a first rotational speed, and thereby forming a film on a surface of the wafer; stopping supplying the source gas; decreasing a rotational speed of the wafer to a second rotational speed which enables an offset balance of the wafer to be maintained and stopping the heater output; and decreasing a temperature of the wafer while rotating the wafer at the second rotational speed.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: February 10, 2015
    Assignee: NuFlare Technology, Inc.
    Inventors: Yoshikazu Moriyama, Yoshihisa Ohta
  • Publication number: 20150031213
    Abstract: A plasma processing method is provided for a plasma processing apparatus which includes a plurality of upstream-side expansion valves and a plurality of downstream-side expansion valves connected to respective refrigerant inlets and respective refrigerant outlets to adjust a flow rate or a pressure of a refrigerant flowing into the respective refrigerant inlets and a flow rate or a pressure of a refrigerant flowing out from the respective refrigerant outlets. The method includes adjusting openings of the upstream-side expansion valves and openings of the downstream-side expansion valves so that no change in flow rate of the refrigerant occurs in a plurality of refrigerant channels between the plurality of upstream-side expansion valves and the plurality of downstream-side expansion valves via the plurality of refrigerant channels in a refrigeration cycle allowing the refrigerant to flow therein.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventors: Go MIYA, Masaru IZAWA, Takumi TANDOU
  • Patent number: 8920564
    Abstract: A substrate support may include a body; an inner ring disposed about the body; an outer ring disposed about the inner ring forming a first opening therebetween; a first seal ring disposed above the first opening; a shadow ring disposed above the inner ring, extending inward from the outer ring and forming a second opening between the shadow and outer rings; a second seal ring disposed above the second opening; a space at least partially defined by the body and the inner, outer, first, second, and shadow rings; a first gap defined between a processing surface of a substrate when present and the shadow ring; and a plurality of second gaps fluidly coupled to the space; wherein the first gap and the plurality of second gaps are configured such that, when a substrate is present, a gas provided to the space flows out of the space through the first gap.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Gwo-Chuan Tzu, Xiaoxiong Yuan, Amit Khandelwal, Benjamin Cheng Wang, Avgerinos V. Gelatos, Kai Wu, Michael P. Karazim, Jing Lin, Olkan Cuvalci
  • Patent number: 8916793
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Patent number: 8905124
    Abstract: A temperature controlled loadlock chamber for use in semiconductor processing is provided. The temperature controlled loadlock chamber may include one or more of an adjustable fluid pump, mass flow controller, one or more temperature sensors, and a controller. The adjustable fluid pump provides fluid having a predetermined temperature to a temperature-controlled plate. The mass flow controller provides gas flow into the chamber that may also aid in maintaining a desired temperature. Additionally, one or more temperature sensors may be combined with the adjustable fluid pump and/or the mass flow controller to provide feedback and to provide a greater control over the temperature. A controller may be added to control the adjustable fluid pump and the mass flow controller based upon temperature readings from the one or more temperature sensors.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Lin, Jyh-Cherng Sheu, Ming-Feng Yoo, Kewei Zuo
  • Patent number: 8895889
    Abstract: Methods and apparatus for regulating the temperature of a component in a plasma-enhanced process chamber are provided herein. In some embodiments, an apparatus for processing a substrate includes a process chamber and an RF source to provide RF energy to form a plasma in the process chamber. A component is disposed in the process chamber so as to be heated by the plasma when formed. A heater is configured to heat the component and a heat exchanger is configured to remove heat from the component. A chiller is coupled to the heat exchanger via a first flow conduit having an on/off flow control valve disposed therein and a bypass loop to bypass the flow control valve, wherein the bypass loop has a flow ratio valve disposed therein.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chunlei Zhang, Richard Fovell, Ezra Robert Gold, Ajit Balakrishna, James P. Cruse
  • Patent number: 8858715
    Abstract: The invention relates to a deposition device for comprising a processing space with a substrate support disposed therein, as well as several lift pins (50), which can be moved into and out of the plane of the substrate support to assist in introducing a semiconductor substrate into the processing space and removing it therefrom. The device is characterized in that the contact surface (52) of the lift pin (50) that is to be brought into contact with the semiconductor substrate and/or the substrate support is provided with a material layer (54) which has a lower hardness than the semiconductor substrate and/or the substrate support. This eliminates the risk of damage being caused to the substrate and/or to the substrate support as a result of said substrate shifting undesirably upon being lifted from and lowered onto the substrate support (susceptor). Thus there is no risk of scratches being formed and of particles being released, which might adversely affect the semiconductor manufacturing process.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 14, 2014
    Assignee: XYCarb Ceramics B.V.
    Inventors: Marcus Gerardus Van Munster, Charles Petronella Marie Buijs, Age Leijenaar
  • Patent number: 8852348
    Abstract: A substrate heat exchange pedestal comprises: (i) a support structure having a contact surface comprising a coating of a diamond-like material, and (ii) a heat exchanger in the support structure, the heat exchanger capable of heating or cooling a substrate.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: October 7, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Vijay D Parkhe, Kurt J Ahmann, Matthew C Tsai, Steve Sansoni
  • Patent number: 8822876
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Hamid Tavassoli, Surajit Kumar, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Publication number: 20140238609
    Abstract: A mounting table includes a base and an electrostatic chuck provided on the base. The base has first and second top surface on which the electrostatic chuck and a focus ring are respectively provided. The second top surface is provided below the first top surface. A coolant path in the base has central and peripheral paths extending below the first and second top surfaces, respectively. The peripheral path has a portion extending along a side surface toward the first top surface. The mounting surface has central and peripheral regions. The mounting surface has protrusions formed in a dot shape. The protrusions are formed such that a contact area between the protrusions of the peripheral region and the backside of an object per unit area becomes greater than a contact area between the protrusions of the central region and the backside of the object per unit area.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 28, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Taketoshi TOMIOKA, Taku GOHIRA, Toshiyuki MAKABE
  • Patent number: 8801893
    Abstract: A method of transferring heat from or to a workpiece support in an RF coupled plasma reactor includes placing coolant in an internal flow channel that is located inside the workpiece support and transferring heat from or to the coolant by circulating the coolant through a refrigeration loop in which the internal flow channel of the workpiece support constitutes an evaporator of the refrigeration loop. The method further includes maintaining thermal conditions of the coolant inside the evaporator within a range in which heat exchange between the workpiece support and the coolant is primarily or exclusively through the latent heat of vaporization of the coolant.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: August 12, 2014
    Assignee: BE Aerospace, Inc.
    Inventors: Paul Lukas Brillhart, Richard Fovell, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Publication number: 20140209242
    Abstract: Substrate processing chamber components for use in substrate processing chambers are provided herein. In some embodiments, a substrate processing chamber component may include a body having a first surface, one or more heat exchangers disposed within the body below the first surface, and one or more anisotropic layers, wherein a separate anisotropic layer is disposed between each of the one or more heat exchangers and the first surface.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JENNIFER Y. SUN, BIRAJA PRASAD KANUNGO
  • Publication number: 20140209245
    Abstract: A mounting table includes a base member, having a rear surface and a front surface facing the rear surface, in which a coolant path is formed, a groove portion having a bottom surface within the base member being annularly formed on the front surface, the base member being divided into a cylindrical inner base member portion positioned at an inner side of the groove portion and an annular outer base member portion positioned at an outer side of the groove portion by the groove portion; an annular focus ring supported by the outer base member portion, the annular focus ring having, at an inner side surface thereof, a protrusion that is protruded radially and inwardly to cover the groove portion; a first heat transfer member provided between the mounting surface and the coolant path; and a second heat transfer member provided between the focus ring and the coolant path.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Kyouhei YAMAMOTO, Taira TAKASE
  • Patent number: 8748780
    Abstract: A disclosed substrate processing apparatus comprises a heat exchange plate configured to heat and/or cool the substrate; plural protrusions provided on the heat exchange plate so as to allow the substrate to be placed on the plural protrusions, leaving a gap between the substrate and the heat exchange plate; a suction portion configured to attract the substrate onto the plural protrusion by suction through plural holes formed in the heat exchange plate; and a partition member that is provided on the heat exchange plate and lower than the plural protrusions, wherein the partition member is configured to divide the gap into two or more regions including at least one of the holes so that at least one of the two or more regions is two-dimensionally closed by the partition member.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: June 10, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Shouken Moro, Yasuhiro Takaki, Masatoshi Kaneda
  • Publication number: 20140154832
    Abstract: A dry etching apparatus includes a tray for conveying substrates. The tray has substrate housing holes as through holes each capable of housing the three substrates. The substrates are supported by a substrate support section protruding from a hole wall of each of the substrate housing holes. A stage is provided in a chamber in which plasma is generated. The stage includes substrate installation sections to be inserted from a lower surface side of the tray to the substrate housing holes so that lower surfaces of the plurality of the substrates transferred from the substrate support section are installed on substrate installation surfaces that are their upper end surfaces. High shape controllability and favorable productivity for the angular substrate can be implemented while preventing increased in size of the apparatus.
    Type: Application
    Filed: June 29, 2012
    Publication date: June 5, 2014
    Inventors: Shogo Okita, Syouzou Watanabe
  • Patent number: 8741065
    Abstract: A substrate processing apparatus includes a substrate stage for mounting two or more substrates thereon. The substrate stage includes substrate stage units. Each of the substrate stage units includes a central temperature control flow path for controlling the temperature of a central portion of each of the substrates and a peripheral temperature control flow path for controlling the temperature of a peripheral portion of each of the substrates. The central temperature control flow path and the peripheral temperature control flow path are formed independently of each other. The substrate stage includes one temperature control medium inlet port for introducing therethrough a temperature control medium into the peripheral temperature control flow path and temperature control medium outlet ports for discharging therethrough the temperature control medium from the peripheral temperature control flow path. The number of the temperature control medium outlet ports corresponds to the number of substrates.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 3, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masaya Odagiri, Yusuke Muraki, Jin Fujihara
  • Patent number: 8709202
    Abstract: Components of a plasma processing apparatus includes a backing member with gas passages attached to an upper electrode with gas passages. To compensate for the differences in coefficient of thermal expansion between the metallic backing member and upper electrode, the gas passages are positioned and sized such that they are misaligned at ambient temperature and substantially concentric at an elevated processing temperature. Non-uniform shear stresses can be generated in the elastomeric bonding material, due to the thermal expansion. Shear stresses can either be accommodated by applying an elastomeric bonding material of varying thickness or using a backing member comprising of multiple pieces.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 29, 2014
    Assignee: Lam Research Corporation
    Inventors: Anthony De La Llera, Allan K. Ronne, Jaehyun Kim, Jason Augustino, Rajinder Dhindsa, Yen-Kun Wang, Saurabh J. Ullal, Anthony J. Norell, Keith Comendant, William M. Denty, Jr.
  • Patent number: 8709162
    Abstract: A substrate support assembly and method for controlling the temperature of a substrate within a process chamber with a temperature uniformity of +/?5° C. are provided. A substrate support assembly includes a thermally conductive body comprising an aluminum material, a substrate support surface on the surface of the thermally conductive body and adapted to support the large area glass substrate thereon, one or more heating elements embedded within the thermally conductive body, and one or more cooling channels embedded within the thermally conductive body and positioned around the one or more heating elements. A process chamber comprising the substrate support assembly of the invention is also provided.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: April 29, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Samuel Leung, Su Ho Cho, William Allan Bagley
  • Patent number: 8702903
    Abstract: A thermally conductive sheet is used between a mounting table for mounting thereon a target substrate and an annular focus ring mounted on the mounting table to surround a circumferential peripheral portion of the target substrate. Further, the mounting table includes therein a cooling unit and is disposed in a depressurized accommodating chamber for accommodating therein the target substrate. The thermally conductive sheet has a non-adhesive layer on each of one or more surfaces thereof.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 22, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masaaki Miyagawa, Akihiro Yoshimura
  • Patent number: 8696814
    Abstract: A disclosed film deposition apparatus includes a process chamber inside which a reduced pressure space is maintained; a gas supplying portion that supplies a film deposition gas to the process chamber; a substrate holding portion that is made of a material including carbon as a primary constituent and holds a substrate in the process chamber; a coil that is arranged outside the process chamber and inductively heats the substrate holding portion; and a thermal insulation member that covers the substrate holding portion and is arranged to be separated from the process chamber, wherein the reduced pressure space is separated into a film deposition gas supplying space to which the film deposition gas is supplied and a thermal insulation space defined between the substrate holding portion and the process chamber, and wherein a cooling medium is supplied to the thermal insulation space.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: April 15, 2014
    Assignees: Tokyo Electron Limited, Rohm Co., Ltd.
    Inventors: Eisuke Morisaki, Hirokatsu Kobayashi, Jun Yoshikawa, Ikuo Sawada, Tsunenobu Kimoto, Noriaki Kawamoto, Masatoshi Aketa
  • Patent number: 8696862
    Abstract: A substrate mounting table is disposed in a processing chamber for performing a plasma process on a substrate and includes at least one power feed part formed of an insulating material surrounding a power feed line and a cooling medium path. The substrate mounting table further includes a protrusion portion for dividing a space formed on a substrate mounting surface of the mounting table into regions, inlet ports through which cooling gases are introduced into the regions divided by the protrusion portion, and a controller for controlling pressures or flow rates of the cooling gases.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: April 15, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Yasuharu Sasaki
  • Patent number: 8679255
    Abstract: A gas supply mechanism includes a gas introduction member having gas inlet portions through which a gas is introduced into a processing chamber, a processing gas supply unit, a processing gas supply path, branch paths, an additional gas supply unit and an additional gas supply path. The gas inlet portions includes inner gas inlet portions for supplying the gas toward a region where a target substrate is positioned in the chamber and an outer gas inlet portion for introducing the gas toward a region outside an outermost periphery of the target substrate. The branch paths are connected to the inner gas inlet portions, and the additional gas supply path is connected to the outer gas inlet portion.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 25, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Noriiki Masuda
  • Patent number: 8679254
    Abstract: [Problem] Provided is a vapor phase epitaxy apparatus of a group III nitride semiconductor including: a susceptor for holding a substrate; the opposite face of the susceptor; a heater for heating the substrate; a reactor formed of a gap between the susceptor and the opposite face of the susceptor; a raw material gas-introducing portion for supplying a raw material gases from the central portion of the reactor toward the peripheral portion of the reactor; and a reacted gas-discharging portion. Even when crystal growth is conducted on the surfaces of a large number of large-aperture substrates, the vapor phase epitaxy apparatus can eject each raw material gas at an equal flow rate for any angle, and can suppress the decomposition and crystallization of the raw material gases on the opposite face of the susceptor.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Kenji Iso, Yoshiyasu Ishihama, Ryohei Takaki, Yuzuru Takahashi
  • Patent number: 8663391
    Abstract: An electrostatic chuck for receiving a substrate in a substrate processing chamber comprises a ceramic puck having a substrate receiving surface having a plurality of spaced apart mesas, an opposing backside surface, and central and peripheral portions. A plurality of heat transfer gas conduits traverse the ceramic puck and terminate in ports on the substrate receiving surface to provide heat transfer gas to the substrate receiving surface. An electrode is embedded in the ceramic puck to generate an electrostatic force to retain a substrate placed on the substrate receiving surface. A plurality of heater coils are also embedded in the ceramic puck, the heaters being radially spaced apart and concentric to one another.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Matyushkin, Dennis Koosau, Theodoros Panagopoulos, John Holland
  • Publication number: 20140034241
    Abstract: Methods and systems for temperature enhanced chucking and dechucking of resistive substrates in a plasma processing apparatus are described herein. In certain embodiments, methods and systems incorporate modulating a glass carrier substrate temperature during a plasma etch process to chuck and dechuck the carrier at first temperatures elevated relative to second temperatures utilized during plasma etching. In embodiments, one or more of plasma heat, lamp heat, resistive heat, and fluid heat transfer are controlled to modulate the carrier substrate temperature between chucking temperatures and process temperatures with each run of the plasma etch process.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Inventors: Sergy G. Belostotskiy, Michael G. Chafin, Jingbao Liu, David Palagashvili
  • Patent number: 8641825
    Abstract: A substrate temperature regulation fixed apparatus has a base substance on which a vacuumed object is placed, an adhesive layer and a base plate. The base substance is fixed on the base plate through the adhesive layer. The adhesive layer contains a substance having plasma resistance.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: February 4, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Hiroshi Yonekura, Miki Saito, Koki Tamagawa
  • Patent number: 8623173
    Abstract: An electrode member for generating plasma includes an electrode plate and a cooling unit having a plurality of thermoelectric modules that are thermally in contact with the electrode plate. The thermoelectric modules may regulate the temperature of the electrode plate based on the Peltier effect.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 7, 2014
    Assignee: Advanced Display Process Engineering Co., Ltd.
    Inventor: Hyoung-Kyu Son
  • Patent number: 8608852
    Abstract: Components and systems for controlling a process or chamber component temperature as a plasma process is executed by plasma processing apparatus. A first heat transfer fluid channel is disposed in a component subjacent to a working surface disposed within a plasma processing chamber such that a first length of the first channel subjacent to a first temperature zone of the working surface comprises a different heat transfer coefficient, h, or heat transfer area, A, than a second length of the first channel subjacent to a second temperature zone of the working surface. In embodiments, different heat transfer coefficients or heat transfer areas are provided as a function of temperature zone to make more independent the temperature control of the first and second temperature zones.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Kallol Bera, Larry D. Elizaga
  • Patent number: 8608900
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: December 17, 2013
    Assignees: B/E Aerospace, Inc., Applied Materials, Inc.
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman
  • Patent number: 8592712
    Abstract: A mounting table structure for mounting thereon an object to be processed to form a metal-containing thin film on the object includes a ceramic mounting table in which a chuck electrode and a heater are embedded, and a metal flange connected to a bottom surface of a peripheral portion of the mounting table. The mounting table structure further includes a metal base which is joined to the flange by screws and has a coolant path for flowing a coolant therein, and a metal seal member interposed between the flange and the base.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Toshiaki Fujisato, Ronald Nasman
  • Patent number: 8555810
    Abstract: A plasma dry etching apparatus includes a pedestal in a process chamber, the pedestal being configured to support a wafer, a cathode electrode and a plate electrode in the process chamber, the cathode and plate electrodes being configured to apply radio-frequency (RF) power, an edge ring on an edge of the pedestal, a coupling ring having a first side on the pedestal and a second side on the edge ring, an edge cooling unit in the coupling ring, the edge cooling unit being configured to cool the edge ring to drop a temperature of an extreme edge of the wafer, and an edge heating unit in the coupling ring, the edge heating unit being configured to heat the edge ring to raise the temperature of an extreme edge of the wafer.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Joon Park, Su-Hong Kim
  • Patent number: 8540818
    Abstract: A polycrystalline silicon reactor in which the polycrystalline silicon is deposited by supplying raw-material gas to a heated silicon seed rod has; a bottom plate on which the silicon seed rod stands, having a dished upper surface; an opening of a path penetrating the bottom plate from the upper surface to a lower surface, being provided at a lowest part of the upper surface; and a plug which is detachably attached to the opening.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Seiichi Kirii, Teruhisa Kitagawa
  • Patent number: 8540819
    Abstract: A ceramic heater for a semiconductor substrate process includes a plate and a shaft. The plate includes a first base and a second base bonded to the first base. Defined on a mounting surface of the first base are: a first region having a surface contacting with a mounted substrate; a purge groove provided in the portion covered with the substrate and surrounds the first region; and a second region having a surface surrounding the purge groove. The first base has: an adsorber configured to adsorb the mounted substrate onto the surface of the first region; and multiple purge holes each penetrating from the bottom surface of the purge groove to the lower surface of the first base. The purge groove is supplied with a purge gas through the multiple purge holes. The surface of the second region is located lower than that of the first region.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 24, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Kataigi, Yuji Akatsuka
  • Patent number: 8491752
    Abstract: A substrate mounting table includes a plate shaped member provided with a mounting surface for mounting a substrate thereon, a plurality of gas injection openings opened on the mounting surface to supply a gas toward the mounting surface, and a gas supply channel for supplying the gas through the gas injection openings; and a thermally sprayed ceramic layer covering the mounting surface. At least inner wall portions of the gas supply channel are formed in curved surface shapes, the inner wall portions facing the gas injection openings.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: July 23, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Takehiro Ueda, Yoshiyuki Kobayashi, Kaoru Oohashi
  • Publication number: 20130174983
    Abstract: An etching chamber 1 incorporates a focus ring 9 so as to surround a semiconductor wafer W provided on a lower electrode 4. The plasma processor is provided with an electric potential control DC power supply 33 to control the electric potential of this focus ring 9, and so constituted that the lower electrode 4 is supplied with a DC voltage of, e.g., ?400 to ?600 V to control the electric potential of the focus ring 9. This constitution prevents surface arcing from developing along the surface of a substrate to be processed.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 11, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: TOKYO ELECTRON LIMITED
  • Publication number: 20130105081
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a coupling each of the reservoirs to a common secondary reservoir. Heat transfer fluid is pumped from the secondary reservoir to either the hot or cold reservoir in response to a low level sensed in the reservoir. In an embodiment, both the hot and cold reservoirs are contained in a same platform as the secondary reservoir with the hot and cold reservoirs disposed above the secondary reservoir to permit the secondary reservoir to catch gravity driven overflow from either the hot or cold reservoir.
    Type: Application
    Filed: October 8, 2012
    Publication date: May 2, 2013
    Inventors: Fernando SILVEIRA, Brad L. MAYS
  • Publication number: 20130109189
    Abstract: A system for plasma processing of wafers at high throughput, particularly suitable for processing solar cells. A loading station has a loading conveyor, a loading transport mechanism, and a chuck loading station accepting transportable electrostatic chucks, wherein the loading transport mechanism is configured to remove wafers from the conveyor and place them on the transportable electrostatic chucks. The transportable chuck is delivered to at least one processing chamber to perform plasma processing of wafers. An unloading station has an unloading conveyor, an unloading transport mechanism, and a chuck unloading station accepting the transportable electrostatic chucks from the processing chamber, wherein the unloading transport mechanism is configured to remove wafers from the transportable electrostatic chucks and place them on the conveyor. A chuck return module configured for transporting the transportable electrostatic chucks from the chuck unloading station to the chuck loading station.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Applicant: INTEVAC, INC.
    Inventor: Intevac, Inc.
  • Patent number: 8430962
    Abstract: A gas supply mechanism includes a gas introduction member having gas inlet portions through which a gas is introduced into a processing chamber, a processing gas supply unit, a processing gas supply path, branch paths, an additional gas supply unit and an additional gas supply path. The gas inlet portions includes inner gas inlet portions for supplying the gas toward a region where a target substrate is positioned in the chamber and an outer gas inlet portion for introducing the gas toward a region outside an outermost periphery of the target substrate. The branch paths are connected to the inner gas inlet portions, and the additional gas supply path is connected to the outer gas inlet portion.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 30, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Noriiki Masuda