Distinct, Separate Injection And Producing Wells Patents (Class 166/268)
  • Patent number: 9719009
    Abstract: A process for recovering oil from a carbonate reservoir of high salinity, wherein supercritical CO2 floodings are combined with a fluorosurfactant in the tertiary recovery. Embodiments include alternating injection and co-injection schemes of the supercritical CO2 and the fluorosurfactant. A stable fluorosurfactant-CO2 foam that is not susceptible to the harsh conditions of the reservoir (temperature, pressure and salinity) can be successfully generated, leading to a reduction in the mobility of CO2, an increase in the mobility of the reservoir oil, higher contact between the injected fluid with the oil and a better sweep efficiency of the oil.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 1, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Zaid Zaffar Jangda, Abdullah S. Sultan
  • Patent number: 9690001
    Abstract: A 4D seismic technique, where a base seismic trace is measured at a first time in a region of the subsoil, and then a monitor seismic trace corresponding to the base seismic trace is measured at a second time. To interpret the 4D measurements, assumptions are made about the variation of elastic parameters in permeable layers at predefined positions in one direction between the first and the second time. Elastic parameters include the density (?) and the speed of propagation of the pressure waves (VP) in the permeable layers. Numerical evaluation is performed for a capability of each assumption about the variation of elastic parameters to give an account of a change between the measured base seismic trace and the measured monitor seismic trace, and the variation of the elastic parameters is estimated in accordance with an assumption of optimum capability.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 27, 2017
    Assignee: TOTAL SA
    Inventors: Pierre Thore, Christian Hubans
  • Patent number: 9631134
    Abstract: A process of treating a subterranean well comprising a plurality of flow channels and at least one of the flow channels is impaired. The treatment is used for alleviating the impairment. The process comprises a flow of gaseous carrier fluid supplied into the subterranean well. The gaseous carrier fluid pushes liquids out of the plurality of the flow channels. A liquid treatment agent is created. To create the liquid treatment agent, first, a surfactant solution is created and diluted with a solvent. The surfactant solution is created by compounding a plurality of non-ionic ethoxylated sorbitan fatty acid ester surfactants together until a proper hydrophilic-lipophilic balance is achieved. At some point, the liquid treatment agent is atomized. This atomized liquid treatment agent is blended with the gaseous carrier fluid, to create an atomized treatment fog. The atomized treatment fog is supplied into the subterranean well.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: April 25, 2017
    Inventor: Lawrence O. Price
  • Patent number: 9605523
    Abstract: The present invention is an in-situ apparatus for generating carbon dioxide gas at an oil site for use in enhanced oil recovery (EOR). The apparatus includes a steam generator adapted to boil and superheat water to generate a source of superheated steam, as well as a source of essentially pure oxygen. The apparatus also includes a steam reformer adapted to react a carbonaceous material with the superheated steam and the pure oxygen, in an absence of air, to generate a driver gas comprising primarily carbon dioxide gas and hydrogen gas. A separator is adapted to separate at least a portion of the carbon dioxide gas from the rest of the driver gas to generate a carbon dioxide-rich driver gas and a hydrogen-rich fuel gas. A compressor is used for compressing the carbon dioxide-rich driver gas for use in enhanced oil recovery, and the compressed carbon dioxide-rich driver gas, with substantially no oxygen, is injected to a predetermined depth in order to enhance oil recovery at the oil site.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: March 28, 2017
    Assignee: Pioneer Energy, Inc.
    Inventors: Robert M. Zubrin, Mark H. Berggren
  • Patent number: 9234413
    Abstract: A system comprising a well drilled into an underground formation comprising hydrocarbons; a production facility at a topside of the well; a water production facility connected to the production facility; wherein the water production facility produces water by removing some multivalent ions, then removing some monovalent ions, and then adding back some monovalent ions, and then injects the water into the well.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 12, 2016
    Assignee: Shell Oil Company
    Inventors: Subhash Chandra Bose Ayirala, Robert Wing-Yu Chin, Andreas Nicholas Matzakos, Ernesto Uehara-Nagamine
  • Patent number: 9109398
    Abstract: Methods for forming a geothermal well are provided. A method for forming a geothermal well can include drilling a first wellbore having a substantially linear segment connected to an arcuate segment. A second wellbore can be drilled to connect to a terminating end of the arcuate segment, thereby forming a wellbore loop. A thermally conductive tube can be disposed through the wellbore loop.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: August 18, 2015
    Assignee: Mechanical & Electrical Concepts, Inc.
    Inventors: Willard D. Harris, Michael Batten
  • Patent number: 9074469
    Abstract: The present invention provides methods and apparatuses for the enhanced recovery of fluids from subterranean reservoirs using cryogenic fluids. Using the Earth's geothermal energy to warm cryogenic flood fluids injected into subterranean reservoirs, the pressure within the subterranean reservoir is increased. Consequently, the reservoir conductivity is enhanced due to thermal cracking, and improved sweep efficiency of the reservoir by the flood fluids is provided. This rise in pressure due to the injection of the cryogenic fluid increases the reservoir conductivity enhancement and improves sweep efficiency of the flood fluids, which leads to the production of more fluids from to the subterranean reservoirs.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: July 7, 2015
    Inventor: David Randolph Smith
  • Patent number: 8991491
    Abstract: The present invention relates to producing oil from an oil-bearing geological formation using a selection process. The process includes selecting a treatment option such as carbon dioxide flooding for enhancing oil recovery from a geological formation in a remote location. Various characteristic properties such as a physical or chemical property of the oil or rock may be used in the selection process and the carbon dioxide may be captured from a combustion process.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 31, 2015
    Assignees: Siemens Energy, Inc., Chevron U.S.A. Inc.
    Inventors: David Kalinowski, Steven Higgens
  • Patent number: 8985205
    Abstract: An in situ extraction process for heavy oil reservoirs using solvent comprises removing liquids and gases from areas contacting with the heavy oils to increase an interfacial area of unextracted heavy oil contactable by the solvent. Solvent vapor is injected into the areas to raise the reservoir pressure until sufficient liquid solvent is present to contact the increased interfacial area. The reservoir is shut in for a sufficient time for the solvent to diffuse into the unextracted oil across the interfacial area in a ripening step to create a reduced viscosity blend of solvent and oil. One or more reservoir characteristics is measured to confirm the extent of solvent dilution that has occurred of the unextracted oil in the reservoir. Gravity drainage based production is commenced from the reservoir upon the blend having a viscosity low enough to permit the blend to drain through the reservoir to a production well.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 24, 2015
    Assignee: N-Solv Heavy Oil Corporation
    Inventor: John Nenniger
  • Patent number: 8961153
    Abstract: A subsea, seawater injection system, positionable on a seabed for connection to a subterranean well includes a frame, an electrical submersible pump (ESP) positioned in the frame so as to be oriented substantially parallel to the seabed when positioned thereon, and a filter operationally positioned between a source water intake and the ESP.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 24, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Steven S. Wilson
  • Patent number: 8939211
    Abstract: Method for increasing recovery of crude oil from a reservoir having an oil-bearing porous subterranean formation with a permeability of greater than 10 millidarcies, the formation including rock having pores with crude oil and connate water having a multivalent cation content present within the pores. The crude oil in the formation has an API gravity of less than 30°, a viscosity greater than 1 centipoise, and undissolved solids suspended therein. Injection water having undissolved solids suspended therein, a total dissolved solids content of 30,000 ppm or less and a multivalent cation content such that a ratio of the multivalent cation content of the injection water to the multivalent cation content of the connate water is less than 0.9, is injected into the formation, to produce an emulsion within the formation. The emulsion has an undissolved suspended solids content of at least 0.05% by weight of emulsion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 27, 2015
    Assignee: BP Corporation North America Inc.
    Inventors: Patrick Lee McGuire, Euthimios Vittoratos
  • Patent number: 8940669
    Abstract: Of the many compositions and methods provided herein, an example method includes a method of treating a subterranean formation that comprises combining components comprising water and a density-matched suspension to prepare a treatment fluid, wherein the density-matched suspension comprises a suspending liquid and a solid particle suspended in the suspending liquid, and introducing the treatment fluid into a well bore. An example composition includes a suspension that comprises a suspending liquid comprising a hydrophobic liquid, wherein the hydrophobic liquid hydrolyzes when placed in contact with an aqueous fluid to form hydrophilic products, and a solid particle suspended in the suspending liquid, wherein the suspension is a density-matched suspension.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 27, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Sam Lewis, Michael Szymanski, Christopher Gordon
  • Patent number: 8939203
    Abstract: A system usable with a well includes a waveform generator for enhancing fluid recovery from a reservoir by controlling a production pump or an injection pump downhole in the well with waveform signals to create a pressure wave which propagates into the reservoir and enhances the recovery of the fluid.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: January 27, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: David Eslinger
  • Publication number: 20150013977
    Abstract: The present invention relates to systems, apparatuses, and methods for providing a reliable, high purity source of CO2 that is used in the recovery of formation deposits, such as fossil fuels. At least a portion of the fossil fuels recovered may be directly combusted or extracted using the same process used to provide the pure source of CO2 without the need to first remove CO2, sulfur, other fossil fuels, or other impurities.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 15, 2015
    Inventors: Miles R. Palmer, Rodney John Allam, Jeremy Eron Fetvedt, David Arthur Freed, Glenn William Brown, JR.
  • Publication number: 20150013978
    Abstract: An inflow control valve for controlling the flow of fluids into a generally horizontal production well located in an underground reservoir, where the production well has a well casing, a production tubing located within the casing and an annulus between the production tubing and the casing. The inflow control valve has a valve body having a threaded portion for connecting the valve body to the production tubing, a through bore for connecting the valve body to an inside bore of said production tubing and an outside surface. The valve also has at least one inlet passageway extending through the valve body between the outside surface and said through bore and an inlet opening on said at least one inlet passageway formed on the outside surface of the valve body.
    Type: Application
    Filed: December 14, 2012
    Publication date: January 15, 2015
    Inventor: John NENNIGER
  • Patent number: 8925632
    Abstract: This invention consists of a method to enable methane recovery from hydrate reservoirs. The invention, in particular, relates to a Saltwater Hydrate Extraction Process (SHEP) in which high salinity water is injected into a hydrate reservoir into a lower horizontal well to promote and control gas production by hydrate decomposition to an upper deviated production well.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 6, 2015
    Assignee: MGM Energy Corp.
    Inventors: Gary Bunio, Ian Donald Gates, Jacky Wang
  • Publication number: 20150000908
    Abstract: Methods and compositions are provided wherein microorganisms are used to alter the interface of hydrocarbons and hydrocarbon-coated surfaces to increase oil recovery, for improved bioremediation and/or to benefit pipeline maintenance.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 1, 2015
    Inventors: EDWIN R. HENDRICKSON, Abigail K. Luckring, Michael P. Perry
  • Publication number: 20150000907
    Abstract: Dimethyl sulfide is produced from sour gas. The dimethyl sulfide is utilized in an oil recovery formulation introduced into a petroleum-bearing formation to enhance recovery of petroleum from the formation.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventors: Stanley Nemec MILAM, Erik Willem TEGELAAR, John Justin FREEMAN, Richard B. TAYLOR
  • Patent number: 8919445
    Abstract: Method of managing hydrates in a subsea production system that includes a host production facility, one or more producers, one or more water injectors, a water injection line, and a single production line for directing production fluids from the producers to the host production facility. The method comprises placing a pig in the subsea production system, shutting in production from the producers, and injecting a displacement fluid into the subsea production system in order to displace production fluids in the production line. The method also includes applying electrically resistive heat along a selected portion of the single production line to maintain production fluids within the production line at a temperature above a hydrate formation temperature after production has been shut in.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Tracy A. Fowler
  • Publication number: 20140352958
    Abstract: A process for recovering oil from an oil-bearing formation is provided. A first oil recovery fluid is introduced into a formation through a first well for a first time period and oil is produced from a second well. A second oil recovery fluid different from the first oil recovery fluid is introduced into the formation through the second well for a second time period after the first time period, and oil is produced from a third well, where the second well is located on a fluid flow path extending between the first and third wells.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Diederik Willem VAN BATENBURG, Diederik Michiel BOERSMA, Koenraad ELEWAUT
  • Publication number: 20140353250
    Abstract: The present invention provides a method for treating a formation containing crude oil hydrocarbons, comprising injecting an aqueous composition comprising an internal olefin sulfonate with a nominal carbon chain length between 24 to 44 into said formation and displacing said crude oil hydrocarbons toward one or more production wells. The invention further provides a method for treating a formation containing crude oil hydrocarbons, a method for improving the wettability of a subsurface surface in an subsurface formation containing crude oil hydrocarbons, and a method for separating crude oil hydrocarbons from crude oil hydrocarbons compositions.
    Type: Application
    Filed: May 7, 2014
    Publication date: December 4, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Thomas Carl SEMPLE, Carmen REZNIK, Julian Richard BARNES, James Laurel BUECHELE, Sheila Teresa DUBEY, Timothy Elton KING
  • Patent number: 8899340
    Abstract: A method for recovering gas from a subterranean formation having a hydrate deposit located therein and a gas reservoir located under the hydrate deposit that includes injecting a hydrate-forming fluid into an upper region of the gas reservoir neighboring the hydrate deposit; and producing gaseous hydrocarbons from a lower region of the gas reservoir is disclosed.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 2, 2014
    Assignee: M-I L.L.C.
    Inventors: Robert L. Horton, Frederick B. Growcock
  • Publication number: 20140345861
    Abstract: The present disclosure relates to a particularly effective well configuration that can be used for SAGD and other steam based oil recovery methods. Fishbone multilateral wells are combined with SAGD, effectively expanding steam coverage. Preferably, an array of overlapping fishbone wells cover the pay, reducing water use and allowing more complete production of the pay.
    Type: Application
    Filed: February 5, 2014
    Publication date: November 27, 2014
    Applicants: Total E&P Canada, Ltd., ConocoPhillips Surmont Partnership, ConocoPhillips Canada Resources Corp.
    Inventors: John L. STALDER, Son V. PHAM
  • Patent number: 8893788
    Abstract: A system for recovering a fluid from a subterranean formation, including a production wellbore having a substantially horizontal production length extending through the formation, and a trench extending through the formation. A method of constructing a trench section in a subterranean formation, including providing within the formation an access wellbore having a substantially horizontal access wellbore length, introducing a trench cutting tool into the access wellbore, and advancing and retracting the trench cutting tool through the access wellbore in order to cut slots in the formation in a trench direction away from the access wellbore, repeatedly until a number of slots required to complete the trench section has been cut.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 25, 2014
    Assignee: Alberta Innovates—Technology Futures
    Inventors: Cathal Tunney, Techien Chen, Douglas A. Lillico, Justo Neda
  • Patent number: 8893787
    Abstract: Casing valves for selective well stimulation and control. A well system includes at least one valve interconnected in a casing string operable via at least one line external to the casing string to selectively control fluid flow between an exterior and interior of the casing string, and the casing string, valve and line being cemented in a wellbore. A method of selectively stimulating a subterranean formation includes: positioning a casing string in a wellbore, the casing string including spaced apart valves operable via a line to selectively control fluid flow between an interior and exterior of the casing string; and for each of multiple intervals of the formation in sequence, stimulating the interval by opening a corresponding one of the valves, closing the remainder of the valves, and flowing a stimulation fluid from the casing string into the interval.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: November 25, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Timothy R. Tips, Alfred R. Curington
  • Publication number: 20140338901
    Abstract: Methods and systems for enhanced recovery of coal bed methane are described. A method includes generating a diluent gas mixture comprising N2 and CO2 in a semi-closed Brayton cycle power plant, injecting at least a portion of the diluent gas mixture into a coal bed, and recovering a mixed production gas comprising methane from the coal bed.
    Type: Application
    Filed: November 16, 2012
    Publication date: November 20, 2014
    Inventors: O. Angus Sites, Lalit K. Bohra
  • Publication number: 20140332209
    Abstract: The proposed method is an improved chemical flooding of an oil reservoir, especially one containing heavy oil or bitumen, that is cheaper than traditional chemical flooding techniques. This is obtained by viscosifying the displacing phase with a polyol, such as glycerol and/or its derivatives. Glycerol and its derivatives are an excellent additive because they are cheaper than the more commonly used chemicals, work only as a viscosifying agent, do not alter the reservoir properties, and have a wide range of viscosity facilitating the displacement of a wider range of heavy oils. This improved chemical flooding can be used with any other enhanced oil recovery technique, including thermal means, solvent assisted and polymer floodings.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Siluni L. WICKRAMATHILAKA
  • Publication number: 20140332208
    Abstract: Systems and methods for transporting seawater from a seawater source to an inland site for utilization as a drilling and/or fracturing fluid are disclosed. In an aspect, systems and methods are disclosed wherein seawater is pumped from an ocean at a coastal location and transported to an inland drilling and hydraulic fracturing site, thereby providing a consistent, large volume supply of seawater for use in drilling and/or hydraulic fracturing operations. Such systems and methods may eliminate usage of locally-sourced fresh water, eliminating the unsustainable burden that drilling and hydraulic fracturing places on local water tables.
    Type: Application
    Filed: July 7, 2014
    Publication date: November 13, 2014
    Applicant: SEAWATER TECHNOLOGIES, LLC
    Inventor: Brent Smith
  • Patent number: 8869892
    Abstract: Method for recovery of hydrocarbon includes: a. injecting mixture of high salinity brine and low salinity brine into the formation, wherein the mixture is injected into the formation through a first pump, wherein the first pump is an automated control pump, at a flow rate based on physical characteristics of the formation, the flow rate of the mixture gradually and continuously decreases, b. injecting fresh water into the formation, wherein the mixture is injected into the formation through a second pump, wherein the second pump is an automated control pump, wherein the fresh water is injected into the formation at a flow rate based on the physical characteristics of the formation, wherein the flow rate gradually and continuously increases; and c. introducing surfactants or polymers into the formation, wherein the surfactant acts as a motive force to drive the hydrocarbons towards one or more production wells.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 28, 2014
    Assignee: ConocoPhillips Company
    Inventor: Jean Denis Pone
  • Patent number: 8857512
    Abstract: An in situ extraction process for the recovery of hydrocarbons from a hydrocarbon bearing formation, including the steps of injecting a solvent consisting substantially of one of the group of H2S, Ammonia or COS into the formation to mobilize the hydrocarbons for extraction by forming a mobile in situ extraction fluid; and lifting the extraction fluid containing the mobilized hydrocarbons from the underground formation to the surface. In a further aspect an extraction method for a specific reservoir is provided including the steps of: establishing a minimum desired extraction rate, based on a value for the porosity, permeability and dead oil viscosity of the in situ bitumen in the specific reservoir, determining a desired minimum operating extraction temperature determining a desirable range of operating pressures identifying solvents predicted to deliver the operating extraction temperature within the range of operating pressures, and selecting a preferred solvent to use in the process.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 14, 2014
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Stephen Dunn
  • Patent number: 8857511
    Abstract: Apparatus and method are provided to restore contaminated groundwater based on in-situ periodic pumping and recharging. The apparatus includes a contaminated groundwater suction system, an in-situ restoration system, and a reinjection system. The suction system includes a suction well and a suction pipeline. The suction system is connected with the in-situ restoration system. The in-situ restoration system is connected with the reinjection system. The reinjection system includes a reinjection pipeline and a reinjection well. Prior to the in-situ restoration, a pumping test for suction well and an injection test for reinjection well are conducted. Through reinjecting the processed contaminated groundwater, this approach is capable of diluting contaminated water layer, reducing the pollutant concentration in the target aquifer, providing convenience for the subsequent processing, and cutting the cost.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 14, 2014
    Assignee: North China Electric Power University
    Inventors: Li He, Jing Shen, Jiaqi Zhang, Zhentong Li
  • Publication number: 20140251596
    Abstract: The present disclosure describes a single well predominantly gravity-dominated recovery process for producing viscous hydrocarbons from a subterranean oil sands formation. The process operates a single vertical or inclined well within a formation, the wellbore having an injection means and a production means, the injection means being positioned in the wellbore closer to the surface than the production means. The process provides an area of high mobility adjacent the production means. A mobilizing fluid is injected through the injection means into the formation to mobilize the viscous hydrocarbons in the formation while substantially concurrently producing hydrocarbons through the production means. The gravity dominated process may be SAGD and the present process may be a single vertical or inclined well SAGD process.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: CENOVUS ENERGY INC.
    Inventors: Simon D. GITTINS, Subodh GUPTA, Arun SOOD
  • Publication number: 20140251606
    Abstract: A method for increasing extraction of oil, gas and gas condensates from deposits is provided, including the steps of pumping a working fluid into a well, wherein the working fluid is an organic solvent comprising at least one aromatic hydrocarbon, at least one carboxylic acid and at least one organic acid, adjusting a density of the working fluid based at least in part on a density of formation fluid, and adjusting a viscosity of the working fluid based at least in part on desired degree of penetration of the working fluid into surrounding formation layers.
    Type: Application
    Filed: April 5, 2013
    Publication date: September 11, 2014
    Inventor: Alexander Petrovich Linetskiy
  • Patent number: 8820420
    Abstract: Embodiments of the invention relate to methods for increasing the recovery of hydrocarbons from a subterranean reservoir. In one embodiment, a method for recovering hydrocarbons from a subterranean reservoir is provided. The method includes positioning a first device into a first horizontal well, injecting a first fluid into the first horizontal well through the first device, producing hydrocarbons from a second horizontal well disposed below the first well, injecting a second fluid into a third well laterally offset from each of the first and second wells to drive fluids in the reservoir toward the second well while continuing to produce hydrocarbons from the second well, and selectively ceasing injection into the first well when the second well is in fluid communication with the third well.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 2, 2014
    Assignee: World Energy Systems Incorporated
    Inventor: Myron I. Kuhlman
  • Publication number: 20140238672
    Abstract: A method is disclosed for extracting geothermal energy from a geothermal reservoir formation. The method may involve using a production well to extract brine from the reservoir formation. At least one of nitrogen (N2) and carbon dioxide (CO2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.
    Type: Application
    Filed: January 29, 2014
    Publication date: August 28, 2014
    Inventor: Thomas A. BUSCHECK
  • Patent number: 8813854
    Abstract: A mobile water injection system and method for performing waterflooding in offshore reservoirs, and more particularly to enhance oil recovery in marginal offshore reservoirs is disclosed. The mobile water injection system and method include portable equipment, including a submersible pump to recover water from a body of water, a water storage tank, filtration and chemical treatment equipment to treat the recovered water, and an injection pump to pump the treated water at high pressure into the reservoir such that the residual oil is driven to adjacent production wells to increase oil recovery.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 26, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Akshay Sahni, Jarrad Rexilius
  • Patent number: 8794320
    Abstract: A system comprising a well drilled into an underground formation comprising hydrocarbons; a production facility at a topside of the well; and a water production facility connected to the production facility; wherein the water production facility produces water by removing some multivalent ions, then removing some monovalent ions, and then adding back some multivalent ions, and then injects the water into the well.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 5, 2014
    Assignee: Shell Oil Company
    Inventors: Subhash Chandra Bose Ayirala, Robert Wing-yu Chin, Michael Alvin Curole, Eugene Bruce Greene
  • Publication number: 20140209304
    Abstract: Disclosed herein are water-soluble polymers comprising hydrolyzable cross-linked monomer units, and methods for recovering hydrocarbon fluids from a subterranean formation using the water-soluble polymers.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 31, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Peter E. Reed, William J. Andrews, Mingli Wei, Xiaojin Harry Li
  • Patent number: 8789594
    Abstract: A system comprising a well drilled into an underground formation; a production facility at the topside of the well; and a water production facility connected to the production facility; wherein the water production facility produces water by removing some ions and adding an agent which increases the viscosity of the water and/or increases a hydrocarbon recovery from the formation, and injects water into the well.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: July 29, 2014
    Assignee: Shell Oil Company
    Inventors: Michael Alvin Curole, Eugene Bruce Greene
  • Patent number: 8789587
    Abstract: A method and system for monitoring and controlling an injection operation is disclosed. A plurality of distributed fiber optic sensors is located in a production well. Fluid is injected into an injection well spaced apart from the production well. A parameter of a formation between the production well and the injection well is determined from measurements from the formation obtained using the fiber optic sensors. At least one of an injection of fluid into the injection well and a flow into the production well is controlled in response to the determined parameter.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: July 29, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Paulo Tubel, Brian Bidigare, Michael Johnson, John Harrell, Benn Voll
  • Publication number: 20140202692
    Abstract: A method for extracting bitumen from a subterranean oil sand deposit including: drilling a portion of the deposit; fragmenting the drilled deposit; drilling of the fragmented deposit to allow for flooding, wherein one or more wells are drilled to provide access to the deposit and retrieval of extracted bitumen, to form a drilled fragmented deposit; flooding the drilled fragmented deposit with a first flood volume of fluid to permit the first flood volume of fluid to admix with the fragmented first portion, to re lease heavy oil from any inert material so that the heavy oil floats within the first flood volume of fluid in the drilled fragmented deposit to form a flooded first portion; recovering the heavy oil; and repeating the above for each additional portions.
    Type: Application
    Filed: June 28, 2012
    Publication date: July 24, 2014
    Inventor: Howard Keele
  • Patent number: 8776900
    Abstract: A process for recovering hydrocarbons from an in situ formation. The process includes the steps of injecting solvent though an injection well into an underground extraction chamber having a hydrocarbon extraction interface, warming the hydrocarbons at the extraction interface to cause the hydrocarbons to flow downwardly by gravity drainage. Barrier gases naturally emerge in the chamber as a result of the extraction process and are removed from the extraction interface to improve heat transfer from said solvent to said interface. The last step is to recover liquids such as hydrocarbons and water through a production well. The invention provides a separate flow path to remove hydrocarbon gases from the chamber at a preferred location. The preferred location is near the top of the chamber where the accumulated barrier gases help to limit the heat loss and can also provide a barrier to help maintain chamber integrity and confinement.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: July 15, 2014
    Inventors: John Nenniger, Emil Nenniger
  • Patent number: 8776880
    Abstract: A process for the enhanced recovery of oil in a deposit introduces into the deposit an alkaline aqueous solution of a water-soluble polymer containing a surfactant. The aqueous solution of water-soluble polymer introduced is prepared with an aqueous solution initially containing Ca2+ and Mg2+ ions treated with an alkaline agent and a dispersant, so as, prior to the introduction of the polymer and the surfactant into the aqueous solution, to precipitate, under the action of the alkaline agent and of CO2 optionally dissolved in the aqueous solution, the Ca2+ and Mg2+ ions. The precipitates are especially in the form of precipitates of calcium carbonate and of magnesium hydroxide and are dispersed owing to the dispersant, which is chosen in order to limit the size of the calcium carbonate and magnesium hydroxide precipitates.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 15, 2014
    Assignee: S.P.C.M. SA
    Inventors: Rene Pich, Ludwig Gil
  • Patent number: 8770281
    Abstract: A method for recovering hydrocarbons from a subterranean reservoir by operating a substantially gravity-controlled recovery process with two adjacent well pairs. Each well pair includes an injector well and a producer well. A mobilized zone forms around each well pair through the gravity-controlled recovery process, and a bypassed region forms between the adjacent well pairs when the respective mobilized zone of each well pair merge to form a common mobilized zone. A plurality of infill producer wells are provided in the bypassed region. The plurality of infill producer wells are operated to establish fluid communication between the plurality of infill producer wells and the common mobilized zone. Once fluid communication is established, the plurality of infill producer wells and the adjacent well pairs are operated under a substantially gravity-controlled recovery process, and hydrocarbons are recovered from the plurality of infill producer wells and from the producer wells.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: Cenovus Energy Inc.
    Inventors: John E. Arthur, Simon D. Gittins, Harbir S. Chhina
  • Publication number: 20140166280
    Abstract: System and method for producing fluids from a hydrocarbon reservoir where an injector well segment and parallel underlying producer well segment are both completed with slotted liners. The injector and producer segments are logically partitioned into corresponding sections to define a plurality of injector-producer section pairs. Injection tubing strings supply stimulating fluid (e.g., saturated steam) to associated sections of the injector segment for injection into the hydrocarbon reservoir. Surface-located control devices control the pressure of the stimulating fluid flowing through the respective injection tubing strings. Production tubing strings (with the aid of artificial lift) carry fluids produced from associated sections of the producer segment. A plurality of controllers is provided for the injector-producer section pairs to control at least one process variable (e.g.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 19, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Terry Wayne Stone, George A. Brown
  • Publication number: 20140151040
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Application
    Filed: May 16, 2013
    Publication date: June 5, 2014
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Publication number: 20140151027
    Abstract: Processes relating to the production of methane, carbon dioxide, gaseous and liquid hydrocarbons, and other valuable products from subterranean carbon bearing formations, in-situ, are disclosed. In a preferred embodiment, such production utilizes indigenous and/or non-indigenous microbial consortia that are capable of converting a carbon bearing material such as shale or coal to desired products. In a particularly preferred embodiment there is provided a process for bioconverting a carbon-bearing subterranean formation, wherein the process comprises injecting fluid into a carbon bearing deposit with at least one injection well and removing injected fluid and product from the deposit through at least one production well, and controlling fluid pressure within at least a portion of the deposit by use of the injected fluid, the pressure being controlled such that the fluid pressure within at least a portion of the deposit exceeds the fluid pressure that normally exists in that portion.
    Type: Application
    Filed: May 8, 2013
    Publication date: June 5, 2014
    Inventor: Robert A. Downey
  • Patent number: 8739867
    Abstract: A remediation process that a employs improved quantitative method(s) of estimating of the volume and/or mass of contaminant in the subsurface, removal and or in situ degradation of the contamination using subsurface pulsing treatment (“SPT”) technology, and evaluation of the degree of remediation by re-applying the quantitative contaminant evaluation methods. The process uses SPT technology with the addition of a vacuum or sub-atmospheric pressure to an extraction well in order to create a push-pull effect to remove free contaminant or residual in conjunction with the pressure wave driving force created in the excitation or excitation well. The process can quantitatively measure the amount of residual contaminant, which up until now has not been possible or tractable using in situ methods, as well as measure the amount of residual that can be removed by SPT.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 3, 2014
    Assignee: RemMetrik, LLC
    Inventor: Steven Panter
  • Patent number: 8726537
    Abstract: In a method and equipment for continuous sintering of pelletized mineral material, a partition wall (7, 8) arranged between two adjacent cooling chambers (4, 5; 5, 6) is in the height direction placed at a distance from the pellet bed (2), so that in between the partition wall (7, 8) and pellet bed (2), there is left a gap (s) that allows gas to flow between two adjacent cooling chambers (4, 5; 5; 6) through the gap (s) in order to equalize the pressure between the cooling chambers.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 20, 2014
    Assignee: Outotec Oyj
    Inventor: Marko Palander
  • Publication number: 20140124199
    Abstract: A tubular assembly is disclosed for use in a wellbore (5) of an oil, gas or water well, typically for landing a downhole device in the wellbore. The assembly has a sleeve (1) adapted to receive the body of the downhole device. The sleeve is deployed into a conduit in the wellbore and expanded, so that the outer circumferential surface of the sleeve is radially expanded against the inner surface of the conduit. The sleeve has a bore with an inner circumferential surface comprising an inwardly facing formation adapted to engage with an outwardly facing formation on the body of the downhole device when the body of the downhole device is disposed in the bore of the sleeve. The sleeve is typically deployed in the wellbore at the desired location and is radially expanded by an expander device (2) that is deployed within the bore of the sleeve. The expanded sleeve plastically deforms and retains its expanded configuration after the radial expansion force is removed from the sleeve.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 8, 2014
    Inventors: Andrew Gorrara, Peter Wood