Control Of Motor Or Generator Specific To Hybrid Operation Patents (Class 180/65.285)
  • Patent number: 10017045
    Abstract: A transmission for a hybrid powertrain includes a first input, a second input, a third input, and an output. A sun gear is attached to and rotatable with the first input. A carrier is attached to and rotatable with the third input. The carrier rotatably supports a plurality of pinions. Each of the pinions includes a first pinion gear and a second pinion gear. Each second pinion gear of the pinions is disposed in meshing engagement with the sun gear. A first ring gear is disposed in meshing engagement with each first pinion gear of the pinions. The first ring gear is disposed in torque communication with the second input. A second ring gear is disposed in meshing engagement with each second pinion gear of the pinions. The second ring gear is disposed in torque communication with the output.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 10, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Shawn H. Swales, Craig S. Ross
  • Patent number: 10000124
    Abstract: Systems, apparatus and methods to multiple levels of redundancy in torque steering control and propulsion control of an autonomous vehicle include determining that a powertrain unit of the autonomous vehicle is non-operational and disabling propulsion operation of the non-operational powertrain unit and implementing torque steering operation in another powertrain unit while propelling the autonomous vehicle using other powertrain units that are configured to implement torque steering operation and propulsion operation.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 19, 2018
    Assignee: Zoox, Inc.
    Inventor: Timothy David Kentley-Klay
  • Patent number: 9981563
    Abstract: In electric vehicle supply equipment (EVSE), interruption of charging due to overheating is prevented by adjusting the pulse duty cycle on the control pilot conductor communicating the maximum allowed current level to the electric vehicle, the adjustment being performed whenever the EVSE temperature exceeds a predetermined threshold temperature below the maximum operating temperature as a function of the approach of the temperature to the maximum operating temperature.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: May 29, 2018
    Assignee: AeroVironment, Inc.
    Inventor: Albert Joseph Flack
  • Patent number: 9975563
    Abstract: An operating mode determining unit determines an operating mode of each of a plurality of vehicles to be either one of a normal operating mode and an energy saving mode on the basis of a necessary boarding and alighting time which is required to allow passengers to board or alight from the vehicles at each of a plurality of stations. An index value specifying unit specifies an index value on the basis of total energy consumption when the vehicles operate in the operating mode determined by the operating mode determining unit, a difference between the necessary boarding and alighting time and a boarding and alighting time, or the number of changing times of operating modes. An operating plan determining unit determines the operating mode of each of the vehicles to be an operating mode having a smallest index value.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 22, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsuaki Morita, Hiroyuki Kono, Masaya Mitake, Yasuyuki Suzuki
  • Patent number: 9908523
    Abstract: A hybrid vehicle includes an engine, a first MG (motor generator), a second MG, a battery electrically connected to the first MG and the second MG, an engine ECU configured to control the engine, and a hybrid ECU (Electronic Control Unit) configured to control the first MG and the second MG and communicate with the engine ECU. When an abnormality of communication with the engine ECU is not found and a history of an abnormality of the engine main body is not found and electric power generated by the first MG during cranking of the engine is lower than electric power receivable by the battery during MD (Motor Drive) running (fail-safe running) in which the engine is stopped, the hybrid ECU achieves recovery to normal running in which actuation of the engine is permitted, with cranking of the engine by power generation torque of the first MG.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: March 6, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Kimura
  • Patent number: 9873349
    Abstract: A first warming-up control unit calculates warming-up time charging power from a power storage SOC and power storage temperature and causes a generator motor to perform power generation operation thereby charging a power storage unit on the basis of the calculated warming-up time charging power. A second warming-up control unit applies, during the power generation operation, a hydraulic load to a hydraulic pump by a hydraulic load unit and performs horsepower control of the hydraulic pump using a value obtained by subtracting the warming-up time charging power from preset warming-up time pump horsepower.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: January 23, 2018
    Assignee: KOBELCO CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Takayuki Doi, Yusuke Kamimura
  • Patent number: 9868364
    Abstract: An apparatus and a method of controlling creep driving of an electric vehicle are provided to improve driving convenience and fuel efficiency. The apparatus is applied to an electric vehicle to which a ‘one-foot drive’ mode is applied to execute the creep driving and actively determine whether the creep driving is provided based on a vehicle speed.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 16, 2018
    Assignee: Hyundai Motor Company
    Inventor: Woo Cheol Cho
  • Patent number: 9761065
    Abstract: A vehicle includes a regenerative braking system, which may include an electric machine, configured to provide regenerative braking torque to vehicle traction wheels. The vehicle further includes at least one controller configured to provide indicia for display to indicate performance of the regenerative braking system. The indicia represent a comparison of a braking profile that is recorded during a deceleration event and a calculated braking profile that is based on a detected forward object. In various embodiments, the indicia may include a numerical or letter grade representative of a similarity between the recorded braking profile and the calculated braking profile and/or a visual representation of the comparison of the recorded braking profile and the calculated braking profile.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 12, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Brian Thomas Soo, Bernard D. Nefcy, David Paul Tourner, Francis Thomas Connolly
  • Patent number: 9725090
    Abstract: A speed control device in a traveling work vehicle changes a speed of rotational drive power from an engine to drive vehicle wheels and includes: a target speed calculator determining a target speed, based on operation deflection of a speed change device. A vehicle speed controller adjusting a speed change ratio based on the target speed. A vehicle speed obtainer obtaining an actual vehicle speed. A forcible target speed modifier forcibly modifying the target speed to a lower speed based on operation of a braking device. A release can treat an operation of the speed change device as a trigger to cancel the target speed forcibly modified by the forcible target speed modifier, and conforming the target speed to the actual vehicle speed.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: August 8, 2017
    Assignee: KUBOTA CORPORATION
    Inventors: Shigeru Komatsu, Keiji Takahashi
  • Patent number: 9643596
    Abstract: A method for controlling a state of a drive train of a power train including at least one motive power source and a set of couplers and reducers of which respective engagements define a plurality of states of the drive train, by engagement of one or a plurality of energy sources in provision of torque and by the ratio of transmission of same to wheels. States targeted from a current state are ranked in real time on the basis of the difference between the motive force available in a current state and in each target state.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 9, 2017
    Assignee: RENAULT S.A.S.
    Inventors: Gregory Planche, Frederic Roudeau, Aurelien Lefevre
  • Patent number: 9522697
    Abstract: An electrohydraulic power steering system includes a sensor for detecting steering information, a motor pump unit generating a hydraulic pressure for assisting steering power depending on a driver's steering wheel operation, and a hydraulic cylinder driven with the hydraulic pressure supplied from the motor pump unit to assist the steering power. A control method of the electrohydraulic power steering system includes acquiring steering angle information depending on the driver's steering operation and information on a steering torque applied through a steering wheel at the time of operating the steering wheel; determining a target steering torque depending on the acquired steering angle; and variably controlling a motor rotational speed of the motor pump unit so that the steering torque acquired through the sensor satisfies the target steering torque.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: December 20, 2016
    Assignee: HYUNDAI MOTOR COMPANY
    Inventor: Jin Seok Bang
  • Patent number: 9496735
    Abstract: The invention provides for an energy storage system that has a first plurality of battery cells that each are capable of a first C-rate. The plurality of battery cells can be charged at an equivalent rate on a kWh/minute basis as a second plurality of battery cells that each are capable of second C-rate, with the second C-rate being higher than the first C-rate. The first plurality of battery cells may have an energy storage capacity which is approximately twice the energy storage capacity for the second plurality of cells.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 15, 2016
    Assignee: Proterra Inc.
    Inventors: Reuben Sarkar, Seamus McGrath, Michael Alan Finnern
  • Patent number: 9463687
    Abstract: A method is provided for operating a drive unit for a hybrid vehicle. The drive unit includes a drive assembly with an internal combustion engine, and an electric motor, and a transmission featuring several sub-transmissions shifting between the drive assembly and an output. Through a planetary transmission, the electric motor is coupled to an input shaft of a first sub-transmission and an input shaft of a second sub-transmission shifted in parallel to the first sub-transmission. Through a frictional-locking separating clutch, the internal combustion engine couples to the input shaft of the first sub-transmission and, if the separating clutch is locked, is coupled to the same element of the planetary transmission together with the input shaft of the first sub-transmission.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 11, 2016
    Assignee: ZF Friedrichshafen AG
    Inventors: Johannes Kaltenbach, Uwe Griesmeier
  • Patent number: 9331484
    Abstract: A power exchange controller adjusts a power exchange between a plurality of batteries and an upper authority to control deterioration of a state-of-health of each of the plurality of batteries at an equivalent rate. The power exchange controller is operable to receive a total power demand from the upper authority and each of the plurality of batteries connected to a charging station and adjust the power exchange between the upper authority and each of the plurality of batteries by detecting a battery temperature of each of the plurality of batteries and determining the power exchange with each of the plurality of batteries based on the total power demand and an equalized temperature determined from each battery temperature. Each power exchange is determined so that the battery temperature of each of the plurality of batteries during the power exchange is adjusted to the equalized temperature.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: May 3, 2016
    Assignee: NISSAN NORTH AMERICA, INC.
    Inventor: Shinsuke Yonetani
  • Patent number: 9331503
    Abstract: A power exchange controller adjusts a power exchange rate between a plurality of batteries and an upper authority to modify a state-of-health of each of the plurality of batteries over time. The power exchange controller is operable to receive a total power demand from an upper authority and each of the plurality of batteries connected to a charging station and adjust the power exchange between the upper authority and each of the plurality of batteries by detecting a battery state-of-health of each of the plurality of batteries, determining the target state-of-health for the plurality of batteries based on the state-of-health of each of the plurality of batteries and determining a power exchange with each of the plurality of batteries based on the total power demand and a difference between the target state-of-health and the state-of-health of each battery.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: May 3, 2016
    Assignee: NISSAN NORTH AMERICA, INC.
    Inventor: Shinsuke Yonetani
  • Patent number: 9302588
    Abstract: A vehicle is provided with an electric machine and a storage device. The electric machine is configured to provide drive torque and the storage device is configured to supply power to the electric machine. The vehicle includes a variable voltage converter (VVC) that is connected between the storage device and the electric machine. The vehicle also includes a controller that is configured to receive input indicative of a VVC input current and a VVC output voltage. The controller is further configured to selectively disable drive torque responsive to the input.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 5, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Yuan Zhang, Michael W. Degner
  • Patent number: 9145128
    Abstract: A method for controlling a vehicle regenerative braking event includes maintaining a converter clutch closed while braking, while an engine connected to the impeller is running, opening the converter clutch when impeller speed reaches a reference speed difference relative to engine idle speed, and while the engine is off, opening the converter clutch when impeller speed reaches a speed required for a transmission pump, connected to an impeller, to produce line pressure at a desired magnitude.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 29, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Xiaoyong Wang, Mark S. Yamazaki, Wei Liang, Rajit Johri, Ryan A. McGee, Ming L. Kuang
  • Publication number: 20150149005
    Abstract: A method according to an exemplary aspect of the present disclosure includes, among other things, controlling a vehicle using an estimated torque of an electric machine, the estimated torque based on one or more parameters associated with the electric machine that are independent from measured current feedback.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Daniel Richard Luedtke, Fazal Urrahman Syed, Siwei Cheng
  • Publication number: 20150149010
    Abstract: An engine start using an electric motor during a vehicle travel is performed by increasing an output torque of the electric motor in a slip state where a second frictional engagement element 3 connecting the electric motor 1 and a driving wheel slips. A controller determines a requested acceleration amount from a depression amount of an accelerator pedal. When the requested acceleration amount is significant, a different torque increment characteristic is applied, compared to a case where the requested acceleration amount is not significant. Thus, the internal combustion engine starts in a high response depending on the requested acceleration amount input by the driver, thereby improving a vehicle acceleration response.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 28, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Hiroki Matsui
  • Publication number: 20150148190
    Abstract: A torque assist using a motor generator mechanically coupled to an output shaft of an engine via a belt is prohibited during a lock-up transition from a state where a lock-up clutch is released to a state where the lock-up clutch is engaged, and the torque assist using the motor generator is permitted when a condition for the execution of the torque assist is satisfied except during the lock-up transition.
    Type: Application
    Filed: April 30, 2013
    Publication date: May 28, 2015
    Applicants: NISSAN MOTOR CO., LTD., JATCO Ltd
    Inventors: Kouichi Mori, Shigeru Tomoda
  • Patent number: 9039568
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an electrical load may be automatically activated to consume electrical energy produced during driveline braking so that driveline braking may be extended. The electrical load may be a windscreen heater or other device.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Alex O'Connor Gibson, Jeffrey Allen Doering, James William Loch McCallum, David Oshinsky
  • Patent number: 9038759
    Abstract: [Problem] To provide a hybrid work vehicle which is simple in configuration, good in ease of mounting on a vehicle and capable of efficiently transmitting motive power. [Solution] The hybrid work vehicle includes: an engine (1); a hydraulic pump (4) which is driven by the engine; a work device (5) which is disposed at the front of the vehicle and performs work using the hydraulic pump as a drive source; a motor/generator (6) which generates electric power by use of the torque of the engine; and a travel drive device which causes the vehicle to travel by rotating and driving wheels by use of the electric power generated by the motor/generator. The hybrid work vehicle is steered while the vehicle bends by way of a center joint (15). The travel drive device includes: a plurality of electric motors (21 and 22); and a propeller shaft (8) which is linked with the plurality of electric motors and transmits motive power from the plurality of electric motors to the wheels.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 26, 2015
    Assignee: HITACHI CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Satoru Kaneko, Takashi Ikimi, Hidekazu Moriki, Noritaka Ito, Hiroaki Yanagimoto, Toru Kikuchi, Toshio Kotaka
  • Publication number: 20150142232
    Abstract: A control device of a hybrid vehicle includes an electric motor outputting a running torque at the time of motor running and a starting torque at engine start, in a state of the motor running using even the starting torque, the control device being configured to give a notification of the state to a driver when a charging capacity is smaller than a first predetermined value, and to start an engine when the charging capacity is smaller than a second predetermined value which is smaller than the first predetermined value.
    Type: Application
    Filed: February 28, 2012
    Publication date: May 21, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Tooru Matsubara, Koichi Okuda, Kenta Kumazaki, Tatsuya Imamura, Keita Imai, Takeshi Kitahata, Shunya Kato, Yasuhiro Hiasa
  • Publication number: 20150142235
    Abstract: A vibration damping control apparatus is mounted on a hybrid vehicle provided with an engine and a motor generator connected to the engine. The vibration damping control apparatus is a vibration damping control apparatus configured to control the motor generator to generate vibration damping torque which suppresses vibration of the hybrid vehicle. The vibration damping control apparatus is provided with: a gain correction value controlling device configured to change a gain correction value associated with the vibration damping torque, for each crank angle immediately before compression torque is generated in the engine, or for each crank angle at which the compression torque is zero.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 21, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Miwa, Takashi Kawai
  • Patent number: 9027680
    Abstract: In a hybrid vehicle, a target rotational speed and a target torque or a target operation point of an engine are set to a predetermined optimal efficiency rotational speed and a predetermined optimal efficiency torque that enable the engine to be operated efficiently when the engine is operated while a state of charge of the battery is equal to or more than a control-center state of charge after a start of a driving of the vehicle. Then, the engine and motors are controlled so that the engine is operated at the target operation point and a torque equivalent to a torque demand is output to a ring gear shaft or an axle.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Sawada, Kazuyoshi Obayashi
  • Patent number: 9031724
    Abstract: An electric vehicle includes a motor unit configured to drive a wheel, an ECU and an inverter unit. A motor control circuitry of the inverter unit includes a rotational frequency controller operable to perform rotational frequency control. The electric vehicle also includes a torque control abnormalities detector configured to detect an abnormality of torque control performed by the motor control circuitry. The electric vehicle also includes a control mode switcher configured to, in response to determination by the torque control abnormalities detector that there is an abnormality of torque control, cause the motor control circuitry to switch from torque control to rotational frequency control performed by the rotational frequency controller.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: May 12, 2015
    Assignee: NTN Corporation
    Inventor: Takayoshi Ozaki
  • Publication number: 20150127207
    Abstract: A control system for a generator of an electric drive is provided. The control system may include a converter circuit configured to communicate with one or more phases of a stator of the generator, and a controller in communication with the converter circuit and an engine associated with the electric drive. The controller may be configured to determine an operational state of the electric drive based on at least engine speed, and engage one of a map-lookup control scheme and a fixed-theta off control scheme for operating the generator based on the operational state of the electric drive.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Jackson Wai, Thuong Le, Adam Braun, Jesse Gerdes, James Siegle, Mark Hartman
  • Patent number: 9026286
    Abstract: A plugin hybrid vehicle is installed with an engine, an oil pump coupled to an output shaft of the engine to be driven by the engine, a motor/generator coupled to the output shaft of the engine, and a battery. An ECU controls the motor/generator to rotate the output shaft of the engine during charging of the battery using power supplied from a power source on the exterior of the plugin hybrid vehicle.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: May 5, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masaya Yamamoto, Hiroyuki Takayanagi
  • Patent number: 9026292
    Abstract: Methods and systems for controlling a fuel tank isolation valve coupled to a fuel tank in a vehicle are disclosed. In one example approach, a method comprises, in response to a refuel request, actuating a fuel tank isolation valve to vent a fuel tank for refueling; and, in response to a pressure in the fuel tank below a threshold pressure after a predetermined time duration, discontinuing actuation of the fuel tank isolation valve to seal the fuel tank.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: May 5, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Paul Lindlbauer, Ted Haladyna, William David Treharne
  • Publication number: 20150119189
    Abstract: A hybrid vehicle operates in an electric-drive-only mode and one or more modes using an internal combustion engine. A control pedal is movable to respective positions by a driver for indicating a desired vehicle motion. A controller selectably activates the engine according to instantaneous values of a variable wheel output demand and a variable pull-up threshold. The pedal position is converted to a respective instantaneous wheel output demand in response to an initial value from a mapping relationship that is modified in response to a difference between the initial value and the variable pull-up threshold. The pull-up threshold may preferably be dynamically determined according to a state of charge of a battery for powering the electric drive. The modification to the wheel output demand preferably reduces the slope of the mapping relationship near the pull-up threshold to reduce pedal position sensitivity in a region near the dynamically varying pull-up threshold.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Carol L. Okubo, Thomas S. Gee
  • Patent number: 9020734
    Abstract: An apparatus for selecting operating conditions of a genset, the apparatus including a processor circuit configured to select a set of operating points from a plurality of operating points of the genset each comprising an engine speed in a generator electrical output value and a plurality of cost values associated with operating the genset at respective operating points such that the sum of the cost values associated with the operating points in said set is minimized and such that the engine speed increases or decreases monotonically with monotonically increasing or decreasing electrical power output values.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 28, 2015
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Wei Liu, Nicolas Louis Bouchon
  • Patent number: 9020678
    Abstract: A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; and an engine, first and second electric motors and an output rotary member which are respectively connected to the four rotary elements. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The drive control device comprises a mode selecting operation device selecting an acceleration drive mode oriented to vehicle acceleration and a fuel efficiency drive mode oriented to fuel efficiency.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Noritaka Nakajima
  • Publication number: 20150107914
    Abstract: An electric vehicle may include a first drive axle to drive a first wheel of the electric vehicle, a first electric motor mounted directly on the first drive axle, a power supply such as a battery to power the first electric motor, and a controller to control the electric motor. The electric vehicle may include a second drive axle to drive a second wheel and a second electric motor mounted on the second drive axle. The electric motor may be only mounted on the first drive axle. The battery may be formed from an array of batteries.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Inventor: Dezhou David Zhao
  • Patent number: 9010469
    Abstract: A generation control device for a hybrid vehicle in which an electrical generator is driven by an engine, and a battery is charged by operation of the electrical generator and the engine, includes: a shift position detection unit that detects a shift position; a brake detection unit that detects whether a brake is on or off; a charging start unit; an increasing/decreasing unit that conducts increasing operation or decreasing operation; and a control unit that starts to charge the battery when the shift position is a non-travel position, the brake is on, and the charging start unit is operated. The control unit that, after starting to charge the battery, increases a parameter related to the electrical generation when the increasing operation is conducted, or the decreases the parameter when the decreasing operation is conducted. The control unit controls the engine and the power generator based on the set parameter.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 21, 2015
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventor: Jun Saito
  • Publication number: 20150105958
    Abstract: A method for controlling an internal combustion engine and an E-machine of a hybrid electrical vehicle. In this case, the control of the internal combustion engine takes place as a function of a current and an expected waste heat of an electrical drive of the hybrid electrical vehicle.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Rainer SCHNURR, Juergen BIESTER, Michael GLORA, Stefan Andreas KNIEP, Joerg HEYSE
  • Patent number: 9008882
    Abstract: A vehicle capable of traveling using electric power from a power storage device mounted thereon has an ECU executing, when traveling by electric power from the power storage device: the step of calculating a reference electric consumption based on an average operating point determined by an average vehicle speed and average driving force for every predetermined period; the step of calculating an actual electric consumption based on power consumption and travel distance during the period; the step of calculating a predicted electric consumption by a smoothing processing based on the reference electric consumption and actual electric consumption; and the step of calculating an allowed travel distance RMD that the vehicle can travel by the electric power remaining in the power storage device, based on the predicted electric consumption and the SOC of the power storage device.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: April 14, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Fuji Jukogyo Kabushiki Kaisha
    Inventors: Masaya Yamamoto, Itaru Seta
  • Patent number: 9008941
    Abstract: The present invention relates to an anti-jerk control apparatus and method for an Hybrid Electric Vehicle (HEV). The anti-jerk control apparatus includes a model speed calculation unit for calculating a model speed of the motor in a state in which a vibration of a drive shaft is not considered. A vibration occurrence determination unit detects a speed vibration component while calculating a reference speed difference and an average speed difference from differences between the model speed and an actual speed of the motor, thus determining whether a vibration occurs on the drive shaft. A torque correction value calculation unit calculates a motor torque correction value for anti-jerk required to damp the vibration of the drive shaft, and controls torque of the motor if the vibration occurrence determination unit determines that the vibration occurs on the drive shaft.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 14, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Tae Wook Park, Joon Young Park, Tae Hoon Lee, Hyung Bin Ihm
  • Publication number: 20150100187
    Abstract: A method of controlling a motor in a hybrid electric vehicle mitigates the risk of an incorrectly wired or incorrectly connected wiring harness. Following the connection or re-connection of a wiring harness, the vehicle responds to a torque request by limiting the magnitude of the motor torque until the proper direction of torque is confirmed. A flag is then set to record that torque direction has been confirmed so that the vehicle can respond normally to future requests. Several events may indicate that a wiring harness has been re-connected.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Brian Richard Light, Jonathan Andrew Butcher, Daniel Richard Luedtke, Darko Acevski, Carlos Ayala, Shailesh Shrikant Kozarekar
  • Patent number: 8996211
    Abstract: A method for controlling regenerative braking of an automobile micro-hybrid system is disclosed. The system includes at least a rotary electrical machine and an electrochemical battery. The method includes a step, when the electrochemical battery has a first predetermined energy state, which corresponds to an initial optimum charging state, of commanding a reduction of the first energy state, to a second energy state corresponding to an intermediate charging state, so as to make a charging capacity available in the electrochemical battery during a subsequent opportunity for recovery of electrical energy during, for example, a braking phase of the vehicle.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: March 31, 2015
    Assignee: Valeo Equipements Electriques Moteur
    Inventors: Ertugrul Taspinar, Daniel Benchetrite, Paul-Eric Chupin, Oussama Rouis, Cyrille Corniglion, Jean-François Duguey, Ryadh Ben Omrane, Hajar Hercouet, Benoit Soucaze-Guillous
  • Patent number: 8991283
    Abstract: A drive system (2) for a motor vehicle (1) has a transmission (11) for driving at least one drive axle (13, 14) of the motor vehicle (1). An internal combustion engine (3) optionally is connected operatively to the transmission (11) or decoupled therefrom. A first electric machine (17) optionally is connected operatively to the at least one drive axle (13, 14) or to an output shaft (39) of the transmission (11) or decoupled therefrom. A second electric machine (19) is connected operatively to the internal combustion engine (3).
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: March 31, 2015
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventor: Martin Fuechtner
  • Patent number: 8996220
    Abstract: A torque control device for use in a hybrid vehicle equipped with a generator driven by an internal combustion engine has a command value calculator that calculates an engine torque command value and a rotation speed command value of the generator based on a target generation power of the generator set in accordance with a running state of the hybrid vehicle, a generator torque command value calculator that calculates a generator torque command value to cause a rotation speed calculation value to match the rotation speed command value, a generator controller that controls the generator based on the generator torque command value, a rotation speed detector that detects a rotation speed detection value of the generator, and a pulsation removal filter.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Sho Ohno, Yuji Katsumata
  • Publication number: 20150087457
    Abstract: A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; and an engine, first and second electric motors and an output rotary member which are respectively connected to the four rotary elements. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The hybrid vehicle is selectively placed in a plurality of drive modes according to respective combinations of engaged and released states of the clutch and the brake.
    Type: Application
    Filed: March 21, 2012
    Publication date: March 26, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Hayashi, Masato Terashima, Hiroyasu Harada, Tomohito Ono, Hiroyuki Ishii
  • Publication number: 20150088356
    Abstract: A method and a control device are provided for operating a road-coupled hybrid vehicle. The hybrid vehicle has an electronic control unit, a primary motor associated with a first axle, and a secondary motor associated with a second axle. By way of the electronic control unit, the primary motor and the secondary motor are basically controlled in a drive-oriented manner such that preferentially only a single-axle drive by the primary motor is provided. Beginning with the secondary motor switched off, when a traction requirement is determined, the secondary motor is switched on, regardless of whether the vehicle is traveling on a curve. Beginning with the secondary motor switched on, when a traction requirement is not present, the secondary motor is not switched off until it is determined that the vehicle is not, or is no longer, traveling on a curve.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Inventors: Michael SAILER, Christian WIMMER, Jan FELTEN, Dirk ODENTHAL
  • Patent number: 8989936
    Abstract: A hybrid vehicle control system includes an engine, a motor/generator, a start clutch and a controller. The motor/generator is connected to the engine to carry out power driving and electric power regeneration. The start clutch is arranged in a driving force transmission path from the motor/generator to a drive wheel, and is engaged under an input rotational speed control. The controller includes a transient control mode switching section that when the input rotational speed control of the start clutch is switched from motor rotational speed control to engine rotational speed control, the motor rotational speed control is maintained on and both the motor rotational speed control and the engine rotational speed control are simultaneously carried out until determining engine torque is stable, and, after determining that the engine torque is stable, the control is switched from the motor rotational speed control to a motor torque control.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: March 24, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yutaka Takamura, Yoshinori Yamamura
  • Publication number: 20150081150
    Abstract: A control system for a vehicle comprises a control unit configured to be electrically coupled to a drive system of the vehicle. The drive system includes at least one traction motor for providing motive power to the vehicle. The control unit is configured to control a torque output of the traction motor to hold zero speed or near zero speed of the vehicle on a grade without knowing information, in at least one mode of operation, about the grade and/or a load of the vehicle, and without a service brake of the vehicle being activated.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 19, 2015
    Inventors: Jeffrey Wolff, Henry Todd Young, Timothy Brown, Mark Carter
  • Patent number: 8983700
    Abstract: Objects are to set up control of a plurality of motor generators in a case where a battery is charged or discharged, to secure both a target driving force and target charging/discharging, and to have the breath of control of using electric power of the battery under a more specific condition.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Suzuki Motor Corporation
    Inventors: Yoshiki Ito, Masaaki Tagawa, Masakazu Saito, Hitoshi Ohkuma, Yukihiro Hosoe
  • Patent number: 8975847
    Abstract: A power conversion device includes a first capacitor connected in parallel to a direct-current power supply, plural power converters that drive plural synchronous machines, a second capacitor connected in parallel to a direct-current side of power converters, a switching circuit inserted between the first and second capacitors, a switch-start instruction unit that controls starting of an operation of the power converters, and a control unit that controls the power converters based on a motor velocity and a voltage of the first capacitor. The switch-start instruction unit turns off the switching circuit while the power converters stop, turns off the switching circuit until a terminal voltage of each of the synchronous machines becomes equal to a predetermined value when each of the power converters starts operating, and turns on the switching circuit when the terminal voltage of each synchronous machine becomes equal to or smaller than the predetermined value.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masaki Kono
  • Publication number: 20150066264
    Abstract: Systems and methods for operating and hybrid driveline are presented. In one example, driver demand torque may be supplied to vehicle wheels via a hydraulic torque path and a friction torque path. Torque is distributed between the friction torque path and the hydraulic torque path in a way that ensures that driver demand torque is met and the friction torque path transfers torque up to its capacity.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Xiaoyong Wang, Wei Liang, Rajit Johri, Francis Thomas Connolly, Daniel Colvin, Ming Lang Kuang, Ryan Abraham McGee
  • Publication number: 20150066265
    Abstract: Methods and systems are provided for dynamically allocating engine torque and motor torque in a hybrid vehicle to meet operator torque demand. The allocation is adjusted by constraining the maximum engine torque allowable under selected conditions to provide a better trade-off between performance and fuel economy. A maximum engine torque that provides best fuel economy is learned during engine operation at different engine speed-load conditions based on a deviation in spark retard torque ratio from a threshold ratio as spark timing is moved to MBT.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Ted Haladyna, Kenneth James Miller
  • Publication number: 20150057868
    Abstract: Provided is a method and controller for controlling a vehicle dc bus voltage. The method includes generating a parameter. The parameter is based on a reference dc bus voltage squared. The method includes controlling the vehicle dc bus voltage based on the parameter and a detected dc bus voltage. The method may also include generating another parameter based on a power demand associated with at least one of a motoring mode operation and a generating mode operation of a traction motor associated with the vehicle. The power demand is indicated in a message received via a dedicated high speed data bus. The method includes controlling the vehicle dc bus voltage based on the another parameter.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 26, 2015
    Inventors: Long WU, Chris J. TREMEL, Zimin W. VILAR, Alan K. GILMAN, Robert SHAW