Porous Patents (Class 165/907)
  • Patent number: 10197069
    Abstract: An airseal for sealing between a rotating component and a stationary component of a turbine engine includes a sealing surface defining a spacing between the airseal and a rotating component of the turbine engine and a mounting flange to secure the airseal to a stationary component of the turbine engine. An airseal body extends between the sealing surface and the mounting flange. The airseal body includes a cavity configured to absorb thermal energy transferred into the airseal from a flowpath of the turbine engine. A gas turbine engine includes a rotating component and a stationary component located radially outboard of the rotating component. An airseal is located therebetween and includes a sealing surface and a mounting flange to secure the airseal to the stationary component. An airseal body extends between the sealing surface and the mounting flange and includes a cavity to absorb thermal energy transferred into the airseal.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: February 5, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Nicholas R. Leslie, Mark J. Rogers, Philip Robert Rioux
  • Patent number: 9540953
    Abstract: A housing-side structure of a turbomachine, in particular of a gas turbine, including an in particular segmented jacket ring (16), which carries an abradable lining for radially outer ends of rotor-side moving blades of a moving blade ring, wherein the jacket ring (16) carrying the abradable lining is connected by means of at least one constriction (18) to a stator-side housing part (19), which is radially adjacent to the jacket ring (16) on the outside and the jacket ring is thermally decoupled from said stator-side housing.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 10, 2017
    Assignee: MTU Aero Engines GmbH
    Inventor: Wilfried Weidmann
  • Patent number: 9291123
    Abstract: An exhaust duct for a gas turbine engine has an inner wall and an outer wall connected by a plurality of spaced ribs. The duct extends axially. The ribs extend circumferentially across an entire cross-section of the inner and outer walls. The plurality of ribs is spaced axially along the exhaust duct. The inner wall has an inner surface facing an inner chamber. The inner surface receives a coating. The coating is deposited on a metal wire fiber strain isolation pad which is connected to the inner surface.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: March 22, 2016
    Assignee: United Technologies Corporation
    Inventor: Gary D. Roberge
  • Patent number: 8991480
    Abstract: Disclosed is a heat exchanger comprising a boiling passage and cooling passage defined by opposite sides of metal walls. Layers of brazing material between the metal walls and a spacer member bond components of the heat exchanger together. It has been found that good quality brazed joints can be made by modifying the brazing thermal cycle to first employing a temperature of about 500° C. for an extended period of time and then elevating the temperature to about 590° to 600° C.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventor: Thomas J. Godry
  • Patent number: 8794216
    Abstract: A charge-air cooler includes a reticulated foam element configured to provide a plurality of nonlinear flow paths for a relatively high-temperature first fluid. The charge-air cooler also includes a cooling passage element disposed one of proximate to and in direct contact with the reticulated foam element and configured to accept a relatively low-temperature second fluid. The charge-air cooler additionally includes a header element having a first connection configured to accept inflow of the second fluid to the cooling passage element and a second connection configured to facilitate outflow of the second fluid from the cooling passage element. Furthermore, the charge-air cooler includes a casing configured to house the reticulated foam element, the cooling passage element, and the header element. An internal combustion engine employing such a charge-air cooler is also disclosed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Shawn Michael Owen
  • Patent number: 8701426
    Abstract: A method and apparatus for preventing loss of a cooling fluid from a boiler in an aircraft by incorporating an absorber material is provided. In some aspects, an apparatus may include a base section, a top section, a cooling fluid, and an absorber material disposed in the base section. The absorber material may be configured to retain the cooling fluid therein. The apparatus may further include a barrier disposed between the base and top sections. The barrier may be configured to retain the absorber material in the base section while allowing the cooling fluid to pass therethrough.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 22, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Frank E. Mills
  • Patent number: 8397796
    Abstract: A heat exchanger for cooling a heat generating device including a base having a recess with a base coolant inlet opening and a base coolant outlet opening. A porous core is positioned within the recess of the base, and has a core coolant inlet opening and a core coolant outlet opening that are arranged in corresponding relation with base coolant inlet opening and a base coolant outlet opening so as to be in fluid communication. A porous gasket is pinched between the porous core and the base.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: March 19, 2013
    Assignee: Thermal Corp.
    Inventors: John G. Thayer, Kevin L. Wert, Mark T. North, C. Scott Schaeffer
  • Patent number: 8397798
    Abstract: A two-phase heat transfer system includes an evaporator, a condenser, a vapor line, and a liquid return line. The evaporator includes a liquid inlet, a vapor outlet, and a capillary wick having a first surface adjacent the liquid inlet and a second surface adjacent the vapor outlet. The condenser includes a vapor inlet and a liquid outlet. The vapor line provides fluid communication between the vapor outlet and the vapor inlet. The liquid return line provides fluid communication between the liquid outlet and the liquid inlet. The wick is substantially free of back-conduction of energy from the second surface to the first surface due to an increase in a conduction path from the second surface to the first surface and due to suppression of nucleation of a working fluid from the second surface to the first surface to promote liquid superheat tolerance in the wick.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: March 19, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.
  • Patent number: 8371367
    Abstract: A heat sink includes a base having a first surface thermally connected to a heat producing component and a plurality of fins supported by a second surface of the base and arranged in a predetermined direction, each fin having a plurality of through-holes. The base and the plurality of fins are integrally formed from a porous material, for example a lotus-shaped porous material. The heat sink is placed within a duct. The heat sink may have a width of about 10 mm or less.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: February 12, 2013
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Osaka University
    Inventors: Hiroshi Chiba, Tetsuro Ogushi, Hideo Nakajima
  • Patent number: 8272431
    Abstract: A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 25, 2012
    Assignee: Caterpillar Inc.
    Inventors: Michael Joseph Campagna, James John Callas
  • Patent number: 8071194
    Abstract: A heat collector includes a heat absorption surface, an opposite heat focus surface and one or more surrounding sides. A matrix of the heat collector is a thermally conductive material. There is a plurality of adiabatic pores mixed within the matrix. A relative concentration distribution of the adiabatic pores increases from the heat absorption surface to the heat focus surface, and decreases from the surrounding sides to a center of the heat collector. The shape of the heat collector can be rectangular, cylindrical, prismatic, plate-shaped, square, or polyhedral. The heat collector can draw heat generated from electrical components, and collect the generated heat for reuse in order to enhance energy efficiency.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: December 6, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Jhy-Chain Lin, Ga-Lane Chen
  • Patent number: 7992626
    Abstract: A combination spray and cold plate thermal management system for effectively thermally managing a heat producing device during startup. The combination spray and cold plate thermal management system includes a spray unit thermally managing a heat producing device and a coolant reservoir thermally connected to the heat producing device. The coolant reservoir includes a porous media with coolant channels for storing a volume of the waste coolant after spraying of coolant has terminated. The coolant reservoir is fluidly connected to the spray chamber within the spray unit to receive the waste coolant.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: August 9, 2011
    Assignee: Parker-Hannifin Corporation
    Inventors: Charles L. Tilton, Donald E. Tilton, Thomas D. Weir, John D. Schwarzkopf
  • Patent number: 7712325
    Abstract: A modular electronic cooling system with moving parts, composed of a base unit and individual modules inserted into this base unit in respect to the expected upper limit of the heat load may utilize thermoelectric power generation and the heat load itself to allow for operation independent of any external power source. By the same mechanism the cooling system scales within a range automatically reacting to and dissipating a dynamic heat load via forced convection, and doing so passively, without the need for specific programming. This cooling system uses porous material or multi-layered mesh parts, thermoelectric components, a modular assembly system and independent enclosure parts for described porous material or multi-layered mesh, an electronics control system that may be passively activated, and a motor assembly. Altogether the system provides maximum efficiency in terms of form factor.
    Type: Grant
    Filed: August 18, 2007
    Date of Patent: May 11, 2010
    Inventor: Leonid A Shapiro
  • Patent number: 7690419
    Abstract: A heat exchanger for cooling a heat generating device including a base having a recess with a base coolant inlet opening and a base coolant outlet opening. A porous core is positioned within the recess of the base, and has a core coolant inlet opening and a core coolant outlet opening that are arranged in corresponding relation with base coolant inlet opening and a base coolant outlet opening so as to be in fluid communication. A porous gasket is pinched between the porous core and the base.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: April 6, 2010
    Assignee: Thermal Corp.
    Inventors: John G. Thayer, Kevin L. Wert, Mark T. North, C. Scott Schaeffer
  • Publication number: 20090145585
    Abstract: A heat exchanger comprises a porous matrix of pellets of a material selected to exhibit very high thermal conductivity and having nonplanar surfaces thereby to promote porosity. The pellets are bonded together and to the interior of housing.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Inventor: Jason William Cosman
  • Patent number: 7461689
    Abstract: A reduction in tube to header joint failures in a heat exchanger having spaced headers (12,14), elongated, side-by-side parallel spaced tube slots (22) in the headers (12,14) along the length thereof and a plurality of flattened tubes (26) having ends (24) received in the tube slots (22) and metallurgically bonded to the header (12,14) thereat was achieved through the use of a reinforcing structure (38) having at least two projections (40) having a cross sectional shape complimentary to at least a part of the surface of the tubes (26) at their ends (24) and a length sufficient to extend along the tube ends (24) to a location past the metallurgical bonds between the tube ends (24) and a header (12,14), and a spine (44) extending transverse to the projection. Also disclosed is a reinforcing structure (38) and a method of reinforcing the tube to header joints in a heat exchanger.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: December 9, 2008
    Assignee: Modine Manufacturing Company
    Inventors: Brian Merklein, Roy J. Ingold, Jeffrey Verhagen, Tony Do
  • Patent number: 7401643
    Abstract: A method and an apparatus for the efficient transfer of heat utilizing micro heat pipes that include a cellular foam or interconnected cellular/truss network having hollow ligaments. A predetermined fraction of the internal volume of the hollow ligaments is filled with a carefully chosen working fluid, and the ends of the hollow ligaments are sealed. In operation, the working fluid evaporates in the region of high heat flux and condenses in regions of lower temperature, resulting in the transfer or redistribution of the fluid's latent heat of vaporization. For open cell foams and interconnected networks, a second fluid flowing through the open cells, separate from the working fluid but also in thermal contact with the hollow ligaments, assists in the transfer of heat from the foam and networks.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: July 22, 2008
    Assignee: University of Virginia Patent Foundation
    Inventors: Douglas T. Queheillalt, Haydn N. G. Wadley, Yasushi Katsumi
  • Patent number: 7331377
    Abstract: A diamond foam spray cooling system for improving the thermal management of a heat producing device. The diamond foam spray cooling system includes a thermal management unit including a spray assembly, a chamber, a heat spreader and at least one diamond foam section thermally attached to a cooling surface of the heat spreader. The spray assembly sprays liquid coolant directly upon the engaging surface of the diamond foam section. A portion of the liquid coolant is evaporated from contacting the engaging surface and a portion of the liquid coolant passes into an immersion zone within the diamond foam section. Alternatively, the diamond foam section is thermally attached directly to the heat producing device. The diamond foam section may have varying thicknesses, cavities, raised portions and other configurations.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: February 19, 2008
    Assignee: Isothermal Systems Research, Inc.
    Inventor: Ben K. Toy
  • Patent number: 7287575
    Abstract: The invention relates to a component (20) for supporting a tubular filter member (15) in a portable channel (2) in a plate heat exchanger (1). The invention also relates to a device including the component (20) and the filter member (15). Furthermore, the invention relates to a plate heat exchanger (1), which includes a package of heat transfer plates (3) provided between a first plate (5) and a second plate (6). The filter member (15) has an inner surface and an outer surface. The component (20) includes a first part (21), which is arranged to be introduceable into the filter member (15) to abutment against the inner surface of the filter member, and a second part (22), which is arranged to abut a surface area of one of said first and second plates (5, 6), which surface area extends around the porthole channel (2).
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 30, 2007
    Assignee: Alfa Laval Corporate AB
    Inventors: Göran Andersson, Lars Rönnberg
  • Patent number: 7275539
    Abstract: A wick arrangement for an anesthetic evaporator includes a wick with a carrier material (2) that is essentially impermeable to gas provided with wick material (3, 4) on both sides. A great path length is provided for saturating the gas with anesthetic vapor in the smallest possible installation volume by providing flow channels such as helical flow channels (10, 11) extending helically on both sides of the wick. The gas flow is led in counterflow in the flow channels (10, 11) by a housing (9).
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: October 2, 2007
    Assignee: Dräger Medical AG & Co. KGaA
    Inventor: Karl-Ludwig Gippert
  • Patent number: 7131288
    Abstract: In a heat exchanger (10) for transferring heat from a first fluid to a second fluid, which heat exchanger (10) comprises one or more flow passages (12) for a first fluid, the outer wall (26) of these passages is in heat-transferring contact with a flow body (20) made from metal foam for a second fluid. This metal foam has a gradient of the volume density of the metal, so that it is possible to achieve a favorable equilibrium between heat transfer and conduction, on the one hand, and flow resistance, on the other hand.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: November 7, 2006
    Assignee: INCO Limited
    Inventors: Theodor Johannes Peter Toonen, Peter Leerkamp, Bob Meuzelaar
  • Patent number: 7044199
    Abstract: A heat exchanger for cooling a heat generating device including a base having a recess with a base coolant inlet opening and a base coolant outlet opening. A porous core is positioned within the recess of the base, and has a core coolant inlet opening and a core coolant outlet opening that are arranged in corresponding relation with base coolant inlet opening and a base coolant outlet opening so as to be in fluid communication. A porous gasket is pinched between the porous core and the base.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: May 16, 2006
    Assignee: Thermal Corp.
    Inventors: John G. Thayer, Kevin L. Wert, Mark T. North, C. Scott Schaeffer
  • Patent number: 7045219
    Abstract: The present invention relates to short metal fibers. A set of short metal fibers, with an equivalent diameter ranging from 1 to 150 $(m)m, comprises entangled and curved fibers. At least 10% of the short metal fibers are entangled, whereas the length of the curved fibers is distributed according to a gamma-distribution, having an average length preferably between 10 and 2000 $(m)m.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: May 16, 2006
    Assignee: N.V. Bekaert S.A.
    Inventors: Ronny Losfeld, Lieven Anaf
  • Patent number: 7032654
    Abstract: A plate heat exchanger includes a plurality of plates for providing a flow path for two fluids. The plate heat exchanger has an inlet and an outlet for each of the two fluids, wherein facing surfaces of two adjacent plates of the plurality of plates defines a flow path for a first fluid. The opposite surface of one of the two adjacent plates and a facing surface of another adjacent plate from the plurality of plates provides a flow path for a second fluid. The first fluid and the second fluid flowing along their respective flow paths are maintained in thermal communication with each other. A plurality of surface features associated with at least a portion of one surface of at least one of the plates provides enhanced heat transfer between the two fluids passing along adjacent plates.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: April 25, 2006
    Assignee: FlatPlate, Inc.
    Inventors: Steven Michael Wand, Brian James Emery, James Eric Bogart
  • Patent number: 7028763
    Abstract: Heat transfer in coolant circuits, as in an internal combustion engine for example, can be beneficially enhanced by maintaining the coolant in a nucleate boiling state, but undesirable transitions to a film boiling state are then possible. The disclosed coolant circuit has selected surface(s) that have a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. These surfaces are provided with a surface configuration, such as a matrix of nucleation cavities, which has a tendency to inhibit a change in boiling state. The surface configuration can be provided on the parent coolant circuit surface or on a surface of an insert positioned in the coolant circuit. Thus, transitions to film boiling can be effectively avoided at locations in the coolant circuit that are susceptible to such transitions.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: April 18, 2006
    Assignee: Caterpillar Inc.
    Inventors: Colin Peter Garner, Adrian Holland
  • Patent number: 6959753
    Abstract: A heat sink which comprises an enclosure having a highly thermally conductive surface region and defining an enclosed cavity. A porous, highly thermally conductive material is disposed in the cavity, preferably homogeneously therein, and is thermally coupled to the thermally conductive surface. A phase change material changing from its initial phase, generally solid, to its final phase, generally liquid, responsive to the absorption of heat is disposed in the enclosed cavity and in the porous material. In accordance with a first embodiment, the highly thermally conductive surface region is preferably aluminum and the porous medium is a highly thermally conductive porous medium, preferably aluminum. In accordance with a second embodiment, the thermally conductive surface is composed of highly thermally conductive fibers disposed in a matrix and the porous material is a plurality of the thermally conductive fibers extending from the thermally conductive surface into the cavity.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: November 1, 2005
    Assignee: Raytheon Company
    Inventors: Richard M. Weber, Kerrin A. Rummel
  • Patent number: 6951242
    Abstract: A heat exchanger for both sensible and latent energy, enthalpy, has walls or plates that extend between two air streams that also permit and assist recirculation and filtration. The walls between air streams consist of a substrate with a coating on the substrate. The coating, in combination with the substrate material original porosity, is used to control final porosity and hydrophilic/oleophilic characteristics. By control of the pore size and surface material characteristics, there can be almost a total recirculation, a recirculation of only gases (filtering out solid particles), a transfer of only moisture and heat, or a transfer of only heat. The pore size and characteristics of the coating along the path of the air streams can be varied so that different types of exchange can be obtained along the path of the air streams.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: October 4, 2005
    Inventors: Nicholas H. Des Champs, Benjamin R. Tritt
  • Patent number: 6892798
    Abstract: A heat exchanger for storing or releasing heat including a channel unit in which a heat medium flows; and a heat exchange unit contacted-combined with the channel unit and containing a porous heat transfer member which conducts heat exchange with a thermal storage material.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: May 17, 2005
    Assignee: Korea Institute of Science and Technology
    Inventors: Dae-Young Lee, Seo-Young Kim
  • Patent number: 6841250
    Abstract: The present invention relates to a system for managing the heat from a heat source like an electronic component. More particularly, the present invention relates to a system effective for dissipating the heat generated by an electronic component using a thermal management system that includes a heat sink formed from a graphite article.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 11, 2005
    Assignee: Advanced Energy Technology Inc.
    Inventor: Jing-Wen Tzeng
  • Patent number: 6840307
    Abstract: Heat sinks are provided that achieve very high convective heat transfer surface per unit volume. These heat sinks comprise a spreader plate, at least two fins and at least one porous reticulated foam block that fills the space between the fins.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: January 11, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Gary Lynn Eesley, Donald T. Morelli, Mohinder Singh Bhatti
  • Patent number: 6801433
    Abstract: An apparatus for cooling electrical protective devices comprises an electrical protective device mounted to at least one electrical terminal, wherein the electrical terminals are cooled to indirectly cool the electrical protective devices. A pressurized coolant source passes a coolant fluid through coolant passages attached to the electrical terminals, thereby cooling the electrical terminals. The cooled electrical terminals maintain the temperature of the electrical protection device within an appropriate operating temperature range. This cooling method may be used to increase the fuse power rating of a fuse array while maintaining electrical coordination between the fuses in the fuse array and electrical devices protected by the fuse array.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: October 5, 2004
    Assignee: General Electric Company
    Inventors: Brian Eric Lindholm, Paul Stephen Pate, Allen Michael Ritter
  • Patent number: 6746768
    Abstract: A thermal interface and a thermal interface as part of a thermal management system that comprises a heat source, and a cooling module. The heat source has an external surface; the thermal interface is a flexible graphite sheet article having two parallel planar surfaces, with the first planar surface of the thermal interface being in operative contact with the external surface of the heat source and the second planar surface being in contact with the cooling module. The graphite sheet contains oil.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: June 8, 2004
    Assignee: Advanced Energy Technology Inc.
    Inventors: Ronald A. Greinke, Daniel W. Krassowski
  • Publication number: 20040069460
    Abstract: The present invention has proposed a thin sheet type heat pipe comprising: a hermetically sealed container which is formed of foil sheets opposed and jointed at peripheral portions; at least one spacer which is movably housed in said container and has a fluid path to exert a capillary force; at least one spacer which is movably housed in said container and has no fluid path; and a working fluid enclosed in said container.
    Type: Application
    Filed: May 7, 2003
    Publication date: April 15, 2004
    Inventors: Yasumi Sasaki, Yasuyuki Ooi
  • Patent number: 6705393
    Abstract: A ceramic heat sink having a micro-pores structure includes a heat dissipation layer, and a thermal conductive layer. The heat dissipation layer forms a ceramic micro-cell structure, which is combined with a sub-micrometer powder, thereby forming the heat dissipation layer. The thermal conductive layer is mounted on the heat dissipation layer to contact with a heat source. Thus, the thermal conductive layer absorbs the heat energy from the heat source; the heat dissipation layer has a micro-pores structure with hollow crystals, and the air functions as the media of heat dissipation, so that the heat dissipation capacity of the ceramic heat sink is greatly enhanced.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: March 16, 2004
    Assignee: ABC Taiwan Electronics Corp.
    Inventor: Chaby Hsu
  • Patent number: 6698510
    Abstract: A temperature regulation and flow control device is described. A web of material, e.g., for a wet suit, has a layer of gel particles embedded in a flow control layer, preferably a foam matrix. A water permeable neoprene layer covers the flow control layer and allows water to enter the suit. The flow of water in the suit is regulated by the expansion and contraction of the gel as it undergoes a volume phase transition in response to a change in temperature. When the diver is in cold water, the cold water enters the foam substrate and the gel expands, causing permeability (i.e., flow) to decrease. Flow is restricted in response to cooling, and the foam substrate expands and tightens the fit of the wet suit. In warmer water, an opposite effect occurs, whereby the gel contracts and flow increases. The gel contracts relaxing the fit of the suit. A gel having a particular volume phase transition critical temperature is selected in order to maintain body temperature in a particular environment.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 2, 2004
    Assignee: Mide Technology Corporation
    Inventors: Marco Serra, Lev Bromberg, Jaco van Reenen Pretorius, Brett P. Masters
  • Patent number: 6672377
    Abstract: An oil cooler comprises an inner water pipe, an outer oil pipe, a strainer pipe sleeved between oil pipe and water pipe, and a connector mechanism at either end of oil cooler and including a hollow cylindrical connector having a passage coupled to water pipe, a ring groove, a plurality of first O-ring grooves, an abutment groove adjacent ring groove, and an oil channel connected to strainer pipe, a ring fitted in ring groove, and a plurality of first O-rings fitted in O-ring grooves. The invention adopts a snapping mechanism to secure oil pipe to the cylindrical connector, thus eliminating potential crack in welded portion of pipes and end connectors and leakage. Moreover, it is easy to assemble, durable, and high in cooling efficiency.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: January 6, 2004
    Inventor: Jui Lung Liu
  • Publication number: 20030221813
    Abstract: The invention provides a heat sink assembly, and a method of making and using a heat sink assembly, for cooling a device using circulating fluid. The heat sink assembly comprises a housing including at least one housing inlet passage and at least one housing outlet passage. A first cavity is disposed in the housing and a plurality of first cavity column members are disposed in the first cavity. The first cavity column members are arranged in a plurality of rows such that first cavity column members in a row are staggered with respect to first cavity column members in an adjacent row. The heat sink assembly further includes a second cavity disposed in the housing and a plurality of second cavity column members disposed in the second cavity. The second cavity column members are arranged in a plurality of rows, which are also staggered.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Applicant: General Electric Company
    Inventors: Allen M. Ritter, Hugh David Black
  • Patent number: 6617517
    Abstract: A multi-layer solid structure and method for forming a thermal interface between a microelectronic component package and a heat sink so that the structure has a total thermal resistance of no greater than about 0.03° C.-in2/W at a pressure of less than 100 psi. The structure comprises at least two metallic layers each of high thermal conductivity with one of the two layers having phase change properties for establishing low thermal resistance at the interface junction between the microelectronic component package and the heat sink.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: September 9, 2003
    Assignee: Thermagon, Inc.
    Inventors: Richard F. Hill, Jason L. Strader
  • Patent number: 6604573
    Abstract: A tube is provided with elastically deformable tube deforming sections (tube curved sections), and a fin is provided with the quality of spring so that the fin deforms in accordance to changes of dimension between the tubes. Accordingly, it is possible to weaken (absorb) stress by the tube deforming sections (tube curved sections), and to prevent the fin from separating from the tube even when the tube deforming section (tube curved section) deforms.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 12, 2003
    Assignee: Denso Corporation
    Inventors: Shingo Morishima, Tadayoshi Terao, Toshihiro Mafune
  • Patent number: 6591897
    Abstract: A heat sink for electronic devices comprises a spreader plate having a top surface and having a bottom surface wherein a portion thereof is defined for affixing an electronic device to be cooled thereto. A plurality of columnar pins are spaced apart one from the other in a non-uniform manner and affixed to the top surface of the spreader plate substantially perpendicular thereto. A highly porous heat conducting reticulated foam block substantially fills a space defined by said spaced apart columnar pins.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: July 15, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Mohinder Singh Bhatti, Shrikant Mukund Joshi
  • Publication number: 20030089483
    Abstract: A heat exchanger for thermal energy engine comprises a hollow casing, a hollow top-plate, a hollow bottom-plate and a replaceable heat-exchanging medium. The hollow top-plate and the hollow bottom-plate have a plurality of air-ventilating orifices and arranged on a topside and a bottom side of the hollow casing, respectively. The replaceable heat-exchanging medium is placed within an accommodating space confined by the hollow casing, the hollow top-plate, and the hollow bottom-plate and provides heat-accumulation function to air flowing through the orifices and passing the heat-exchanging medium, whereby thermal loss is reduced.
    Type: Application
    Filed: November 15, 2001
    Publication date: May 15, 2003
    Inventors: Pao Lung Lin, Chun-Hsiung Han
  • Publication number: 20030010486
    Abstract: A temperature regulation and flow control device is described. A web of material, e.g., for a wet suit, has a layer of gel particles embedded in a flow control layer, preferably a foam matrix. A water permeable neoprene layer covers the flow control layer and allows water to enter the suit. The flow of water in the suit is regulated by the expansion and contraction of the gel as it undergoes a volume phase transition in response to a change in temperature. When the diver is in cold water, the cold water enters the foam substrate and the gel expands, causing permeability (i.e., flow) to decrease. Flow is restricted in response to cooling, and the foam substrate expands and tightens the fit of the wet suit. In warmer water, an opposite effect occurs, whereby the gel contracts and flow increases. The gel contracts relaxing the fit of the suit. A gel having a particular volume phase transition critical temperature is selected in order to maintain body temperature in a particular environment.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 16, 2003
    Applicant: Mide Technology Corporation
    Inventors: Marco Serra, Lev Bromberg, Jaco van Reenen Pretorius, Brett P. Masters
  • Patent number: 6503626
    Abstract: The present invention relates to a system for managing the heat from a heat source like an electronic component. More particularly, the present invention relates to a system effective for dissipating the heat generated by an electronic component using a heat sink formed from a compressed, comminuted particles of resin-impregnated flexible graphite mat or sheet.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: January 7, 2003
    Assignee: Graftech Inc.
    Inventors: Julian Norley, Jing-Wen Tzeng, Jeremy Klug
  • Patent number: 6482520
    Abstract: The present invention relates to a system for managing the heat from a heat source like an electronic component. More particularly, the present invention relates to a system effective for dissipating the heat generated by an electronic component using a thermal management system that includes a thermal interface formed from a flexible graphite sheet and/or a heat sink formed from a graphite article.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: November 19, 2002
    Inventor: Jing Wen Tzeng
  • Publication number: 20020108743
    Abstract: A porous media heat sink usable as a small heat exchange device to air-cool a high power dissipation rate object in a low-noise environment. The heat sink comprises a thermally conductive base, a plurality of thermally conducting fins coupled to the base and oriented substantially normal or perpendicular to the base, and a plurality of thermally conductive porous media elements interleaved between the fins in a serpentine or sinusoidal configuration and arranged with respect to the heat sink base such that the longitudinal axis of the sinusoidal configuration is substantially normal to the base and substantially parallel to the fins. The base of the heat sink is thermally coupled to the component generating heat, typically a microprocessor package, to facilitate heat dissipation.
    Type: Application
    Filed: December 11, 2000
    Publication date: August 15, 2002
    Inventor: Richard A. Wirtz
  • Publication number: 20020096311
    Abstract: The present invention relates to a heat exchanger which comprises a flexible sheet consisting of a porous material, such as polyvinyl alcohol, sandwiched between two liquid impermeable layers, the liquid impermeable layers defining between them and between fluid-tight edges, a liquid transfer space within said sheet and at least one liquid inlet and at least one liquid outlet for respective connection to a source and a drain of a heat transfer liquid, with a flow path defined between the liquid inlet and liquid outlet within said liquid transfer space.
    Type: Application
    Filed: February 7, 2002
    Publication date: July 25, 2002
    Inventors: Igal Kushnir, Michael Victor Sassoon
  • Patent number: 6411508
    Abstract: The present invention relates to a heat sink, and in particular to a light foam metal heat sink which is capable of significantly enhancing a foam metal heat sink performance. In the present invention, there is provided a foam metal heat sink installed at an outer portion of a heat generating unit of an equipment, which heat sink includes a metal plate installed at an outer portion of the heat generating unit of the equipment, and a foam metal welded to the metal plate and having a plurality of foams.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: June 25, 2002
    Assignee: Korea Institute of Science and Technology
    Inventors: Byung Ha Kang, Seo Young Kim, Jin Wook Pack
  • Patent number: 6405792
    Abstract: The disclosure is for an easily assembled heat exchanger using an internal porous metal pad. The heat exchanger is constructed of two halves attached at their heat transfer surfaces. Each half includes a pan shaped casing, a pad of sintered porous metal, a manifold block with channels, and a lid. The porous pad is mounted between the heat transfer surface of the casing and the manifold. The lid includes input and output fluid holes which are connected to sets of alternating channels in the manifold block, so that adjacent channels are isolated from each other and are connected to only either the input or the output holes so that the fluid must flow through the pad. An alternative embodiment has the casings of the two halves formed as a single part.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 18, 2002
    Assignee: Thermal Corp.
    Inventors: John H. Rosenfeld, Mark T. North
  • Patent number: 6378605
    Abstract: The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: April 30, 2002
    Assignee: Midwest Research Institute
    Inventors: Charles F. Kutscher, Keith Gawlik
  • Patent number: 6330907
    Abstract: An evaporator includes a container, a wick provided in contact with an inner peripheral surface of said container and formed such that (1) if the number of pores per unit volume is fixed, the diameter of pores is varied, or (2) if the diameters of pores are formed substantially uniformly, the number of pores is varied, a sump having said wick as its inner wall surface and connected to a liquid pipe for supplying a liquid-phase working fluid, and a vapor channel formed in a contact surface of said container with respect to said wick so as to guide a gas-phase working fluid into a vapor pipe connected to an end portion of said container.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: December 18, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tetsurou Ogushi, Masaaki Murakami, Akira Yao, Takeshi Okamoto, Hiromitsu Masumoto, Hisaaki Yamakage