In Association With Fracturing Or Crevice Forming Processes Patents (Class 166/272.2)
  • Patent number: 11959364
    Abstract: A method for operating a kerogen-rich unconventional gas reservoir characterized by there being multiple hydraulically-fractured wells drilled thereinto comprises: recovering a methane-containing gas from a first hydraulically-fractured well drilled into the gas reservoir, steam-methane reforming the recovered methane-containing gas to yield a hydrogen gas and an inorganic carbon-containing gas, injecting at least a portion of the hydrogen gas into a second hydraulically-fractured well drilled into the gas reservoir, and injecting at least a portion of the inorganic carbon-containing gas into a third hydraulically-fractured well drilled into the gas reservoir.
    Type: Grant
    Filed: September 4, 2022
    Date of Patent: April 16, 2024
    Assignee: TerraH2 LLC
    Inventors: Eva Vinegar, Harold J. Vinegar
  • Patent number: 11808148
    Abstract: Systems, methods, and computer-readable media for determining the production rate of oil produced from each of a plurality of oil-bearing geological layers in an oil field. In some embodiments, the method comprises allocating injected fluid into each layer of a plurality of oil-bearing geological layers to a plurality of paths from injection sites of injection wells to production wells in each layer by balancing the mass of fluid injected into and the total fluid recovered from each oil-bearing geological layer. In some embodiments, the method comprises calculating estimated geological properties for each path in the plurality of paths to match total oil and injection fluid recovered at each production well in the plurality of production wells. In some embodiments, the method comprises using the estimated geological properties, calculating an oil production rate for each path between an injector well and a production well in a geological layer.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 7, 2023
    Assignee: Tachyus Corporation
    Inventors: Javad Rafiee, Pallav Sarma
  • Patent number: 11739620
    Abstract: A method to improve the efficiency of a gravity drainage CO2 gas injection process includes the steps of: (a) injecting a slug proximate to an underground reservoir, wherein the slug comprises a polymer component and an inorganic metal ion type crosslinking agent that are configured to form an in situ weak gel in the reservoir to block high permeability channels in a pay zone of the reservoir; and (b) continuously injecting CO2 gas at a top of the pay zone to form a gas cap at the top of the reservoir and to cause the gas cap to advance rapidly towards a producing well located below to provide a uniform sweep of the gas cap.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: August 29, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Subhash Ayirala, Zuhair AlYousef, Dong Kyu Cha, Muhammad Almajid, Ming Han, Ali AlYousef
  • Patent number: 11697759
    Abstract: A method comprising: introducing a first fluid into a wellbore above a fracture gradient of a subterranean formation penetrated by the wellbore to create a first plurality of fractures within a first portion of the subterranean formation; introducing a second fluid comprising at least one acid component into the wellbore above the fracture gradient of the subterranean formation penetrated by the wellbore to create a second plurality of fractures within a second portion of the subterranean formation; allowing the second fluid to enter at least one natural fracture in the first or second portion of the subterranean formation allowing the acid component to dissolve at least a portion of the subterranean formation to form one or more induced fractures in fluidic communication with the natural fracture, at least some of the first plurality of fractures, and at least some of the second plurality of fractures.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: July 11, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ronald Glen Dusterhoft, Neil Alan Stegent, Robert Barree, Victor Daniel Escobar Acosta, Maharaja Palanivel
  • Patent number: 11655700
    Abstract: A system that separates the wellhead fluid into four streams consisting of water, crude, residue gas and an NGL injectant fluid stream. The natural gas liquids injectant fluid stream has characteristics that are desirable for enhanced oil recovery namely, unfractionated natural gas liquids mix with high concentration of methane and ethane while still remaining at liquid phase when leaving the system.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: May 23, 2023
    Inventors: Kevin D Hotton, Eyal Mordechai Aronoff, Gevorg Noland Sargsyan
  • Patent number: 11396621
    Abstract: The present discloses a pressure-bearing plugging composition comprising 1-7 parts by weight bentonite, 0.1-1.5 parts by weight deformation material, 8-18 parts by weight filling material and 4-12 parts by weight modified bridging material, based on 100 parts by weight of water; the modified bridging material comprises a core, and a coating layer coated on an outer surface of the core, and a paraffin layer disposed between the core and the coating layer; the core is made of a water-absorbing material, and the coating layer is formed by bonding rigid particles and an adhesive.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: July 26, 2022
    Assignee: Southwest Petroleum University
    Inventors: Yang Bai, Lingfeng Wu, Pingya Luo, Jinsheng Sun, Haibo Liang, Wen Xu, Kesheng Rong, Jing Zhang, Gang Xie, Jiading Deng
  • Patent number: 11359475
    Abstract: Methods and materials for sand control in water injection sites are disclosed. Proppant particles may be coated with some particles coated with a solid epoxy and other proppant particles coated with a solid epoxy curative (such as amine, hydroxyl, carboxyl, anhydride) that would bind the particles through an epoxy reaction. The invention may be advantageous for forming underground structures useful in the extraction of hydrocarbons.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: June 14, 2022
    Assignee: Battelle Memorial Institute
    Inventors: Joel D. Elhard, Phillip N. Denen, Robert S. Whitmore
  • Patent number: 10344576
    Abstract: The example of implementation of the invention provides a method used for exploiting a natural gas hydrate reservoir and belongs to the field of natural gas hydrate reservoir exploitation. The method mainly comprises a heat-injecting vertical well and a production horizontal well. The production horizontal well is opened in a segmental manner. In combination with natural gas hydrate heat exploitation, heat flow injected into the vertical well is enabled to heat different positions of the natural gas hydrate reservoir to increase a recovery ratio of the natural gas hydrate reservoir. The method specifically comprises the steps of injecting a heat flow into the natural gas hydrate reservoir by utilizing the vertical well to promote decomposition of the hydrate; firstly opening a horizontal branch of the horizontal well fully and keeping depressurization exploitation.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 9, 2019
    Assignee: CHINA UNIVERSITY OF PETROLEUM (EAST CHINA)
    Inventors: Jian Hou, Yongge Liu, Kang Zhou, Qingjun Du, Yajie Bai, Yunkai Ji, Nu Lu, Wenbin Wang
  • Patent number: 10323200
    Abstract: A system for heating water for an oil and gas well treatment system utilizing raw natural gas from an oil and gas well. The system includes a separation assembly to remove liquids from the raw natural gas, wherein at least a portion of heated water from a frac water heater is passed through the separation assembly to prevent freezing therein.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: June 18, 2019
    Assignee: Enservco Corporation
    Inventor: Austin Peitz
  • Patent number: 10100625
    Abstract: A process for the thermobaric production of hydrocarbons from natural reservoirs through conventional wells. The hydrocarbons are converted into corresponding vapor phase fractions in the downhole, through the use of a combination of gasifying agents, heated atmospheric air, and steam—all pumped into the downhole. Temperature and pressure gradients that develop in the reservoir lead to disintegration of low-porosity rock and decompaction of impermeable rock. The vapor phase fractions are recovered at the well head and condensed on-site into high quality liquid and gaseous products.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: October 16, 2018
    Assignee: Galex Energy Corp.
    Inventors: Alexander M. Barak, Anatolii Bazhal
  • Patent number: 10088507
    Abstract: A hydrocarbon-producing facility includes a first energy subsystem to receive input energy from an energy source and byproduct energy generated by a second energy subsystem connected to the first energy subsystem, the first energy subsystem to perform work using the input energy and the byproduct energy. A method of analyzing energy performance in the hydrocarbon-producing facility includes identifying the byproduct energy received by the first energy subsystem from the second energy subsystem over a duration, determining energy intensity indices at corresponding time instants during the duration for the first energy subsystem, each energy intensity index based on the input energy, the byproduct energy, and output parameters of the work performed using the input energy and the byproduct energy, comparing the energy intensity indices to each other, and determining an efficiency of the first energy subsystem in response to comparing the energy intensity indices to each other.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: October 2, 2018
    Assignee: Saudi Arabian Oil Company
    Inventor: Kamarul Ariffin Amminudin
  • Patent number: 9181467
    Abstract: Disclosed herein are methods for extracting a kerogen-based product from subsurface shale formations. The methods utilize in-situ reaction of kerogen involving liquid phase chemistry at ambient temperatures at pressures for the subsurface shale formation. These methods rely on chemically modifying the shale-bound kerogen to render it mobile using metal particulate catalysts. In the methods disclosed herein a fluid comprising metal is provided to the subsurface shale formation comprising kerogen in an inorganic matrix. A reducing agent is provided to the subsurface shale formation. The kerogen is converted by contacting the kerogen with a metal particulate catalyst formed from the metal; and a mobile kerogen-based product is formed. At least a portion of the mobile kerogen-based product is recovered. The kerogen-derived product can be upgraded to provide commercial products.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 10, 2015
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Robert J. Klingler, Randall E. Winans, Darren R. Locke, Marcus O. Wigand, Mark Dean Looney
  • Publication number: 20150114636
    Abstract: The invention relates to systems, apparatus and methods for integrated recovery and in-situ (in reservoir) upgrading of heavy oil and oil sand bitumens. The systems, apparatus and methods enable enhanced recovery of heavy oil in a production well by introducing a hot fluid including a vacuum or atmospheric residue fraction or deasphalted oil into the production well under conditions to promote hydrocarbon upgrading. The methods may further include introducing hydrogen and a catalyst together with the injection of the hot fluid into the production well to further promote hydrocarbon upgrading reactions. In addition, the invention relates to enhanced oil production methodologies within conventional oil reservoirs.
    Type: Application
    Filed: May 30, 2013
    Publication date: April 30, 2015
    Inventors: Pedro Pereira-Almao, Zhangxing Chen, Brij Maini, Carlos Scott-Algara
  • Patent number: 8967282
    Abstract: Heavy oil recovery from oil sand reservoirs is enhanced through the creation of subsurface high permeability pathways distributed throughout the oil sand reservoirs. The high permeability pathways may be boreholes that extend through the oil sand reservoir. A portion of the high permeability pathway may be packed with high permeability particulate to provide structural support and allow for high permeability throughout the boreholes. After establishing the high permeability pathways throughout the oil sand reservoir, solvent may be introduced into the oil sand reservoir. The solvent has the beneficial effect of lowering the viscosity of the heavy oil, which aids in the extraction of the heavy oil. Thermal recovery processes and other enhancements may be combined with these methods to aid in reducing the viscosity of the heavy oil. Advantages of these methods include, accelerated hydrocarbon recovery, higher production efficiencies, lower costs, and lower extraction times.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 3, 2015
    Assignee: ConocoPhillips Company
    Inventors: Wayne Reid Dreher, Jr., Tawfik Nasr, Wendell Menard, Thomas J. Wheeler
  • Patent number: 8905132
    Abstract: A method of establishing fluid communication between a well pair in an oil-sand reservoir, where dilatable oil sands in the reservoir form a barrier to fluid communication between the well pair. Steam or water is circulated within at least one well to a region of the oil sands adjacent to the well. The steam or water pressure is increased to a dilation pressure sufficient to dilate the oil sands in the region. While circulating steam or water within the well at a substantially steady state, the steam or water pressure is maintained at a level sufficient to enlarge the dilated region, until detection of a signal indicative of fluid communication between the well pair. The rates and pressures of steam or water injection and production may be monitored and adjusted to vary a bottom-hole pressure in the well.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 9, 2014
    Assignee: FCCL Partnership
    Inventors: Jason P. Abbate, Chad Barber, Christopher James Elliott, Simon Gittins, Logan Popko, Maliha Zaman
  • Patent number: 8851170
    Abstract: A method for treating a tar sands formation includes providing heat from a first heater located between a steam injection well and a production well in a hydrocarbon containing layer. The first heater, the steam injection well, and the production well are located substantially horizontally in the layer. Heat is provided from a second heater horizontally offset from the first heater. The second heater is located vertically above an injection/production well and substantially horizontally in the layer. Steam is injected into the layer through the steam injection well after a selected amount of heat is provided from the first heater. Hydrocarbons are produced from the layer through the production well. Steam is injected and hydrocarbons are produced alternately through the injection/production well after a selected amount of heat is provided from the second heater.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 7, 2014
    Assignee: Shell Oil Company
    Inventors: Oluropo Rufus Ayodele, Tulio Rafael Colmenares, Deniz Sumnu Dindoruk, John Michael Karanikas, Henry Eduardo Pino, Sr.
  • Publication number: 20140262256
    Abstract: The present invention provides a method for stimulating a sub-commercial geothermal well, comprising the steps of drilling a stimulating well; isolating a corresponding zone in said stimulating well by means of a plurality of vertically spaced swell packers that are swellable when contacted by subterraneously heated geothermal brine present in said stimulating well and are resistant to the high temperature of said brine; injecting stimulating fluid into said stimulating well such that it will flow only through a zone of said well that is not isolated; and allowing said stimulating fluid to exit said well from a non-isolated zone located at a desired depth into a surrounding geological formation in order to hydraulically reopen a fracture or a system of fractures within said formation at said desired depth that will be connected with said existing well to be stimulated. The present invention is also directed to apparatus for stimulating a sub-commercial geothermal well.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Ezra ZEMACH, Paul SPIELMAN
  • Patent number: 8826985
    Abstract: A fracturing operation is done in open hole without annular space isolation. The annular space is spanned by telescoping members that are located behind isolation valves. A given bank of telescoping members can be uncovered and the telescoping members extended to span the annular space and engage the formation in a sealing manner. Pressurized fracturing fluid can be pumped through the telescoped passages and the portion of the desired formation fractured. In a proper formation, cementing is not needed to maintain wellbore integrity. The telescoping members can optionally have screens. Normally, the nature of the formation is such that gravel packing is also not required. A production string can be inserted into the string with the telescoping devices and the formation portions of interest can be produced through the selectively exposed telescoping members.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: September 9, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Yang Xu, Bennett M. Richard
  • Patent number: 8770281
    Abstract: A method for recovering hydrocarbons from a subterranean reservoir by operating a substantially gravity-controlled recovery process with two adjacent well pairs. Each well pair includes an injector well and a producer well. A mobilized zone forms around each well pair through the gravity-controlled recovery process, and a bypassed region forms between the adjacent well pairs when the respective mobilized zone of each well pair merge to form a common mobilized zone. A plurality of infill producer wells are provided in the bypassed region. The plurality of infill producer wells are operated to establish fluid communication between the plurality of infill producer wells and the common mobilized zone. Once fluid communication is established, the plurality of infill producer wells and the adjacent well pairs are operated under a substantially gravity-controlled recovery process, and hydrocarbons are recovered from the plurality of infill producer wells and from the producer wells.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: Cenovus Energy Inc.
    Inventors: John E. Arthur, Simon D. Gittins, Harbir S. Chhina
  • Patent number: 8733439
    Abstract: Methods to recover over 95 percent of oil and gas from shale fracturing, oil sands, biomass, and hydrates and from deep water wells. Employing CO2, H2O2, some proprietary chemicals, metals and proppants, raising the temperature of the mixture and using the mixture in shale fracturing, oil sands, biomass and gas hydrates to dislodge the gas and oil. Additionally, safety devices capable of pressure reduction at the reservoir in the production well bore upstream of a BOP are included. No water is used and no waste water is produced.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 27, 2014
    Inventor: Amarjit Singh Bakshi
  • Publication number: 20140096959
    Abstract: The present invention is a method and apparatus for enhanced recovery of petroleum fluids from the subsurface by steam injection into highly permeable vertical inclusion planes in the oil sand formation, and heating the heavy oil and bitumen, which flow by gravity to the wells. The inclusion is propagated into a portion of the formation having a Skempton's B parameter of greater than 0.95 exp(?0.04 p?)+0.008 p?, where p? is a mean effective stress in MPa at the depth of the inclusion. The inclusion planes can be propagated from only the central well, or from all wells, being the central well and the periphery wells. The inclusion planes are propagated into the formation to intersect and coalesce to provide hydraulic connection between the central well and the periphery wells. Steam is injected continuously in the central well, and liquids are produced continuously from all wells, whilst maintaining a liquid head over production tubing for steam trap control.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: GeoSierra LLC
    Inventor: GeoSierra LLC
  • Patent number: 8672027
    Abstract: A method for stimulating a hydrocarbon-containing formation that includes the steps of: introducing a heat source in the formation; heating a portion of liquid hydrocarbons in the formation to expand hydrocarbon volume, thereby rejuvenating fractures in the formation; passing at least some of the heated liquid hydrocarbons through the rejuvenated fractures; and producing at least a portion of the liquid hydrocarbons that passed through the rejuvenated fractures. The methods and processes provide for in-situ stimulation of hydrocarbon-containing formations using energy to expand in-situ liquid hydrocarbons, thus rejuvenating naturally occurring fractures. In some embodiments, the energy is supplied as heat from injection of an oxygen-containing fluid.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 18, 2014
    Assignee: EOG Resources Inc.
    Inventor: Albert Billman
  • Publication number: 20130292114
    Abstract: A method for containing and capturing liquids and gases generated during in situ pyrolysis that migrate through pyrolysis generated or natural fractures includes placing a row of horizontal hydraulic fractures above and below the heated zone and completing production wells within the horizontal hydraulic fractures. The method serves at least two purposes: 1) provides a local zone of weak mechanical strength to blunt the propagation of vertical pyrolysis generated fractures and 2) provides a drainage point for fluids to relieve pressure in the formation and improve recovery. Preferably, the organic-rich rock formation is an oil shale formation.
    Type: Application
    Filed: April 19, 2013
    Publication date: November 7, 2013
    Inventors: Michael W. Lin, Lara E. Heister, Nazish Hoda, William P. Meurer
  • Publication number: 20130269935
    Abstract: A method for treating a tar sands formation includes providing heated fluid to a first section of the hydrocarbon layer while providing heat to a second section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The second section is vertically displaced from the first section. Heat is allowed to transfer from the heaters and heated water to at least a portion of the formation. Fluids are allowed to gravity drain to a third section of the hydrocarbon formation. Fluids are produced from the formation through at least one production well that is located in the third section of the formation.
    Type: Application
    Filed: October 4, 2012
    Publication date: October 17, 2013
    Inventors: Renfeng Richard CAO, Namit JAISWAL, Jeroen Cornelis VINK, Weijian MO
  • Patent number: 8534350
    Abstract: A method of producing heavy oil from a heavy oil formation with steam assisted gravity drainage. The method begins by drilling a borehole into a heavy oil formation comprising a steam barrier between a first pay zone and a second pay zone, wherein the steam barrier prevents a steam chamber to be formed between the first pay zone and the second pay zone. The steam barrier is then heated with a radio frequency. The steam barrier is then fractured to permit a steam chamber to be formed within the first pay zone and the second pay zone. Heavy oil is then produced from the heavy oil formation with steam assisted gravity drainage.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 17, 2013
    Assignees: ConocoPhillips Company, Harris Corporation
    Inventors: Daniel R. Sultenfuss, Wendell Menard, Wayne R. Dreher, Jr., Curtis G. Blount, Francis E. Parsche, Mark A. Trautman
  • Patent number: 8430165
    Abstract: In hydrocarbon recovery applications, viscoelastic surfactant (VES) gelled fluids may be preheated to a temperature that will increase viscosity of the VES gelled fluid. The preheated VES gelled fluid retains at least a portion of its preheated viscosity when cooled such as by introduction into a low temperature condition. In an embodiment, the VES gelled fluid may be a drilling fluid, completion fluid, or fracturing fluid, and the low temperature condition may be an offshore operation, an operation in a locality having a cold climate, and/or a shallow oil, gas, or both land-based operation where the formation temperature is 120° F. or less. The surfactant in the VES gelled fluid may be one or more of an amine, amine salt, quaternary ammonium salt, betaine, amidoamine oxide, amine oxide, and combinations thereof.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 30, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, Gaurav Agrawal
  • Patent number: 8387688
    Abstract: A method of permeating and infusing a formation around the borehole with wax by heating a formation surrounding a borehole and pumping molten wax into the formation, wherein the molten wax flows into and fills voids the formation without disrupting the formation is described. Also, a method of permeating and infusing a formation around the borehole with wax by heating a formation surrounding a borehole, pumping molten wax into the borehole, heating and circulating the molten wax vertically within the borehole for an extended period using a heater and pump attached to a circulation pipe extended to the bottom of a zone of the borehole to be heated, and recovering molten wax from the borehole by displacing it back to the surface with another material of different density is described.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: March 5, 2013
    Inventor: Ernest E. Carter, Jr.
  • Patent number: 8322417
    Abstract: An actuator is disclosed which operates on the principle of the variable magnetic properties of materials with respect to temperature. As temperature is raised past Curie temperature, magnetic permeability of certain materials drops significantly to a value close to free space permeability. However, depending on the material selection, magnetic permeability may be significantly higher below Curie temperature. This principle is used to cause magnetic attractive force to move an actuator at one temperature, while permitting a return spring force to move the actuator at another temperature by changing the pathway traversed by most magnetic lines of flux from a magnetic source. The actuator may be employed to provide a temperature activated electrical switch or fluid valve. The temperature activated valves are suited to use in high temperature environments, such as SAGD wells.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: December 4, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Murat Ocalan, Kuo Chiang Chen
  • Patent number: 8256511
    Abstract: A process is disclosed for using heavy petroleum fraction as a drive fluid in the recovery of hydrocarbons from a subterranean formation. The hydrocarbons may be in the form of bitumen or heavy oil. The heavy petroleum fraction may be injected into at least one injection well and hydrocarbons produced out of at least one distinct production well. The heavy petroleum fraction may be co-injected together with steam and/or hot water and/or solvent. The heavy petroleum fraction may be a heavy fraction of a process used to upgrade crude oil, such as a heavy asphaltene fraction produced from solvent deasphalting crude oil produced by this recovery process.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 4, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas J. Boone, Mori Y. Kwan, J. Pierre Lebel, Brad C. Harker
  • Patent number: 8240381
    Abstract: Methods and systems relate to recovering hydrocarbons from within formations in which hydrocarbon bearing reservoirs are separated from one another by a fluid flow obstructing natural stratum. Relative to the reservoirs, the stratum inhibits or blocks vertical fluid flow within the formation. Drilled bores arranged to intersect the stratum provide an array of fluid flow paths through the stratum. Fluid communication established by the drilled bores enables production utilizing a producer borehole deviated from vertical and processes that rely on techniques such as gravity drainage through the fluid flow paths and/or injection through the fluid flow paths.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 14, 2012
    Assignee: ConocoPhillips Company
    Inventors: Wendell Peter Menard, Wayne Reid Dreher, Jr., John L. Stalder
  • Patent number: 8235117
    Abstract: A method and system for producing hydrocarbons in situ from a heavy-oil and tar sand fixed bed, hydrocarbon deposit distributed substantially within a porous formation. The porous formation is disposed below a ground surface. The system includes at least one injection well drilled into the formation and spaced apart from at least one production well also drilled into the formation. A heated thermal-energy carrier fluid is circulated under pressure into the injection well, circulated under pressure through a hydraulic fracture in the formation. The hydraulic fracture is disposed between the injection well and the production well.
    Type: Grant
    Filed: August 26, 2006
    Date of Patent: August 7, 2012
    Inventors: Gilman A. Hill, Joseph A. Affholter
  • Patent number: 8210257
    Abstract: A well bore in a subterranean formation includes a signaling subsystem communicably coupled to injection tools installed in the well bore. Each injection tool controls a flow of fluid into an interval of the formation based on a state of the injection tool. Stresses in the subterranean formation are altered by creating fractures in the formation. Control signals are sent from the well bore surface through the signaling subsystem to the injection tools to modify the states of one or more of the injection tools. Fluid is injected into the stress-altered subterranean formation through the injection tools to create a fracture network in the subterranean formation. In some implementations, the state of each injection tool can be selectively and repeatedly manipulated based on signals transmitted from the well bore surface. In some implementations, stresses are modified and/or the fracture network is created along a substantial portion and/or the entire length of a horizontal well bore.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 3, 2012
    Assignee: Halliburton Energy Services Inc.
    Inventors: Ronald Glen Dusterhoft, Loyd Eddie East, Mohamed Y. Soliman
  • Patent number: 8186430
    Abstract: A system and method for extracting hydrocarbon products from oil sands using nuclear energy sources for power to decrease the viscosity of bitumen in oil sands deposits and provide sufficient heat and pressure to produce liquid and gaseous hydrocarbon products. Steps for extracting the hydrocarbon products form the oil sands deposits are disclosed.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: May 29, 2012
    Assignee: Shale and Sands Oil Recovery LLC
    Inventor: Thomas B. O'Brien
  • Patent number: 8025101
    Abstract: A cyclic steam soak (CSS) stimulation method for producing heated hydrocarbons from a viscous hydrocarbon-containing formation comprises the steps of: a) drilling a well (1) having a substantially horizontal or inclined lower section (3) into the viscous hydrocarbon-containing formation (4) substantially along the trajectory of the minimum compressive horizontal stress Sh; b) cutting at selected intervals along the length of the lower well section (3) substantially disk-shaped cavities (5A-5D) into the viscous hydrocarbon-containing formation (4) by a rotating hydraulic jet cutting device (6); c) completing the well (1); d) injecting steam into the well (1) and disk-shaped cavities (5A-5D) at such an elevated pressure that the hydraulic pressure in at least one disk-shaped cavity 5A is above the formation fracturing pressure, thereby fracturing the formation (4) and permitting the steam to invade the formation surrounding the fracture and to heat hydrocarbons in the steam invaded zone; e) interrupting steam i
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: September 27, 2011
    Assignee: Shell Oil Company
    Inventors: Kirk Samuel Hansen, Chia-Fu Hsu, Alexander Michiel Mollinger
  • Patent number: 7980312
    Abstract: A method and system for producing hydrocarbons in situ from an oil shale, fixed bed, hydrocarbon formation disposed below a ground surface. The hydrocarbon formation having an upper A-Groove higher permeability aquifer zone disposed above a R-rated, kerogen rich, lower permeability zone and a lower B-Groove higher permeability aquifer zone disposed below the R-rated zone. The system includes a plurality of injection wells drilled into the formation and spaced apart from a plurality of production wells also drilled into the hydrocarbon formation. A heated thermal-energy carrier fluid is circulated under pressure into the injection wells, circulated under pressure through the A-Groove and B-Groove aquifer zones for mobilizing selected hydrocarbons in the R-rated zone and pumped from the A-Groove and the B-Groove aquifer zones upwardly under pressure through the production wells to the ground surface. Selected hydrocarbons are then removed from the carrier fluid.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 19, 2011
    Inventors: Gilman A. Hill, Joseph A. Affholter
  • Patent number: 7980304
    Abstract: A system and method for extracting hydrocarbon products from oil shale using nuclear energy sources for energy to fracture the oil shale formations and provide sufficient heat and pressure to produce liquid and gaseous hydrocarbon products. Embodiments of the present invention also disclose steps for extracting the hydrocarbon products from the oil shale formations.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: July 19, 2011
    Assignee: Shale and Sands Oil Recovery LLC
    Inventor: Thomas B. O'Brien
  • Publication number: 20110146982
    Abstract: Method for producing hydrocarbon fluids from an organic-rich rock formation include providing a plurality of in situ heat sources configured to generate heat within the formation so as to pyrolyze solid hydrocarbons into hydrocarbon fluids. Preferably, the organic-rich rock formation is heated to a temperature of at least 270° C. Heating of the organic-rich rock formation continues so that heat moves away from the respective heat sources and through the formation at a first value of effective thermal diffusivity, ?1. Heating of the formation further continues in situ so that thermal fractures are caused to be formed in the formation or so that the permeability of the formation is otherwise increased. The method also includes injecting a fluid into the organic-rich rock formation. The purpose for injecting the fluid is to increase the value of thermal diffusivity within the subsurface formation to a second value, ?2.
    Type: Application
    Filed: November 15, 2010
    Publication date: June 23, 2011
    Inventors: Robert D. Kaminsky, Matthew T. Shanley
  • Patent number: 7942202
    Abstract: Methods and related systems for use with a continuous fiber based system for use with well bore completions. Wherein a plurality of continuous fibers are deployable into a portion of a well bore completion, such that a fiber management module is adapted and positioned within the borehole to facilitate deployment of and communication with the plurality of continuous fibers. Further, the number of deployable continuous fibers of the continuous fiber based system can provide for sufficient redundancy to make at least a target measurement relating to the completion.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: May 17, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Patent number: 7931080
    Abstract: A system and method for extracting hydrocarbon products from oil sands using nuclear energy sources for power to decrease the viscosity of bitumen in oil sands deposits and provide sufficient heat and pressure to produce liquid and gaseous hydrocarbon products. Steps for extracting the hydrocarbon products form the oil sands deposits are disclosed.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 26, 2011
    Assignee: Shale and Sands Oil Recovery LLC
    Inventor: Thomas B. O'Brien
  • Patent number: 7882893
    Abstract: A method of oil production is provided. The method includes forming an injection well and a production well. The method also includes pumping a mixture of oxygen and carbon dioxide (CO2) into the injection well. In addition, the method also includes minimizing gravity segregation by providing a relatively high level of CO2 in the mixture.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: February 8, 2011
    Assignee: Legacy Energy
    Inventor: Michael Fraim
  • Patent number: 7857056
    Abstract: An economic method for in situ maturing and production of oil shale or other deep-lying, impermeable resources containing immobile hydrocarbons. Vertical fractures are created using horizontal or vertical wells. The same or other wells are used to inject pressurized fluids heated to less than approximately 370° C., and to return the cooled fluid for reheating and recycling. The heat transferred to the oil shale gradually matures the kerogen to oil and gas as the temperature in the shale is brought up, and also promotes permeability within the shale in the form of small fractures sufficient to allow the shale to flow into the well fractures where the product is collected commingled with the heating fluid and separated out before the heating fluid is recycled.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert D. Kaminsky, William A. Symington
  • Publication number: 20100319909
    Abstract: A method for enhanced production of hydrocarbon fluids from an organic-rich rock formation such as an oil shale formation is provided. The method generally includes completing at least one heater well in the organic-rich rock formation, and also completing a production well in the organic-rich rock formation. The method also includes the steps of hydraulically fracturing the organic-rich rock formation from the production well such that one or more artificial fractures are formed, and heating the organic-rich rock formation from the at least one heater well, thereby pyrolyzing at least a portion of the organic-rich rock into hydrocarbon fluids Pyrolyzing the organic-rich rock formation creates thermal fractures in the formation due to thermal stresses created by heating. The thermal fractures intersect the artificial fractures. As an additional step, hydrocarbon fluids may be produced from the production well. Preferably, the organic-rich rock formation is an oil shale formation.
    Type: Application
    Filed: February 25, 2010
    Publication date: December 23, 2010
    Inventors: William A. Symington, Robert D. Kaminsky, James M. Hutfilz
  • Publication number: 20100294494
    Abstract: A method of hydraulic fracturing of an oil producing formation includes the provision of a heating apparatus which is transportable and that has a vessel for containing water. The method contemplates heating the water up to a temperature of about 200° F. (93.3° C.). A water stream of cool or cold water is transmitted from a source to a mixer, the cool water stream being at ambient temperature. The mixer has an inlet that receives cool or cold water from the source and an outlet that enables a discharge of a mix of cool or cold water and the hot water. After mixing in the mixer, the water assumes a temperature that is suitable for mixing with chemicals that are used in the fracturing process, such as a temperature of about 40°-120° F.+ (4.4-48.9° C.+). An outlet discharges a mix of the cool and hot water to surge tanks or to mixing tanks. In the mixing tanks, a proppant and an optional selected chemical or chemicals are added to the water which has been warmed.
    Type: Application
    Filed: July 23, 2010
    Publication date: November 25, 2010
    Applicant: SUPER HEATERS NORTH DAKOTA LLC
    Inventor: Ransom Mark Hefley
  • Patent number: 7789164
    Abstract: The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: September 7, 2010
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security
    Inventors: Mark Dean Looney, Robert Steven Lestz, Kirk Hollis, Craig Taylor, Scott Kinkead, Marcus Wigand
  • Publication number: 20100200229
    Abstract: Some embodiments teach a method of recovering hydrocarbons from a hydrocarbon formation. The method including: (a) generating injection gas, the injection gas having at least a predetermined pressure and a predetermined temperature; (b) injecting the injection gas into the hydrocarbon formation, and (c) recovering the hydrocarbons from the hydrocarbon formation. Other embodiments are disclosed in this application.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 12, 2010
    Applicant: HAMCO Energy Corporation
    Inventor: Raymond Jefferd
  • Publication number: 20100200230
    Abstract: Methods of treating a well bore in a single trip are provided. A tubing string may be inserted into a subterranean formation having a well bore, where the tubing string has a locking device on an end. A workover tool may be positioned in a first zone of the subterranean formation, where the workover tool engages the locking device. One or more perforations may be created or enhanced in a first zone of a subterranean formation using the workover tool, and the tubing string may be positioned in a second zone of the subterranean formation. A fracturing fluid may be introduced into the first zone of the subterranean formation at a rate and pressure sufficient to create or enhance one or more fractures in the subterranean formation. The first zone of the subterranean formation may be isolated from the second zone of the subterranean formation and one or more perforations in the second zone of the subterranean formation may be created or enhanced using the workover tool.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 12, 2010
    Inventors: Loyd East, JR., Dan Morrison, Milorad Stanojcic, Perry Courville
  • Patent number: 7669657
    Abstract: A method for enhanced production of hydrocarbon fluids from an organic-rich rock formation such as an oil shale formation is provided. The method generally includes completing at least one heater well in the organic-rich rock formation, and also completing a production well in the organic-rich rock formation. The method also includes the steps of hydraulically fracturing the organic-rich rock formation from the production well such that one or more artificial fractures are formed, and heating the organic-rich rock formation from the at least one heater well, thereby pyrolyzing at least a portion of the organic-rich rock into hydrocarbon fluids Pyrolyzing the organic-rich rock formation creates thermal fractures in the formation due to thermal stresses created by heating. The thermal fractures intersect the artificial fractures. As an additional step, hydrocarbon fluids may be produced from the production well. Preferably, the organic-rich rock formation is an oil shale formation.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 2, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventors: William A. Symington, Robert D. Kaminsky, James M. Hutfilz
  • Patent number: 7624802
    Abstract: Disclosed herein are free flowing coated particles and low temperature methods of making same. Each particle has a curable coating disposed upon a substrate. The substrate is a particulate substrate including an inorganic material, a particulate substrate including an organic material, a composite substantially homogeneous formed particle including a first portion of an at least partly cured binder and filler particles, or a hybrid particle having an inorganic particle as a core and a composite coating including at least partially cured resin and filler. The curable coating includes a continuous phase including resole resin and reactive powder particles embedded or adhered to the continuous phase. The reactive powder particles typically include resole resin, novolak resin, polyester, acrylic and/or urethane. A method including applying a coating including the continuous phase including resole resin and reactive or non-reactive powder particles embedded or adhered to the continuous phase.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: December 1, 2009
    Assignee: Hexion Specialty Chemicals, Inc.
    Inventors: Avis Lloyd McCrary, Michael Anthony Barajas, Robert Ray McDaniel
  • Publication number: 20090236092
    Abstract: A system and method for extracting hydrocarbon products from oil sands using nuclear energy sources for power to decrease the viscosity of bitumen in oil sands deposits and provide sufficient heat and pressure to produce liquid and gaseous hydrocarbon products. Steps for extracting the hydrocarbon products form the oil sands deposits are disclosed.
    Type: Application
    Filed: February 23, 2006
    Publication date: September 24, 2009
    Inventor: Thomas B. O'Brien
  • Patent number: 7578968
    Abstract: Processes for effecting biocidal activity in subterranean oil and gas wells being drilled, completed, worked over or produced are described. In general the process comprises blending with aqueous well fluid a biocidally-effective amount of a sulfamate stabilized, bromine-based biocide. Compositions comprised of aqueous well fluid blended with such aqueous biocides are also described.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: August 25, 2009
    Assignee: Albemarle Corporation
    Inventors: Christopher J. Nalepa, Joel F. Carpenter