Of Temperature Or Pressure Patents (Class 203/2)
  • Patent number: 9718709
    Abstract: Portions of a feed liquid are passed through respective condensers and liquid-liquid heat exchangers. The feed liquid is then heated and injected into a first feed-liquid containment chamber, where vapor from the feed is passed through a first gas-permeable membrane and directed into a first condenser, where the vapor is cooled by the feed liquid passing through the first condenser and condenses as it cools to produce a first liquid permeate. The first liquid permeate is passed through the first liquid-liquid heat exchanger where the first liquid permeate is cooled by the feed liquid passing therethrough. After the vapor is removed from the feed liquid in the first feed-liquid containment chamber, the remaining feed liquid from the first feed-liquid containment chamber is injected into a second feed-liquid containment chamber, where the process is repeated.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 1, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward K. Summers, John H. Lienhard, V
  • Patent number: 9527008
    Abstract: Apparatus for controlling the operation of fractionation columns to avoid column flooding is described. The apparatus uses mass flow meters to measure the mass flow rates of the receiver vapor, and the stripper hydrocarbon liquid stream or the stripper reflux and the stripper net overhead liquid. The water from the receiver can be measured with either a volumetric flow meter or a mass flow meter. The apparatus also includes at least one computer in communication with a molecular weight analyzer or specific gravity analyzer; an overhead vapor line pressure gauge; an overhead vapor line temperature gauge; a hydrocarbon liquid outlet line temperature gauge; the stripper hydrocarbon stream mass flow meter, or the stripper reflux hydrocarbon liquid mass flow meter and the stripper net overhead hydrocarbon liquid mass flow meter; the vapor mass flow meter; and the water flow meter.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 27, 2016
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, James W. Harris, Amit Goyal, Xin X. Zhu
  • Patent number: 9186598
    Abstract: A novel pressurized vapor cycle for distilling liquids. In some embodiments, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, and a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product. Other embodiments are directed toward heat management, and other process enhancements for making the system especially efficient.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 17, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: David F. Bednarek, Jason A. Demers, Timothy P. Duggan, James L. Jackson, Scott A. Leonard, David W. McGill
  • Patent number: 9163865
    Abstract: A refrigeration cycle device 100 where a combustible refrigerant circulates includes a bypass pipe 5 that is connected so that part of the refrigerant that flows through a circulation pipe extending from a condenser 2 to a flow control valve 3 bypasses the flow control valve 3 and an evaporator 4; a bypass flow control valve 6 that controls the amount of the refrigerant flowing through the bypass pipe 5; a heat exchanger 7 that allows heat exchange between the refrigerant that flows through the bypass pipe 5 after flowing out of the bypass flow control valve 6 and the refrigerant that flows through the circulation pipe after flowing out of the condenser 2; and a subcooling degree sensor T73 that detects the subcooling degree of the refrigerant at the inlet of the flow control valve 3.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 20, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Wakamoto, Fumitake Unezaki, Takeshi Kuramochi, Hitoshi Iijima
  • Patent number: 9017522
    Abstract: A process to separate a multi-component hydrocarbon stream which includes ethylene and other components with at least some of the components being present in a number of phases, is provided. The process includes in a first flash stage, flashing the multi-component hydrocarbon stream, from an elevated pressure and temperature to a pressure in the range of 10-18 bar(a), producing a first ethylene-containing vapor stream at a pressure in the range of 10-18 bar(a) and a multi-phase stream which includes some ethylene. In a second flash stage, the multi-phase stream is flashed to a pressure of less than 6 bar(a), producing a second vapor stream at a pressure of less than 6 bar(a) and a bottoms stream. The first ethylene-containing vapor stream is removed from the first flash stage, the second vapor stream is removed from the second flash stage and the bottoms stream is removed from the second flash stage.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: April 28, 2015
    Assignee: Sasol Technolgy (Proprietary) Limited
    Inventors: Johannes Jochemus Gildenhuys, Andrew Kenneth Stone, William Francis Revelt
  • Patent number: 8992737
    Abstract: A trihalosilane refining device and a trihalosilane refining method are provided. The trihalosilane refining device can be useful in obtaining high-purity trihalosilane from a feed containing a trihalosilane while consuming a small amount of energy.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 31, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyu Lee, Joon Ho Shin, Jong Ku Lee, Sung Kyun Kim
  • Publication number: 20150083576
    Abstract: A processes is for purifying an amine compound from a feed solvent which includes an amine salt of the amine compound. The process includes heating the feed solvent in a single stage evaporator of a reclaimer at a reduced operating pressure by feeding the evaporator with a constant amount of thermal energy; and evaporating the amine compound to purity the amine compound from the feed solvent.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 26, 2015
    Applicant: HTC Purenergy Inc.
    Inventors: Ahmed A. Aboudheir, Walid H. Elmoudir
  • Publication number: 20150075965
    Abstract: A water amount controlling method according to the present disclosure includes: opening a discharge valve that discharges a liquid from a water tank if an impurity concentration is higher than or equal to a first reference value, and opening a sluice gate that introduces the liquid to the water tank a predetermined period after opening the discharge valve, the first reference value being lower than a saturation concentration; throttling the discharge valve and the sluice gate if the impurity concentration is higher than or equal to a second reference value and the temperature is lower than or equal to a third reference value, the second reference value being lower than the first reference value; and closing the discharge valve if the impurity concentration is lower than the second reference value, and closing the sluice gate a predetermined period after closing the discharge valve.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Inventors: Morio TOMIYAMA, Hisaaki GYOTEN, Norihisa MINO, Akira TAOMOTO, Atsushi ONO, Stephen William JOHN
  • Patent number: 8981133
    Abstract: The disclosure relates to a process for separating propylene oxide for a crude propylene oxide stream, for example an intermediate stream from a PO/TBA process. The crude propylene oxide stream can be passed through an extractive distillation column. The distillation column is operated at a pressure in a range of greater than 25 up to 50 psig, and/or at a temperature in a range of from 70 to 150 degrees Celsius using C8-C20 paraffin as extractive solvent with an overhead distillate water wash drum. The crude propylene oxide stream include from 0.001 to 0.1 wt % methanol, based on the total composition of the crude propylene oxide stream. The systems, methods, and apparatuses can produce a propylene oxide stream having less formaldehyde and acetaldehyde than the prior art.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 17, 2015
    Assignees: Lyondell Chemical Technology, L.P., Equistar Chemicals, LP
    Inventors: Xiangmin Li, David W. Leyshon, Te Chang
  • Publication number: 20150068886
    Abstract: One of these distilling apparatus (10) comprises two columns, an evaporation column (14) and a condensation column (16), separated by a partition (18) equipped with rows of slits dividing them into 4 distillation stages. The evaporation column (14) comprises plates with hydrophilic or wettable faces, and the condensation column comprises rectangular hollow-plate (21) heat exchangers (221-6). Cold water ascends in these exchangers and saturated humid hot air descends in the condensation column (16). A perforated sheet (251-4) increases the uniformity of the partial airflows descending between the plates. The water is heated in a boiler (34); the hot water is scattered at the top of the evaporation column and the air cooled in the condensation column is sucked downwards by a fan (34). The air flows in a closed circuit. Performance is maximised, after the top temperature TE2 (45 to 90° C.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 12, 2015
    Inventors: Jean-Paul Domen, Stéphane Viannay, Olivier Boisdon, Florian Dimeck
  • Patent number: 8974642
    Abstract: A trihalosilane refining device and a trihalosilane refining method are provided. The trihalosilane refining device can be useful in obtaining high-purity trihalosilane from a feed containing a trihalosilane while consuming a small amount of energy.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyu Lee, Joon Ho Shin, Jong Ku Lee, Sung Kyun Kim
  • Patent number: 8968521
    Abstract: A trihalosilane refining device and a trihalosilane refining method are provided. The trihalosilane refining device can be useful in obtaining high-purity trihalosilane from a feed containing a trihalosilane while consuming a small amount of energy.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyu Lee, Joon Ho Shin, Jong Ku Lee, Sung Kyun Kim
  • Patent number: 8894822
    Abstract: A rotary evaporator (1) having a cooler (6), wherein temperature sensors (15, 17) are disposed in the inlet (14) and outlet (16) of the coolant into or out of the cooler (6), and a volume flow rate of the coolant through the cooler (6) is determined. The initiation or termination of condensation in the cooler (6) is derived from an increase or decrease in the difference of the temperatures (X) at the temperature sensors (15, 17). The volume of the condensed distillate (10) is determined from the difference in temperatures (X), and a distillation volume control is performed. By regulating the heating power of the heater (11) and/or the pressure in the system, the loading of the cooler (6) is controlled as a function of the difference in temperatures (X).
    Type: Grant
    Filed: August 29, 2009
    Date of Patent: November 25, 2014
    Assignee: Ika-Werke GmbH & Co. KG
    Inventors: Hubert Pinhack, Martin Spath
  • Patent number: 8882967
    Abstract: Disclosed are methods for purifying a process water, which can comprise providing a process water comprising a first concentration of a first dissolved gas and a first concentration of a first dissolved ion, filtering the process water to create a filtered process water comprising a second concentration of the first dissolved gas, and evaporating the filtered process water to create a water vapor comprising a second concentration of the first dissolved ion that is less than the first concentration of the first dissolved ion.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: November 11, 2014
    Assignee: The Southern Company
    Inventor: Dhansukhbhai V. Patel
  • Patent number: 8864950
    Abstract: A process for producing an acrylate product. The process comprises the step of providing a crude product stream comprising the acrylate product and an alkylenating agent. The process further comprises the step of separating at least a portion of the crude product stream to form an alkylenating agent stream and an intermediate product stream. The alkylenating agent stream comprises at least 1 wt % alkylenating agent and the intermediate product stream comprises acrylate product. The separating is performed in at least one column at an operating pressure ranging from 40 kPa to 80 kPa.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Celanese International Corporation
    Inventors: Craig Peterson, Josefina Chapman, Jonathan Gallacher
  • Patent number: 8771477
    Abstract: Embodiments of the invention provide systems and methods for water purification and desalination. The systems have a preheater, a degasser, multiple evaporation chambers with demisters, heat pipes, and a control system, wherein the control system permits continuous operation of the purification and desalination system without requiring user intervention or cleaning. The systems are capable of recovering hear from each distillation stage, while removing, from a contaminated water sample, a plurality of contaminants including: microbiological contaminants, radiological contaminants, metals, salts, and organics.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: July 8, 2014
    Assignee: Sylvan Source, Inc.
    Inventor: Eugene Thiers
  • Patent number: 8741109
    Abstract: A method for purifying a crude acetone raw material containing low molecular weight impurities using two columns is disclosed. Crude acetone raw material is fed into a first column; adding an alkaline reagent and an oxidative agent into the first column to form high molecular weight impurities; removing a top fraction from the first column by distillation to form bottom fraction containing an acetone mixture containing high molecular weight impurities; feeding the bottom fraction containing the acetone mixture obtained to a second rectification column at a charge point on the column; adding an alkaline reagent to the second column above the charge point of the bottom fraction fed; and separating a purified acetone from the high molecular weight impurities and removing the purified acetone as a top fraction by distillation in the second column, wherein the second rectification column is operated at atmospheric pressure.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 3, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Mark Erik Nelson, Andrey Yurievich Sokolov, Ilya Yurievich Krupenko, Valery Yurievich Aristovich
  • Publication number: 20140144767
    Abstract: The invention relates to a method for the vacuum distillation of a liquid, in particular by means of a rotary evaporator, wherein at least one fraction of the liquid is evaporated at a reducing pressure, a vapor temperature correlating with a boiling temperature is determined by means of a temperature sensor and a pressure present at the time of the determination of the vapor temperature and correlating with a boiling pressure is determined and a minimal pressure, which may not be undercut in the distillation, is automatically determined by using the determined vapor temperature and to the determined pressure.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 29, 2014
    Applicant: Hans Heidolph GmbH & Co. KG
    Inventors: Patrick N. Jost, Jan Welzien
  • Publication number: 20140083838
    Abstract: Method for removing dissolved gases from water to produce boiler feed water in a catalytic steam reforming process where boiler feed water is heated by indirect heat transfer with a reformate stream and/or a combustion product gas stream and the boiler feed water subsequently flash vaporized to form steam and residual liquid water, where the steam formed by flash vaporization strips the dissolved gases from the water.
    Type: Application
    Filed: June 7, 2013
    Publication date: March 27, 2014
    Inventors: Joel Charles MacMurray, Gary Stuart Roth, Russell Ira Snyder, III, Gerald Michael Loughney
  • Patent number: 8628643
    Abstract: A fermentation liquid feed including water and a product alcohol and optionally CO2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO2. The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: January 14, 2014
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Michael Charles Grady, William D. Parten, Robert W. Sylvester, Joseph J. Zaher
  • Patent number: 8617359
    Abstract: A method for distilling a starting material that includes a liquid Fd to be distilled, uses a gas-tight container system that is resistant to excess and/or negative pressure. The container system includes a condenser for condensing the liquid Fd, which has turned to vapor and whose temperature can be adjusted, to give the condensation product, and a vapor chamber connecting the evaporator and the condenser. The pressure and temperature in the vapor chamber are monitored and controlled so that distillation is always carried out in a range close to the saturation vapor pressure of the liquid Fd to be distilled. If the pressure is too high, it is reduced so that especially foreign gas is removed. An installation includes a container for distillation according to method.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 31, 2013
    Inventors: Markus Lehmann, Markus Braendli
  • Publication number: 20130334027
    Abstract: Processes and systems for improving the quality and yield of distillate columns.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 19, 2013
    Inventors: George R. Winter, Zvi Mervhav
  • Patent number: 8603300
    Abstract: A method for fractionating a fuel includes heating the fuel and flowing it through hollow superhydrophobic membranes in a membrane module. Vapor from the fuel permeates the hydrophobic membranes and enters a distillate collection chamber, producing distilled fuel and residual fuel. The residual fuel is removed from the module and cooled. The cooled residual fuel is flowed through hollow tubes in the module and the distilled fuel is removed from the distillate collection chamber. Burning the distilled fuel reduces engine emissions. A fuel fractionation system includes a distillate collection chamber, hollow superhydrophobic membranes, hollow tubes and a distillate outlet. The hollow superhydrophobic membranes receive heated fuel and allow vapor from the heated fuel to permeate the membranes and enter the distillate collection chamber. The hollow tubes receive cooled residual fuel and are positioned to allow vapor in the distillate collection chamber to condense on outer surfaces of the hollow tubes.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 10, 2013
    Assignee: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Patent number: 8562791
    Abstract: A system and method for decontaminating water and generating water vapor includes introducing contaminated water in to a vessel. The water is moved through a series of rotating trays alternately separated by stationary baffles so as to swirl and heat the water to effect the vaporization thereof to produce a vapor having at least some of the contaminants separated therefrom. The vapor is removed from the vessel for condensing apart from the separated contaminants and the remaining water. The vapor may be passed through a turbine connected to an electric generator. Sensors in a controller may be employed to adjust the speed of rotation of the trays or water input into the vessel in response to the sensed conditions. The treated water may be recirculated and reprocessed through the vessel to increase the purification thereof.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Verno Holdings, LLC
    Inventors: John D. Riley, Dana L. Johnson
  • Publication number: 20130248348
    Abstract: A product output rate for a packed column is optimized by setting a desired product output rate from the distillation column, calculating a fraction of flood point of the distillation column at a reflux ratio, and determining a pressure drop value within the distillation column at the fraction of flood point. The step of determining the pressure drop employs the method of producing a plot of pressure drop as a function of fraction of flood point at any liquid flow rate, or producing a mathematical expression thereof.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 26, 2013
    Applicant: Aspen Technology, Inc.
    Inventor: Brian Hanley
  • Publication number: 20130240345
    Abstract: A process for producing high-purity liquids, in particular liquid chemicals, by distillation, includes the steps of: providing a liquid to be purified from a storage vessel in a sample container arranged in a sample chamber, heating and evaporating the uppermost layers of the liquid to be purified, condensing the sample vapor produced of the liquid to be purified in a condensation device outside the sample chamber, and collecting the distillate in a collecting container. The collecting container being connectable to the storage vessel via a return line for the non-condensed sample vapor and forming a space that is closed off from the surroundings between the space above the liquid surface of the liquid to be purified in the sample chamber and the storage vessel.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Inventor: Werner LAUTENSCHLAEGER
  • Patent number: 8506762
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In some embodiments of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, and a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product. Other embodiments of the invention are directed toward heat management, and other process enhancements for making the system especially efficient.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 13, 2013
    Assignee: DEKA Products Limited Partnership
    Inventors: David F. Bednarek, Jason A. Demers, Timothy P. Duggan, James L. Jackson, Scott A. Leonard, David W. McGill, Kingston Owens
  • Patent number: 8486223
    Abstract: A falling film evaporator having a shell pass, multiple tubes parallel to each other, a condensed steam outlet, an inlet for an aqueous solution on the top of the tube pass, an outlet for the aqueous solution at the bottom of the tube pass, a distributing assembly having a plurality of distributing trays arranged vertically from top to bottom in incremental diameters and each having multiple holes, and a plate for collecting the aqueous solution below the distributing assembly. The tubes are straight and installed vertically in the evaporator; inner wall of the tubes is smooth, and the top portion of the tubes is protruded above a horizontal plane of the plate. The evaporator is particularly useful for concentrating an aqueous solution containing thermosensitive materials.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: July 16, 2013
    Assignee: Jiangsu Sinorgchem Technology Co., Ltd.
    Inventors: Xiaogen Feng, Nongyue Wang, Xiaohui Mao, Ruibiao Yu, Qianwen Cheng
  • Patent number: 8475632
    Abstract: A method for recycling cutting fluid includes preparing and processing a cutting fluid of silicon including a silicon mixture and a cutting fluid at an anoxic circumstance of 150° C. to 350° C. in a container, to obtain a vaporized cutting fluid and a silicon slurry; and condensing the vaporized cutting fluid to obtain a recycling cutting fluid.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: July 2, 2013
    Assignee: Hong Jing Environment Company
    Inventors: Yu-Lung Sun, Yung-Hao Liu, Ming-Zhe Tsai
  • Patent number: 8470137
    Abstract: An assembly for recycling a solvent from a contaminated solvent solution includes a reservoir module connected to a recycler module. The reservoir module includes a mounted reservoir including an interior volume and a removable lid that reduces the interior volume and includes an access port. The recycler module includes a distillation assembly and an air handler assembly. The distillation assembly includes a distiller and a conduit including a condenser and a sight glass. The air handler assembly includes a duct having an intake port, an exhaust port and a source of air flow. The condenser is disposed within the duct and the sight glass is disposed external to the duct.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 25, 2013
    Assignee: Safety-Kleen Systems, Inc.
    Inventors: Rudy Publ, David Kisela, Tim Rothwell, Greg Merz, Gary Myers
  • Patent number: 8470138
    Abstract: A distillation assembly that reduces malodors resulting from a process of recycling a solvent from a contaminated solvent solution that includes a distillation chamber defined by a top wall, a side wall and a bottom wall, a heating element disposed in the distillation chamber including an active portion and an inactive portion. The contaminated solvent solution disposed at a level within the distillation chamber such that the active portion always disposed below the level.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 25, 2013
    Assignee: Safety-Kleen Systems, Inc.
    Inventors: Rudy Publ, David Kisela, Gary Myers
  • Patent number: 8470136
    Abstract: An assembly for removing contaminants from objects and recycling a solvent from a contaminated solvent solution includes a parts washer assembly including a container for a contaminated solvent solution and a recycling assembly that includes a reservoir module connected to a recycler module. The reservoir module includes a mounted reservoir including an interior volume and a removable lid that reduces the interior volume and includes an access port. The recycler module includes a distillation assembly and an air handler assembly. The distillation assembly includes a distiller and a conduit including a condenser and a sight glass. The air handler assembly includes a duct having an intake port, an exhaust port and a source of air flow. The condenser is disposed within the duct and the sight glass is disposed external to the duct.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 25, 2013
    Assignee: Safety-Kleen Systems, Inc.
    Inventors: Rudy Publ, David Kisela, Tim Rothwell, Greg Merz, Gary Myers
  • Patent number: 8449727
    Abstract: A flood point for a packed column is determined by providing a data set of gas pressure drop values as a function of gas flow rate values at several liquid flow rates through a packed column, known flood point value for one liquid flow rate, setting flood point values for higher liquid flow rates at values lower than the known flood point value, and setting flood point values for lower liquid flow rates at values higher than the known flood point value, followed by expressing gas flow rates for liquid flow rates as fractions of the flood point value for each respective liquid flow rate.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: May 28, 2013
    Assignee: Aspen Technology, Inc.
    Inventor: Brian Hanley
  • Patent number: 8440058
    Abstract: Method for concentrating nitrogen isotope to obtain a final product nitrogen, in which the stable nitrogen isotope, 15N, is concentrated, by low-temperature distillation of raw material nitrogen containing trace amounts of oxygen and argon using a plurality of distillation columns in a cascade arrangement. An argon-oxygen mixture is discharged from the bottom of the final column and 15N-concentrated nitrogen is extracted from a lower intermediate point of the final column. The flow rate of the argon-oxygen mixture discharged from the bottom of the final column is controlled based on the reading of a thermometer installed below the point where the final product 15N-concentrated nitrogen is extracted, thereby providing a stable nitrogen product.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Taiyo Nippon Sanso Corporation
    Inventor: Hitoshi Kihara
  • Patent number: 8425732
    Abstract: A method of operating an assembly for recycling a solvent from a contaminated solvent solution including a source for the contaminated solvent solution at a level and a recycling assembly including a reservoir module and a recycler module. The reservoir module includes a reservoir and the recycler module includes a controller and a distillation assembly including a distiller having a conduit and a pressure relief valve. The pressure relief valve includes a tube. The method includes connecting the conduit to the source below the level; connecting the pressure relief valve tube to the source; pumping solvent into the reservoir, distiller and conduit to an operational level; and selecting a duty cycle of the controller to regulate a rest period after the controller operation of a distillation cycle.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 23, 2013
    Assignee: Safety-Kleen Systems, Inc.
    Inventors: Rudy Publ, David Kisela, Gary Myers
  • Patent number: 8419903
    Abstract: The invention relates to a method for controlling, manually or automatically, the composition or quality of one or more products removed from the head, the sump or a lateral removal point of the distillation column having a built-in heat-exchanger. The method is characterized in that, by changing the pressure in the column, in the region of the product removal, the new boiling temperature of the product is determined from the vapor pressure curve of the product at said pressure and the temperature of the distillation removal is adjusted to said new boiling temperature by means of the modified coolant flowing through the heat-exchanger, preferably in the counter direction.
    Type: Grant
    Filed: July 12, 2008
    Date of Patent: April 16, 2013
    Inventor: Frank Bahr
  • Patent number: 8394241
    Abstract: A distillation-type drinking fountain includes a liquid providing unit having a liquid entry; a heat-exchanging tube having a liquid-incoming end, a liquid-outgoing end and a heat-exchanging room; a hot water tank having a body and a heating unit. The body has a heating room communicating with the liquid-outgoing end. A steam pipe has a first end and a second end, with the first end communicating with the heating room. A condensing unit has a condenser tube having one end communicating with the second end. A water-collecting container has a water-storing room communicating with another end of the condenser tube. An energy-saving heating unit includes an energy-saving heat-exchanging tube and a heating device. The energy-saving heat-exchanging tube includes a water-incoming end, a water-outgoing end and an energy-saving heat-exchanging room. An outlet valve communicates with the water-outgoing end.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: March 12, 2013
    Assignee: Shanghai Ariba Electric Co., Ltd.
    Inventor: Long-Ming Wang
  • Patent number: 8382962
    Abstract: A method of distilling mixtures of salts having a melting point of less than 200° C. at 1 bar (ionic liquids). The cation of the ionic liquid has a heterocyclic ring system having at least one nitrogen atom, and all nitrogen atoms of the heterocyclic ring system have an organic group as substituent. The anion of the ionic liquid is a compound having at least one carboxylate group or at least one phosphate group. The distance from the surface via which the heat of distillation is introduced in the distillation (vaporizer surface) to the surface at which condensation takes place (condenser surface) is less than 50 cm at at least one point, with the vaporizer surface and condenser surface themselves having at least one length dimension of greater than 50 cm.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 26, 2013
    Assignee: BASF SE
    Inventors: Klemens Massonne, Michael Siemer, Werner Mormann, Wei Leng
  • Patent number: 8372247
    Abstract: Method for automatically distilling liquid specimens in a standardized distillation apparatus containing a heater, a distillation flask, a collecting cylinder and control and regulation means, characterized in that: the specimen is introduced into the distillation flask; this flask is positioned in the distillation apparatus; the specimen to be analysed is classified in a group defined by the standard selected; the distillation is started, with the amount of condensate collected in the collecting cylinder, the temperature of the evaporated vapor, the temperature of the liquid specimen present in the flask, together with an operating parameter of the heater, being constantly measured; and the measured values are sent to the control and regulating means that in return control the operating parameter of the heater so as to obtain, directly and automatically, distillation parameters in accordance with a standard.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 12, 2013
    Assignee: Instrumentation Scientifique de Laboratoire ISL
    Inventors: Viachaslau Urvantsau, Hervé Cleris
  • Patent number: 8361281
    Abstract: There is disclosed a desalinization apparatus, and methods related to desalinization. In an embodiment, a desalinization apparatus includes at least one port for receiving airflow therethrough, at least one port for receiving salt water therethrough, at least one output for providing outflow of pure water vapor, and at least one output for proving outflow of a mixture of water, salt and air; and a plurality of chambers for evaporating the salt water into the airflow, at least one of the chambers forming a plurality of ports arranged in a plurality of rows. In an embodiment, a method includes providing airflow to a desalinization apparatus; providing salt water to the desalinization apparatus; forming a vortex in the airflow to evaporate water vapor from the salt water; and providing the water vapor in the airflow to a condenser so as to obtain pure water.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 29, 2013
    Assignee: LyteSyde, LLC
    Inventors: Kelly P. Rock, Bruce E. Nadeau, Jr.
  • Patent number: 8282790
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 9, 2012
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens
  • Patent number: 8246789
    Abstract: A treatment system for a watery material that includes: a dewatering tank in which liquefied matter of a material that is gaseous at a normal temperature and a normal pressure is contacted with the watery material and the watery material is separated into the resultant watery material and a liquid phase that contains an aqueous component from the watery material; an evaporator that vaporizes the material that is gaseous at a normal temperature and a normal pressure from the liquid phase; a separator that separates a gas of the material thus vaporized from effluent water; a condenser that condenses the gas into liquefied matter, two or more external heat sources selected from atmosphere, sewage, warm effluent water, and ground water; an external heat temperature detector that detects temperatures of external heats of the external heat sources; and an external heat supply destination controlling unit.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: August 21, 2012
    Assignees: Central Research Institute of Electric Power Industry, Tsukishima Kikai Co., Ltd.
    Inventors: Hideki Kanda, Hisao Makino, Mayumi Morita, Keizo Takegami, Akio Yoshikoshi, Masazumi Takahashi
  • Publication number: 20120205232
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8216429
    Abstract: A method comprises sensing a differential pressure signal, filtering the differential pressure signal, generating a flooding indicator as a function of the filtered differential pressure signal, and indicating the onset of flooding. The differential pressure signal is sensed along a distillation flow path. The filtered differential pressure signal is responsive to a phase inversion along the flow path, and the flooding indicator is responsive to an onset of a flooding condition, based on the phase inversion. The onset of the flooding condition is indicated based on a change in the flooding indicator.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 10, 2012
    Assignee: Rosemount Inc.
    Inventors: Roger Kenneth Pihlaja, John Philip Miller
  • Patent number: 8206557
    Abstract: In one embodiment, an apparatus includes a housing that has at least an inlet and an outlet. The housing is configured to receive a volume of fluid via the inlet. The volume of fluid is in a substantially liquid state and at least a portion of the volume of fluid includes a dissolved impurity. The apparatus also includes a heat-transfer element coupled to an interior volume of the housing. The heat-transfer element includes a surface, at least a portion of which is disposed at an angle with respect to a horizontal plane. The volume of fluid includes a surface parallel to the horizontal plane. The apparatus further includes a compression component configured to compress at least a portion of fluid boiled from the volume of fluid.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: June 26, 2012
    Assignee: Hydrologic Industries, Inc.
    Inventors: Francis P. Burke, Kenneth J. Horne, David B. Taylor, Stephen R. Topaz
  • Patent number: 8206558
    Abstract: A processing apparatus (1) for the processing of process or industrial wastewaters is provided. The processing apparatus (1) has an evaporator (4) in which a tube bundle heat exchanger is provided, whose pure distillate side is connected to a separating apparatus for separating the distillate from floating organic phase or similar free liquid constituents. This separating apparatus is intended to collect the floating organic phase from the condensate, in order that this phase can be sucked back into the evaporator (4). In addition, the vapor mixture is conducted from the separating apparatus (8) to a recuperator (3) and cooled to such an extent that the water, the volatile solvents and the organic material dissolved in the vapor can be condensed and discharged separately or can be sucked back into the evaporator (4). This allows significantly better distillate qualities to be achieved.
    Type: Grant
    Filed: February 3, 2007
    Date of Patent: June 26, 2012
    Assignee: H20 GmbH
    Inventors: Matthias Fickenscher, Daniel Ladenberger
  • Patent number: 8202401
    Abstract: In one embodiment, a method includes moving a first volume of fluid from a region above a heat-transfer element to a region below the heat-transfer element after the first volume of fluid is boiled from a second volume of fluid within the region above the heat-transfer element. The first volume of fluid including an impurity concentration lower than an impurity concentration of the second volume of fluid. The region below the heat-transfer element has a temperature higher than a temperature of the region above the heat-transfer element. The method also includes transferring latent heat from the first volume of fluid to a third volume of fluid on a top surface of the heat transfer element. The latent heat is released when the first volume of fluid condenses.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: June 19, 2012
    Assignee: Hydrologic Industries, Inc.
    Inventors: David B. Taylor, Stephen R. Topaz
  • Patent number: 8202402
    Abstract: The present invention relates to systems and related methods of water purification by distillation that will operate in a self-contained mode using a passive heat source, such as, without limitation, solar heat, air conditioning waste heat, or waste heat from the exhaust or cooling systems of an internal combustion engine, which may be used to desalinate sea water, saline water, or saline water containing contaminants. The present invention may also be used to distil sewage water, creek water, swamp water or water containing contaminants or used to cleanse or purify water contaminated with mud, chemicals, minerals, or bacteria in a local environment.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 19, 2012
    Assignee: Hse Hittt Solar Enerji Anonim Sirkerti
    Inventor: Rahmi Oguz Capan
  • Patent number: 8197645
    Abstract: The present invention relates to a process for separating at least one propylene glycol from a mixture (M) comprising water and said propylene glycol, said process comprising (I) evaporating the mixture in at least two evaporation and/or distillation stages at decreasing operating pressures of the evaporators and/or distillation columns obtaining mixture (M?) and mixture (M?); (II) separating the mixture (M?) obtained in (I) in at least one further distillation step, obtaining a mixture (M-I) comprising at least 70 wt.-% of water and a mixture (M-II) comprising less than 30 wt.-% of water.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 12, 2012
    Assignees: BASF Aktiengesellschaft, The Dow Chemical Company
    Inventors: Armin Diefenbacher, Hans-Georg Goebbel, Stefan Bitterlich, Hartwig Voss, Henning Schultz, Anna Forlin, Renate Patrascu
  • Patent number: 8192588
    Abstract: Water is removed from oily water produced during operation of a separation column by withdrawing the oily water from the column during separation into an external separator where the oily water is separated into a water phase and an oily phase. The oily phase is then heated to a temperature effective to produce a density differential that drives the oily phase back into the operating column.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: June 5, 2012
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak