Abstract: In a first step, a molding die is immersed in a raw liquid including cellulosic fibers. Then, the liquid of a raw liquid is sucked through a net material by a liquid suction part, so as to cause the cellulosic fibers to be laminated on the net material. In the second step, the cellulosic fibers laminated on the net material are dried, so as to form a protrusion. In the third step, the dried protrusion and the communication part are removed from the molding die. A passage part of the communication part is formed at a position where a projection portion had been arranged, the passage part being configured to communicate an inside of the protrusion with an outside of the protrusion.
Abstract: The present document discloses a tool or tool part for use in a process of molding a product from a pulp slurry. The tool or tool part comprises a self-supporting tool wall portion having a product face, for contacting the product, and a back face on the other side of the wall relative to the product face. The tool wall portion presenting pores, which are provided by a plurality of channels extending through the tool wall portion, from the product face to the back face. The channels are straight or curved with no more than one point of inflection.
Type:
Grant
Filed:
August 22, 2019
Date of Patent:
July 19, 2022
Assignee:
Celwise AB
Inventors:
John Andersson, Udo Vogt, David A. Pierce
Abstract: An automatic molding machine for a molded product, a manufacturing method and a finished product includes an upper pulp suction mold and a lower pulp suction mold configured to simultaneously suck the pulp in a pulp box, wherein the molds are closed and formed into a formed blank which becomes the finished product of the molded product after dehydration, hot pressing and shaping. Advantages include speeding up manufacturing, increasing the thickness of the finished product, increasing the shock absorption effect, and making an excellent surface.
Abstract: According to present disclosure, there is disclosed an algae growth and cultivation system that provides a cost-efficient means of producing algae biomass as feedstock for algae-based products, such as, fertilizer, feed, biofuel manufacture, and desirably impacts, nutrient recovery from waste streams for valued byproducts production, recycle water, and alternative/renewable energy production. The system as discussed herein is an integrated systems approach to wastewater treatment, algal strains selection for byproducts production, and recycle of algal biomass-processing waste or additional algae harvested as feedstock for products such as fertilizer production. Embodiments of a system as discussed herein present an economically viable algae production system and process that allows algae-derived products such as fertilizer, feed, biofuels, etc. to compete with non-organic or petroleum products in the marketplace.
Abstract: The invention relates to a method for production of an auto-adhesively bonded, porous, pressure-resistant molding made from comminuted lignocellulosic fibrous materials that are processed at temperatures between 120° C. and 180° C. and a pressure between 2 bar and 8 bar to yield a fiber suspension that is subsequently filled into a mold or applied to a carrier and dried without the addition of a synthetic binder.
Type:
Grant
Filed:
May 21, 2018
Date of Patent:
April 14, 2020
Assignee:
Fraunhofer-Gesselschaft zur Förderung der angewandten Forschung e.V.
Inventors:
Volker Thole, Julia Belda, Frauke Bunzel, Nina Ritter
Abstract: The present invention relates to a 3D-formable sheet material, a process for the preparation of a 3D-formed article, the use of a cellulose material and at least one particulate inorganic filler material for the preparation of a 3D-formable sheet material and for increasing the stretchability of a 3D-formable sheet material, the use of a 3D-formable sheet material in 3D-forming processes as well as a 3D-formed article comprising the 3D-formable sheet material according.
Type:
Grant
Filed:
October 13, 2016
Date of Patent:
March 3, 2020
Assignee:
FiberLean Technologies Limited
Inventors:
Johannes Kritzinger, Michel Schenker, Patrick Gane, Philipp Hunziker
Abstract: In the present technology, a thermally expandable microcapsule complex is blended in a rubber component, the thermally expandable microcapsule complex being obtained by preparing an aqueous solution of a water-soluble polymer having a concentration of 1 to 30 mass %, adding from 5 to 60 parts by mass of cellulose fibers to 100 parts by mass of the aqueous solution to prepare a liquid dispersion (1), adding from 10 to 200 parts by mass of thermally expandable microcapsules to the liquid dispersion (1) to prepare a liquid dispersion 2), and evaporating the moisture content of the liquid dispersion (2).
Type:
Grant
Filed:
March 10, 2016
Date of Patent:
February 11, 2020
Assignee:
The Yokohama Rubber Co., LTD.
Inventors:
Kazushi Kimura, Hirokazu Kageyama, Masaki Sato
Abstract: The present document discloses a tool or tool part for use in a process of molding a product from a pulp slurry. The tool or tool part comprises a self-supporting tool wall portion having a product face, for contacting the product, and a back face on the other side of the wall relative to the product face. The tool wall portion presenting pores, which are provided by a plurality of channels extending through the tool wall portion, from the product face to the back face. The channels are straight or curved with no more than one point of inflection.
Type:
Grant
Filed:
December 22, 2014
Date of Patent:
October 8, 2019
Assignee:
Celwise AB
Inventors:
John Andersson, Udo Vogt, David A. Pierce
Abstract: A radiant heating panel, for typical use as cover for interior walls and ceilings, is provided, that is manufactured in a continuous process involving at least one sheet material, a settable material and a heating element. A method of installing such a heating panel is also provided, along with an apparatus and method required to terminate the heating panel.
Type:
Grant
Filed:
October 14, 2016
Date of Patent:
January 22, 2019
Inventors:
Richard Dod Coates, Alexander Stewart Vaughan
Abstract: A removable case for a mobile device formed from a molded pulp that is capable of conforming to the shape of the mobile device. The elasticity of the molded pulp material allows it to conform to the shape of the mobile device and to retain the mobile device within the case. This elasticity also aids in the protection of the mobile device. The molded pulp case has a plurality of sides that cover at least a portion of the side walls of the mobile device and overlap a portion of the front panel of the mobile device. A back panel covers a substantial portion of the rear panel of the mobile device.
Abstract: An object of the present invention is in that a body waste treating material can be manufactured by using a defective fibrous material unsuitable for forming paper generated upon treating a pulpable raw material without materials for complementing a water absorptive property and a water retention property and a wasting step in manufacturing at a low cost, and resources may be efficiently used. [Solution to Problem] This invention is characterized by molding a defective fibrous material unsuitable for forming paper that is a fibrous material obtained by defiberizing and dehydrating a pulpable raw material to a certain shape. The defective fibrous material is characterized by including thin and/or short fibers.
Abstract: A pyrophoric sheet that comprises oxidizable iron, non-combustible fibers, stiction-reducing coating where the sheet has a water content <2%.
Type:
Grant
Filed:
July 19, 2012
Date of Patent:
October 7, 2014
Assignee:
nanoComposix, Inc.
Inventors:
Richard K. Baldwin, Steven J. Oldenburg, Andrew R. Smith
Abstract: The present invention relates to a process for the production of bleached wood particles and a process for the production of pale to white wood-base materials which are produced from the bleached wood particles.
Type:
Grant
Filed:
April 23, 2008
Date of Patent:
July 22, 2014
Assignee:
BASF SE
Inventors:
Dieter Schoenhaber, Stefan Erren, Katerina Stieglitz, Eberhard Beckmann, Andres Carlos Garcia Espino, Norbert Jaeger, Juliane Kruesemann
Abstract: A process for making an absorbent component comprising the steps of providing individual sheets of pulp; attaching a first individual pulp sheet to one or more second individual pulp sheets to form a strip of pulp; feeding the strip of pulp into a defiberizer; defiberizing the strip of pulp to form defiberized fibers; and depositing the defiberized fibers onto a forming surface to form the absorbent component.
Type:
Grant
Filed:
January 24, 2013
Date of Patent:
July 8, 2014
Assignee:
The Procter & Gamble Company
Inventors:
Anirudh Singh, Christopher Michael Young, Timothy Duane Smith, Steven Lee Barnholtz, Dirk Saevecke, Gina Isoldi, Florian Philip Rousselange, Norbert Matthias Stelzer
Abstract: [Technical Problem] In a body waste treating material, a method for manufacturing the body waste treating material, and an apparatus for manufacturing the same, a technical problem is in manufacturing the body waste treating material without a water absorbing agent as a material for complementing a water absorptive property and a water retention property and a wasting step in manufacturing easily at a low cost.
Abstract: A pulp mould, comprising a porous sintered body (11) having an outer surface (13) and an inner surface (12), wherein a portion (11B) of said mould comprises an area (16) at its outer periphery provided with means (16A; 47) integrated during sintering to achieve impermeability of said outer area (16).
Type:
Grant
Filed:
November 12, 2010
Date of Patent:
June 10, 2014
Assignee:
Pakit International Trading Company Inc.
Inventors:
Björn Nilsson, Leif Båskman, John Shand
Abstract: Although a microfibrillated cellulose has been conventionally added to a resin molded article for the purpose of improving the properties of resin such as strength, it is only possible to achieve the same level of strength as that of the resin itself. The object is to provide a resin molded article of greater strength. A molded article can be produced by blending resin with a microfibrillated cellulose having a type-II crystalline structure produced by treating a microfibrillated cellulose with an alkali solution. The molded article can be largely increased in tensile strength or flexural strength, tensile strain at break or flexural strain at break, and fracture toughness (work-of-fracture) compared to a molded article produced with resin containing a conventional microfibrillated cellulose.
Abstract: A filter medium for liquid filtration of fine texture exhibiting high strength when wetted with water, which filter medium is comprised of a wet-laid nonwoven fabric. There is provided a filter medium for liquid filtration comprised of a wet-laid nonwoven fabric, characterized in that through blending of 0.5 to 40 wt. % of unbeaten natural fibers, it exhibits a very fine texture, a lowering ratio, calculated from bursting strength in ordinary state and bursting strength when wetted with water, of 30% or below, and a bursting strength, had when wetted with water, of 300 kPa or greater.
Type:
Grant
Filed:
July 21, 2004
Date of Patent:
March 4, 2014
Assignee:
Hokuetsu Paper Mills, Ltd.
Inventors:
Nobuyuki Sakadume, Eiko Meguro, Toshihiko Soyama
Abstract: A building material for use in forming exterior surface coverings. According to a preferred embodiment, the building material consists of the combination of a paper material, bonding agent, and water. The building material can either be formed directly upon a substrate, such as a wall or ceiling, or otherwise formed as a sheet of material or molding that can thereafter be affixed to a given surface or substrate. The building materials can be customized to have a specific type of color, shape and texture, and can further be utilized in a wide variety of building applications.
Abstract: A method of making a formed, dried lignocellulose fiber material comprising (a) providing an aqueous lignocellulose fiber pulp slurry having an effective consistency; (b) de-watering the slurry to provide a de-watered material at an effective de-watering rate under an effective pressure to prevent or reduce the formation of fissures and voids within the material; (c) drying an effective amount of the de-watered material at an effective temperature and period of time to provide the formed, dried lignocellulose fiber material having a thickness of at least 5 mm. The formed, dried lignocellulose material may be used to make a lignocellulose fiber-resin composite material of use as a cost effective structural member, as a substitute for steel, in, for example, bridges, processing equipment, and the like.
Abstract: The invention concerns a method for producing a cellulose-containing mass comprising an organic material, the method comprising the steps a) preparation of an input comprising organic material and a liquid content, and b) exposing said input to a wet-mixing procedure at a temperature in the range of 40 to 90° C. preferably 50 to 80° C. and most preferred around 60° C.
Abstract: A method of making a formed, dried lignocellulose fiber material comprising (a) providing an aqueous lignocellulose fiber pulp slurry having an effective consistency; (b) de-watering the slurry to provide a de-watered material at an effective de-watering rate under an effective pressure to prevent or reduce the formation of fissures and voids within the material; (c) drying an effective amount of the de-watered material at an effective temperature and period of time to provide the formed, dried lignocellulose fiber material having a thickness of at least 5 mm. The formed, dried lignocellulose material may be used to make a lignocellulose fiber-resin composite material of use as a cost effective structural member, as a substitute for steel, in, for example, bridges, processing equipment, and the like.
Abstract: A manufacturing method of a paper making part for a loudspeaker has freedom of adjusting a characteristic and a sound quality, and has a higher productivity. Accordingly, a fibrillating step of a paper making material is achieved by an explosive crushing step. Alternatively, the step is achieved by a mixing step of a paper making material and a liquid, a material micro-fabricating step of applying a pressure to a mixed solution obtained by the mixing step so as to pass through an orifice and thereafter run into a device wall, and a paper making step including the micro-fabricated material.
Abstract: The papermaking sheet member includes inorganic fibers, and the inorganic fibers include a lump-shaped cohered fiber which coheres as a lump.
Abstract: A building material for use in forming exterior surface coverings. According to a preferred embodiment, the building material consists of the combination of a paper material, bonding agent, and water. The building material can either be formed directly upon a substrate, such as a wall or ceiling, or otherwise formed as a sheet of material or molding that can thereafter be affixed to a given surface or substrate. The building materials can be customized to have a specific type of color, shape and texture, and can further be utilized in a wide variety of building applications.
Abstract: A molded article containing a powder and a fibrous material which is obtained by a wet papermaking process. The fibrous material has a fiber length frequency distribution such that 30% to 90% of the fibrous material have a fiber length of 0.4 to 2.0 mm and that 9% to 50% of the fibrous material has a fiber length of 0.4 mm or less. The molded article contains at least 50% by weight of the powder.
Abstract: A method of forming a moulded and printed product from pulp material including the steps of: forming a pre-form mould to have one or more planar surfaces, compound conjoined planar surfaces and/or two dimensional curved surfaces; transferring an amount of pulp slurry material to the pre-form mould; forming a moulded pre-form from the transferred pulp slurry material; applying printing to the planar and/or dimensional curved surfaces in a pre-distorted configuration; and moulding the printed pre-form to a different final shape whereby the printed surfaces retain the printing without running and the printing conforms to a desired post distortion configuration.
Abstract: This invention is an acoustic fiber-based substrate composed primarily of insulation-type spun fibers or blends of such fibers and wheel spun fibers. The fibers are bound with a water-dispersible latex binder, or an agri-binder such as starch in conjunction with cellulose fiber. The insulation-type spun fibers can be first quality virgin, post-industrial waste-stream or post-consumer waste stream fiber. The substrate is wet-formed from a very dilute aqueous dispersion of ingredients onto a mesh forming screen, as on a Fourdrinier paper machine. By virtue of the insulation-type spun fiber dimensions, morphology and orientation: very low density wet-mats can be formed from a sufficiently dilute suspension. With respect to other wet-formed substrates, the invention is much lower in density and more highly porous, and, thus, the substrate is highly absorbing, exhibiting noise reduction coefficients, NRC values of about 0.80 or greater.
Abstract: Disclosed herein are embodiments of a multi-layer nonwoven fiber material, and related methods of manufacturing the material. In one exemplary embodiment, the fiber material includes a first layer of directionally aligned fibers together with a second layer of randomly dispersed fibers dispersed over the first layer. Consistent with one exemplary method for manufacturing a nonwoven fiber material, the method includes dispersing a first plurality of fibers horizontally in one or more predetermined directions, as well as dispersing a second plurality of fibers horizontally in random directions. In such an embodiment, the second plurality of fibers is dispersed over the first plurality of fibers. Moreover, an exemplary embodiment of a roofing shingle employing a nonwoven fiber material as described herein is as disclosed.
Type:
Grant
Filed:
January 26, 2010
Date of Patent:
September 27, 2011
Assignee:
Building Materials Investment Corporation
Inventors:
Paul G. Wilson, Darrell R. Heine, John J. Andrews, Louis T. Hahn, Matti Kiik
Abstract: Disclosed herein are embodiments of a multi-layer nonwoven fiber material, and related methods of manufacturing the material. In one exemplary embodiment, the fiber material includes a first layer of directionally aligned fibers together with a second layer of randomly dispersed fibers dispersed over the first layer. Consistent with one exemplary method for manufacturing a nonwoven fiber material, the method includes dispersing a first plurality of fibers horizontally in one or more predetermined directions, as well as dispersing a second plurality of fibers horizontally in random directions. In such an embodiment, the second plurality of fibers is dispersed over the first plurality of fibers. Moreover, an exemplary embodiment of a roofing shingle employing a nonwoven fiber material as described herein is as disclosed.
Type:
Grant
Filed:
January 26, 2010
Date of Patent:
September 6, 2011
Assignee:
Building Materials Investment Corporation
Inventors:
Paul G. Wilson, Darrell R. Heine, John J. Andrews, Louis T. Hahn, Matti Kiik
Abstract: Provided is a lightweight, fibrous thermal insulation panel including high temperature resistant biosoluble inorganic fibers, expanded perlite, binder, and optionally conventional high temperature resistant inorganic fibers. Further provided is a method for preparing a lightweight, fibrous high temperature thermal insulation panel including: (a) providing an aqueous slurry comprising from about 15% to about 90% high temperature resistant biosoluble inorganic fibers, from about 10% to about 80% expanded perlite, at least one of from 0% to about 50% organic binder or from 0% to about 20% inorganic binder by weight, and optionally from 0% to about 70% conventional high temperature resistant fibers; (b) forming the lightweight, fibrous thermal insulation panel by depositing the said aqueous slurry onto a substrate; (c) partially dewatering the slurry on the substrate to form a fibrous layer; and (d) drying the fibrous layer to a moisture content of no greater than about 5% by weight.
Abstract: This invention relates to a porous pulp mold comprising sintered particles and a plurality of drainage channels. The pulp mold of the invention can be produced in a fast and cost effective way. The molding surface of the invention comprises small pore openings, to evacuate fluid and prevent fibers from entering the pulp mold. Furthermore the pulp mold of the invention comprises drainage channels improving the drainage capabilities of the pulp mold. The molding surface can be heated to at least 200° C., due to high heat conductivity of the pulp mold and its ability to withstand high temperatures.
Type:
Grant
Filed:
November 25, 2005
Date of Patent:
March 22, 2011
Assignee:
PAKIT International Trading Company Inc.
Inventors:
Björn Nilsson, Lars Graffton, Leif Båskman
Abstract: A speaker diaphragm of the present invention is molded by paper-making molding, using not smaller than 5 wt % of fibers extracted from at least bamboo leaves. It is thereby possible to improve the rigidity of the speaker diaphragm, so as to realize a speaker diaphragm with low environmental load, reducible cost and high sound quality.
Abstract: Methods for making a molded beverage container insulator from a slurry including water and a polysaccharide by presenting at least one male mold, which may have an elliptical cross section, therein and causing a portion of the slurry to temporarily adhere to the at least one mold. After a suitable period of time, removing the mold from the slurry and then removing the insulator. At such time, and particularly if the mold is not characterized as elliptical in cross section, the insulator is subject to bidirectional compression in order to collapse the same. Opposing hinge elements may be formed in the insulator, either at the time of molding or subsequently, to localize stresses resulting from the collapsing of the insulator. The resulting insulator is fully recyclable/compostable and possesses a constricting bias to mitigate container slip issues.
Abstract: Disclosed herein are embodiments of a multi-layer nonwoven fiber material, and related methods of manufacturing the material. In one exemplary embodiment, the fiber material includes a first layer of directionally aligned fibers together with a second layer of randomly dispersed fibers dispersed over the first layer. Consistent with one exemplary method for manufacturing a nonwoven fiber material, the method includes dispersing a first plurality of fibers horizontally in one or more predetermined directions, as well as dispersing a second plurality of fibers horizontally in random directions. In such an embodiment, the second plurality of fibers is dispersed over the first plurality of fibers. Moreover, an exemplary embodiment of a roofing shingle employing a nonwoven fiber material as described herein is as disclosed.
Type:
Grant
Filed:
November 16, 2007
Date of Patent:
November 16, 2010
Assignee:
Elk Premium Building Products, Inc.
Inventors:
Paul G. Wilson, Darrell R. Heine, John J. Andrews, Louis T. Hahn, Matti Kiik
Abstract: An element made by papermaking for use in the production of a casting cast which comprises an organic fiber, an inorganic fiber, and a binder. The contents of the organic fiber, the inorganic fiber, and the binder are preferably 10 to 70 parts by weight, 1 to 80 parts by weight, and 10 to 85 parts by weight, respectively. The binder is preferably an organic binder. The organic fiber is preferably pulp fiber.
Abstract: A molded sheet containing at least an oxidizable metal, a moisture retaining agent, and a fibrous material and having a content of components other than the fibrous material of 50% by weight or higher. The sheet has a thickness of 0.08 to 1.2 mm and a breaking length of 100 to 4000 m.
Abstract: A process and apparatus for making die-dried friction wafers collects friction particulates in a mold defining a wafer. The mold includes at least one perforate wall portion against which an aqueous slurry including the particulates is passed to form at least one layer on the wall as the particulates collect in the mold. The collection is dried followed by curing, and may be cured in the mold by heating.
Type:
Grant
Filed:
August 24, 2006
Date of Patent:
May 4, 2010
Assignee:
Raytech Composites, Inc.
Inventors:
Angela L. Petroski, Samuel A. Truncone, James Macey, Hualin Jiang
Abstract: A molding head is especially adapted for vacuum molding or forming of structures and, in particular, fibrous composite structures in an adjustable, controllable three dimensional orientation before, during and after molding. Such a molding head includes a mold plate with narrow slots in the mold surface thereof and wider channels in the back surface thereof, with such slots and channels intersecting one another. A control system of servomotors or other actuators permits movement and orientation of the mold head during forming, thereby creating the ability to vary the material properties based on gravity and particle or suspension grain, thickness and other now controllable properties.
Abstract: A method of making a formed, dried lignocellulose fiber material comprising (a) providing an aqueous lignocellulose fiber pulp slurry having an effective consistency; (b) de-watering the slurry to provide a de-watered material at an effective de-watering rate under an effective pressure to prevent or reduce the formation of fissures and voids within the material; (c) drying an effective amount of the de-watered material at an effective temperature and period of time to provide the formed, dried lignocellulose fiber material having a thickness of at least 5 mm. The formed, dried lignocellulose material may be used to make a lignocellulose fiber-resin composite material of use as a cost effective structural member, as a substitute for steel, in, for example, bridges, processing equipment, and the like.
Abstract: A building material for use in forming exterior surface coverings. According to a preferred embodiment, the building material consists of the combination of a paper material, bonding agent, and water. The building material can either be formed directly upon a substrate, such as a wall or ceiling, or otherwise formed as a sheet of material or molding that can thereafter be affixed to a given surface or substrate. The building materials can be customized to have a specific type of color, shape and texture, and can further be utilized in a wide variety of building applications.
Abstract: A molded article contains inorganic powder as a main component and further contains inorganic fiber, organic fiber, a thermosetting resin, and heat expandable particles, the heat expandable particles being present in an amount of 0.5% to 10% by mass based on the total mass of the inorganic powder, the inorganic fiber, the organic fiber, the thermosetting resin, and the heat expandable particles. The inorganic powder is preferably graphite. The inorganic fiber is preferably carbon fiber. The organic fiber is preferably pulp fiber. The thermosetting resin is preferably a phenol resin.
Abstract: The present invention relates to a process for the manufacture of structural hybrid thermoplastic composites where organic and inorganic fibres are well dispersed in a thermoplastic matrix. The process comprises defibrillating the organic fibres with or without the presence of surface active agents using a mixer at a high shear and at a temperature lower than the decomposition temperature of organic fibres and melting point of the surface active agents to separate the hydrogen bonded fibres and generate microfibres, followed by blending and dispersion of the organic fibres in the thermoplastic matrix to produce a fibre composite, followed by further blending and dispersion of the fibre composite with inorganic fibres at a low shear to get the moldable hybrid composite, followed by extrusion, injection or compression-injection molding. Low shear mixing maintains the inorganic fibre length.
Type:
Application
Filed:
September 21, 2007
Publication date:
December 24, 2009
Inventors:
Mohini M. Sain, Suhara Panthapulakkal, Shiang F. Law
Abstract: A method of making a formed, dried lignocellulose fiber material comprising (a) providing an aqueous lignocellulose fiber pulp slurry having an effective consistency; (b) de-watering the slurry to provide a de-watered material at an effective de-watering rate under an effective pressure to prevent or reduce the formation of fissures and voids within the material; (c) drying an effective amount of the de-watered material at an effective temperature and period of time to provide the formed, dried lignocellulose fiber material having a thickness of at least 5 mm. The formed, dried lignocellulose material may be used to make a lignocellulose fiber-resin composite material of use as a cost effective structural member, as a substitute for steel, in, for example, bridges, processing equipment, and the like.
Abstract: A process of producing a heat generating molded article comprising the steps of making an intermediate product by a papermaking process from a raw material composition containing at least an oxidizable metal powder, a moisture retaining agent, a fibrous material, and water and incorporating an electrolyte into the resulting intermediate product.
Abstract: A method for manufacturing a wastepaper shock absorbing material using a vacuum forming principle is provided. The method includes disintegrating wastepaper selected from at least one of old corrugated containers, old newspapers and milk cartons, diluting the disintegrated wastepaper to form a pulp suspension, mixing the pulp suspension with a cationic starch to form a mixture, and vacuuming the mixture by applying a first vacuum in a first direction and a second vacuum in a second direction in a vacuum former to vacuum-dehydrate the mixture and provide a shock absorbing material. The first direction is substantially opposite to the second direction. The method further includes drying the shock absorbing material and performing a surface sizing process on a surface of the shock absorbing material. The wastepaper shock absorbing material has a low elastic modulus and density and can be manufactured without using the conventional press process performed by a press plate.
Type:
Grant
Filed:
December 1, 2006
Date of Patent:
September 22, 2009
Assignee:
Industry-Academic Cooperation Foundation Gyeongsang National University
Inventors:
Chul hwan Kim, Young min Lee, Dae bin Song
Abstract: In a process for producing a loudspeaker diaphragm, pulp is deposited on a paper-making mold in the presence of vortex stream of water having pulp dispersed therein in a paper-making bath. Pulp is deposited on the paper-making mold while at least the water having pulp dispersed therein is rotated by the vortex stream in the paper-making bath. Consequently, variation of pulp fiber orientation is suppressed, and a loudspeaker diaphragm with high reproducibility and stable quality is produced with a high productivity.
Abstract: A shaped pulp article and the method for making same are disclosed. The method of making a shaped pulp article includes the steps of preparing a slurry by mixing at least one material of construction with water, placing the slurry in a porous mold having a shaped molding surface, extracting excess water through the porous mold to form the shaped article, and pressing the shaped article between complementary heated male and female structures.
Abstract: A papermaking mold 10 includes a mold main body 10A having a wire part and a wire 108 disposed on the wire part. The wire part has a base surface 102, a columnar projection 106 lying sideways on the base surface 102, and at least two plate-like projections 105 at predetermined positions at a predetermined spacing in the longitudinal direction of the columnar projection 106. The facing inner sides 105A of every adjacent two of the plate-like projections 105 are each formed of a part of a circular conical surface or a part of a hyperboloid.
Type:
Application
Filed:
August 30, 2007
Publication date:
June 18, 2009
Applicant:
Kao Corporation
Inventors:
Sei Ootaki, Yoshimasa Takagi, Masayuki Osaki, Shuu Ahiko
Abstract: This invention relates to a porous pulp mould comprising sintered particles and a plurality of drainage channels. The pulp mould of the invention can be produced in a fast and cost effective way. The moulding surface of the invention comprises small pore openings, to evacuate fluid and prevent fibres from entering the pulp mould. Furthermore the pulp mould of the invention comprises drainage channels improving the drainage capabilities of the pulp mould. The moulding surface can be heated to at least 200° C., due to high heat conductivity of the pulp mould and its ability to withstand high temperatures.
Type:
Application
Filed:
November 25, 2005
Publication date:
June 4, 2009
Inventors:
Bjorn Nilsson, Lars Graffton, Leif Baskman