Of Temperature Or Pressure Patents (Class 203/2)
  • Patent number: 7435317
    Abstract: An improved distillation of water. involves distilling significant quantities of water at temperatures well below the boiling point. During distillation, a compound is taken from a liquid-phase to a gas-phase and then condensed to the liquid-phase again to get a pure liquid. The present invention uses water sprayed (105) and absorbed onto a solid surface such as micro-powder (104) made from wood as a starting material. Absorbing water onto such a surface results in rapid evaporation with a relatively low temperature gradient when the water and particles are agitated. The present invention could be characterized as solid-phase distillation.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 14, 2008
    Assignee: Biomass Conversions, L.L.C.
    Inventor: Seiji Hata
  • Patent number: 7431805
    Abstract: A method, system, and apparatuses for simultaneous heat and mass transfer utilizing a carrier-gas at various absolute pressures are described. A method may include: thermally coupling at least two continuous contacting apparatuses together; varying the pressure between the at least two continuous contacting apparatuses; allowing heat removed from the first continuous contacting apparatus to be the heat delivered to the second continuous contacting apparatus. A system may include: at least two continuous contacting apparatuses thermally coupled together and operating at different absolute pressures. A continuous contacting apparatus may include: an evaporation chamber and a dew-formation chamber both operating at an absolute pressure in a vacuum range. A continuous contacting vapor recompression apparatus may include: an evaporation chamber operating at a first absolute pressure; and a dew-formation chamber operating at a second absolute pressure higher than the first absolute pressure.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 7, 2008
    Assignee: Arizona Board of Regents
    Inventor: James R. Beckman
  • Patent number: 7429312
    Abstract: The present group of inventions relates to processing of multi-component liquid mixtures (MCLM) employing reforming process, preferably for vacuum distillation of hydrocarbon mixtures and in petroleum refining and chemical industries. The inventions include the method for processing of multi-component liquid mixtures. The method of MCLM separation includes pressure feeding of a hydrocarbon liquid mixture to an a liquid-gas jet device nozzle which discharges to a vacuum chamber of liquid-gas jet device. A counter pressure jointly with the liquid-gas jet device forms a pressure surge in the vacuum chamber. The counter pressure is 0.4 to 0.7 of the magnitude of the feed pressure generated by the pump. The plant for MCLM processing includes a feed pump, a head delivery main, a discharge main, control instrumentation and a vacuum-generating device including a vacuum chamber, a liquid-gas jet device with a nozzle in the front end wall of the vacuum chamber.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: September 30, 2008
    Assignee: Energy Savings Technologies Financial Industrial Group LLC
    Inventors: Yuriy Pavlovich Skakunov, Chamil Khakimovich Iskhakov, Sergey Vladimirovich Tishkin
  • Patent number: 7425247
    Abstract: This invention relates to a method for producing an aqueous solution of free hydroxylamine (HA) by simultaneous countercurrent treatment of a HA salt with ammonia or ammonia water, then separating the HA by distillation and reconcentrating the aqueous HA solution in a countercurrent with a stripping medium. The stripping medium used according to the invention is a mixture of steam and a non-condensable inert gas and the process temperature at a defined pressure is controlled by the quantity of non-condensable inert gas at the column inlet. The preferred non-condensable inert gas is nitrogen. This results in increased safety and a reduction in losses of the method for producing aqueous solutions of free HA.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: September 16, 2008
    Assignee: Domo Caproleuna GmbH
    Inventors: Norbert Leetsch, Thomas Strecker, Manfred Kretschmar, Joachim Seidler
  • Patent number: 7393436
    Abstract: A thermal separating process for removing a stream containing enriched (meth)acrylic monomers from a mixture containing (meth)acrylic monomers, in which the liquid phases retained in the separating space at high temperature and high (meth)acrylic monomer content are minimized.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: July 1, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Bernd Eck, Ulrich Hammon, Klaus Joachim Mueller-Engel, Juergen Schroeder, Joachim Thiel, Hans Martan
  • Patent number: 7390380
    Abstract: Incoming wastewater is preheated in a heat exchanger before delivery to a flash chamber through an orifice for flashing into water vapor rising into an upper section of the flash chamber which also has a bottom section into which liquid waste oil or other contaminants settles. Rise of such water vapor into the upper chamber section is induced by a vacuum established therein by a vacuum pump withdrawing the water vapor in a superheated and compressed condition for cooling within a condenser from which the incoming wastewater is delivered to a heat exchanger for preheating. The water vapor during rise into the upper section of the flash chamber is filtered to extract contaminates therefrom while liquefied water vapor thereafter formed therein is collected before the remaining water vapor is cooled into the condensate for collection within a distillate tank from which it is withdrawn for overboard discharge after being monitored for oil content.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: June 24, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Henry J. Molintas
  • Patent number: 7347918
    Abstract: An evaporation system uses the weight of condensed liquid as an energy source. An inlet feed is introduced into an enclosure through an inlet. The inlet feed is vaporized in an evaporation region of the enclosure, and condensed to a liquid in a condensation region of the enclosure. The condensed liquid collects in a liquid region of the enclosure. The liquid region has an outlet. A blower between the evaporation region and the condensation region maintains the condensation region at a higher pressure than the evaporation region. The level of the liquid in the liquid region defines the volume and pressure of the evaporation and condensation regions, such that as the liquid is drained from the outlet, at least in part by the weight of the liquid, the pressure in the evaporation region decreases. The flow through the inlet and the outlet is regulated to maintain the pressure in the evaporation region at a pressure that tends to vaporize the inlet feed.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: March 25, 2008
    Inventor: Lynn L. Northrup, Jr.
  • Patent number: 7332057
    Abstract: This invention is directed to a method for vaporizing a liquid by slowly evaporating the liquid from a liquid phase to a vapor phase below the boiling point of the liquid; and applying an effective amount of microwave power to maintain the slow evaporation of the liquid to produce a purified liquid.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: February 19, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Wendell Isom, Prasad Apte, Arthur Edward Holmer
  • Patent number: 7329330
    Abstract: A process for working up by distillation the crude products obtained in the process according to DE-A 196 07 954 and containing 1,6-hexanediol (HDO), 1,5-pentanediol (PDO) or caprolactone (CLO) in order to obtain the corresponding pure products, the working-up by distillation being carried out in each case in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column with formation of an upper common column region (1), a lower common column region (6), a feed section (2, 4) having a rectification section (2) and stripping section (4), and a take-off section (3, 5) having a stripping section (3) and rectification section (5), with feeding of the respective crude product HDO, PLO or CLO in the middle region of the feed section (2, 4) and removal of the high boiler fraction (C) from the bottom of the column, of the low boiler fraction (A) via the top of the column and of the medium boiler fraction (B) from the middle region of the take-off section (3, 5), or
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: February 12, 2008
    Assignee: Basf Aktiengesellschaft
    Inventors: Martin Gall, Gerd Kaibel, Thomas Krug, Harald Rust, Frank Stein
  • Patent number: 7279076
    Abstract: In an apparatus capable of distilling and refining an easily polymerizable substance, piping is performed so that when a strainer in action is switched to a backup strainer, the strainer can be switched after removing air in the backup strainer to replace air in the backup strainer with a discharge liquid of a pump. According to the apparatus, switching the strainers installed on an upstream side of the pump for extracting a liquid of a vacuum distillation column, which distills and refines the easily polymerizable substance, can be performed with no trouble during operation of the distillation column. When the apparatus includes a device for measuring a differential pressure between an upstream side and a downstream side of the strainer in action, two or more strainers installed in parallel can be switched at proper times and the easily polymerizable substance can be produced efficiently.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 9, 2007
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Yada, Yasushi Ogawa, Hirochika Hosaka, Yoshiro Suzuki, Mitsuo Nakamura
  • Patent number: 7276139
    Abstract: An low concentration dope is fed through a nozzle into a concentrating apparatus, and flash evaporation of the low concentration dope is performed at an end of the nozzle. The low concentration dope is concentrated thereby to an concentrating dope which is contained and heated in the concentrating apparatus. Thus part of solvents of the low concentration dope and the concentrating dope is evaporated to a solvent gas. The solvent gas is cooled and condensed in a condensing section of the concentrating apparatus, and thereafter drawn through a first exit from the concentrating apparatus. The concentrating dope is concentrated to a high concentration dope, which is drawn through a second exit from the concentrating apparatus.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: October 2, 2007
    Assignee: Fujifilm Corporation
    Inventors: Yukihiro Katai, Tadahiro Tsujimoto, Misao Takahashi
  • Patent number: 7267746
    Abstract: A control apparatus and control method for controlling the separation in a dividing wall distillation column of at least two feeds into at least three products is disclosed. The apparatus uses a temperature measuring device to measure the temperature of fluid in the column, a controller, and a means for adjusting the temperature of fluid in the column. The temperature measuring device may be on either side of the dividing wall or above or below the dividing wall, and more than one such device may be used. The apparatus and method may be used in the production of alkylaromatic hydrocarbons by alkylating aromatic hydrocarbons with olefinic hydrocarbons.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 11, 2007
    Assignee: UOP LLC
    Inventors: James W. Harris, Steven P. Rosenblum, Michael A. Schultz, Dennis E. O'Brien, Douglas G. Stewart
  • Patent number: 7258766
    Abstract: A method for collecting acrylic acid is provided, which includes the step of collecting acrylic acid using an aqueous medium from a reaction gas containing acrylic acid obtained by catalytic vapor-phase oxidation of propane, propylene, and/or acrolein, the step being conducted so as to satisfy the following formula (1) (B/A)<1.25 (1) wherein A represents a weight fraction of acrylic acid to all condensable ingredients in the reaction gas before collecting acrylic acid and B represents a weight fraction of acrylic acid in bottoms of a collection device used in the step of collecting. According to the method, acrylic acid can be efficiently collected from the reaction gas containing acrylic acid obtained by catalytic vapor-phase oxidation.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 21, 2007
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Yada, Kimikatsu Jinno, Yasushi Ogawa, Yoshiro Suzuki
  • Patent number: 7255777
    Abstract: Improved HETP is obtained in the operation of a distillation column containing trays with a packing of a porous container containing a particulate material intimately associated with a resilient component having at least 50 volume % open space, preferably at least 70 volume % positioned on the trays compared to the trays without the packing. The packing may contain a catalytic particulate material and the distillation may involve reaction and distillation of the reaction products. The particulate material may also be inert and the distillation of the conventional type to separate components in the distillation mixture without reaction.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Gary R. Gildert, James R. Fair, A. Frank Seibert
  • Patent number: 7241928
    Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2?CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: July 10, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Velliyur N.Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7226527
    Abstract: A process for recovering crude 1,3-butadiene from a C4 fraction by extractive distillation using a selective solvent in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column to form a first subregion (A), a second subregion (B) and a lower common column region (C) and which is preceded by an extractive scrubbing column (K) is proposed.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: June 5, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Bohner, Klaus Kindler, Melanie Pahl, Gerd Kaibel
  • Patent number: 7169267
    Abstract: A process is proposed for the separation of C5+ cuts by distillation into a low-boiler (A), a medium-boiler (B) and a high-boiler fraction (C) in one or more dividing-wall columns (TK), in which a dividing wall (T) is arranged in the longitudinal direction of the column with formation of an upper, common column region (1), a lower, common column region (6), a feed part (2, 4) with rectifying section (2) and stripping section (4), and a withdrawal part (3, 5) with rectifying section (5) and stripping section (3), with feed of the C5+ cut (A, B, C) into the central region of the feed part (2, 4), discharge of the high-boiler fraction (C) from the bottom of the column, discharge of the low-boiler fraction (A) via the top of the column, and discharge of the medium-boiler fraction (B) from the central region of the withdrawal part (3, 5), wherein the dividing ratio of the liquid reflux at the upper end of the dividing wall (T) is set in such a way that the proportion of high-boiling key components in the liquid re
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: January 30, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Kaibel, Carsten Oost, Manfred Stroezel, Gerald Meyer, Peter Trübenbach, Karl-Heinz Sartor, Jürgen Heners
  • Patent number: 7163606
    Abstract: A system for recovering methylene chloride from an aqueous waste stream is disclosed. The system includes a distillation unit, at least one heat transfer unit, receptacles for methylene chloride and waste product, a temperature probe and a controller configured to selectively divert product flow from the distillation unit to either of the receptacles or to a recycle line back to the distillation unit depending upon the temperature measured by the probe. Also disclosed is a related process of recovering methylene chloride with such a system.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: January 16, 2007
    Assignee: Xerox Corporation
    Inventors: Thomas B. Glenwright, Warren R. Smith, Betsy B. Dodge, Steven P. Wazenkewitz, Ronald L. Swift
  • Patent number: 7147757
    Abstract: The invention relates to a method for separating by distillation a portion or the entirety of an azeptine derivative (III), which is selected from the group consisting of aminohexylidene imine, tetrahydroazepine, hexylhexahydroazepine and of aminohexylhexahydroazepine, out of a mixture (II) containing an azepine derivative (III) and an amine (I). The inventive method is characterized in that the distillation is carried out with a maximum bottom temperature of 150° C.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: December 12, 2006
    Assignee: Basf Aktiengesellschaft
    Inventors: Hermann Luyken, Frank Ohlbach
  • Patent number: 7132038
    Abstract: A process for obtaining pure 1,3-butadiene from crude 1,3-butadiene by distillation is carried out in a dividing wall column in which a dividing wall is located in the longitudinal direction of the column to form an upper common column region, a lower common column region, a feed section and an offtake section.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: November 7, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Bohner, Klaus Kindler, Melanie Pahl, Gerd Kaibel
  • Patent number: 7128814
    Abstract: The present invention relates to a process for separating 2-butanol from tert-butanol/water by adding of tert-butanol such that the water concentration lowers to less than the limit concentration of the distillation boundary line connecting the two azeotropes TBA/water and SBA/water and is subsequently worked up by distillation.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: October 31, 2006
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Andreas Beckmann, Dieter Reusch
  • Patent number: 7125474
    Abstract: The invention relates to a process for separating 2-butanol from an industrial mixture which includes 2-butanol, tert-butanol and water by separating water from the industrial mixture by distillation to obtain a distillate, wherein the distillate has, in terms of the 2-butanol, tert-butanol and water in the industrial mixture, a proportion by mass of water, which at a pressure, is greater than the limit concentration of the distillation boundary line connecting an azeotrope of tert-butanol and water; and an azeotrope of 2-butanol and water; subsequently changing the pressure so that the mixture has, in terms of the 2-butanol, tert-butanol and water in the distillate, a proportion by mass of water which is less than the limit concentration of the distillation boundary line connecting the distillation boundary line connecting an azeotrope of tert-butanol and water; and an azeotrope of 2-butanol and water; and subsequently distilling the mixture at the same pressure into a stream comprising 2-butanol and a strea
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: October 24, 2006
    Assignee: Oxeno Olefinshemie GmbH
    Inventors: Andreas Beckmann, Dieter Reusch
  • Patent number: 7048835
    Abstract: A distillation system and method for recovering acetic acid from a feed stream containing acetic acid and water stream generated during terephthalic acid production. The invention includes a dehydration column utilizing azeotropic distillation to recover the acetic acid in conjunction with a condenser system to recover the energy.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: May 23, 2006
    Assignee: AMT International, Inc.
    Inventors: Ji-Young Jang, Hyung-Jin Kim, Kuang Wu
  • Patent number: 7048833
    Abstract: A feed vaporization process and apparatus for oxygenate to olefin conversion is provided which uses a vapor-liquid disengaging drum to separate non-volatiles and/or partial non-volatiles from volatiles in the oxygenate feed and produce a vaporized effluent that is reduced in non-volatiles and/or partial non-volatiles while at the same time maintaining the effluent at optimal temperature and pressure as a feed for oxygenate to olefin conversion.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: May 23, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Ritchie Lumgair, Jr., James H. Beech, Jr., Michael Peter Nicoletti
  • Patent number: 7041198
    Abstract: A distillation system is provided having an evaporation conduit and a condensing conduit connected by a transfer system for transferring distillate vapour from the evaporation conduit to the condensing conduit to condense the distillate. The evaporation and condensing conduits operate under vacuum pressure. An intake conduit and a return conduit communicate in an unrestricted manner between a source of solution and the evaporation conduit. A distillate conduit communicates with the condensing conduit for dispensing condensed distillate therefrom. A radiant heat capturing system is provided for capturing and using heat radiated from the distillate conduit to generate power.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 9, 2006
    Inventor: George Atwell
  • Patent number: 7001490
    Abstract: Crude ammonia is separated into a low boiler fraction, a high boiler fraction and an intermediate-boiling pure fraction by continuous fractional distillation in a distillation apparatus configured either as a dividing wall column or as a system of thermally coupled distillation columns. In the process of the present invention, the low boiler fraction is taken off at the top of the distillation apparatus. The intermediate-boiling pure fraction is obtained at a side offtake which is preferably provided with droplet precipitators. In addition, the gas loading of the distillation column is restricted so that the operating pressure is in the range from 2 to 30 bar and the F factor does not exceed 2.0 Pa0.5.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: February 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Karl-Heinz Wostbrock, Gerd Kaibel, Christian Tragut, Gabriele Anken
  • Patent number: 6982026
    Abstract: Disclosed herein are methods for the recovery of at least one of an organic acid or an organic acid amide, such as a heat stable lactic acid or lactamide, from a feed stream which contains the organic acid and/or organic acid amide. The feed stream is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one heteroazeotrope with the organic acid or the organic acid amide in the feed stream. The mixture of the feed stream and the azeotroping agent is heated to produce a vapor stream. The heteroazeotrope is a component of that vapor stream. The vapor stream can be heated further to separate components or it can be condensed into a liquid stream. The liquid stream is capable of being separated into a first phase and a second phase. The first phase contains the highest concentration of the organic acid and/or the organic acid amide and the azeotroping agent is part of the second phase.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 3, 2006
    Assignee: Tate & Lyle Ingredients Americas, Inc.
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6946060
    Abstract: A method to purify N,N-dimethylacetamide (DMAc) from an aqueous solution containing acetic acid as a contaminant. Two fractional distillation columns are arranged in a series. The solution containing the contaminant is provided to the first column with a temperature profile to result in acetic acid partitioning into the overhead water. The material remaining in the bottom portion of the first column is recycled to the first column and also provided into a second column, whereby DMAc free of acetic acid contamination is recovered, and remaining DMAc and acetic acid are returned to the first column for further separation. The method uses standard fractional distillation procedures and equipment, thus eliminating the need for more complex extractions and/or chromatographic separations.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 20, 2005
    Assignee: Mallinckrodt Inc.
    Inventor: Michael J. Gentilcore
  • Patent number: 6936140
    Abstract: A distillation system is provided for recovering water from sea water and other polluted water source. The system has a heat engine embodying Carnot cycle and a Rankine cycle formed by heat exchangers, flash evaporator and condenser. Burnt gases from the engine such as a jet engine no longer fit for flying are directed into a duct where the exchangers are located. Sea water is pumped into the heat exchanger for preheating by residue heat in the duct and then into the exchanger for further heating. A recirculating pump raises water pressure in the exchanger for increasing boiling point to about 165° C. The heated water is fed into the evaporator where it changes into vapour and condensed into water by the condenser. The jet air stream is used to create Venturi effect for maintaining sub-atmospheric pressure in the evaporator. Any solid left in the evaporator is removed by a transfer mechanism.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: August 30, 2005
    Assignee: Aqua Dyne, Inc.
    Inventors: Gregory Mark Paxton, Patrick Joseph Glynn
  • Patent number: 6926809
    Abstract: The present invention relates to a device and method for the production of cyanuric chloride. The device has three units for the production, purification and isolation of cyanuric chloride, the second unit having a partial condensation and being set in such a way that the quantity of gaseous pure cyanuric chloride produced is greater than that of the liquid impure cyanuric chloride discharged from it.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: August 9, 2005
    Assignee: Degussa AG
    Inventors: Kurt Puschner, Stephanie Schauhoff
  • Patent number: 6926810
    Abstract: Disclosed herein are methods for the recovery of an organic acid, such as a heat stable lactic acid, from a feed stream which contains at least one of an organic acid amide, an organic acid ammonium salt, or an alkylamine-organic acid complex. The feed stream is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one azeotrope with the organic acid that is produced by the thermal decomposition of the amide, ammonium salt, or complex in the feed stream. Preferably the azeotrope is a heteroazeotrope. The mixture of the feed stream and the azeotroping agent is heated to produce a vapor stream. The azeotrope is a component of the vapor stream. The vapor stream can be condensed to a liquid stream, and the organic acid is recovered in the liquid stream that is produced. When the azeotrope is a heteroazeotrope, the vapor stream can be condensed into a liquid stream, which can be separated into a first phase and a second phase.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: August 9, 2005
    Assignee: A. E. Staley Manufacturing Co.
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6911120
    Abstract: The present invention is a distillation system with individual fractionator tray temperature control, with the use of either a heating element or a cooling element, and in some preferred embodiments, the use of both a heating element and a cooling element in a plurality of fractionator trays. There is at least, and typically more than one distillation column having a plurality of fractionation trays, and having feed input, liquid removal, and vapor removal with the plurality of trays including at least one of a heating element and a cooling element. Controls are included for separate control of each of the heating element(s) and/or said cooling element(s). These controls may be regulated by a programmable microprocessor, and feedback from temperature sensors may be employed to provide discrete tray-by-tray temperature controls.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: June 28, 2005
    Inventor: Li Young
  • Patent number: 6887352
    Abstract: A method for recovering hexamethylene diamine (HMD) from a mixture comprising HMD, 6-aminocapronitrile (ACN) tetrahydroazepine (THA), and adiponitrile (ADN) is disclosed. The method includes introducing the mixture into a first distillation column, separating as a group the HMD, ACN and at least a portion of the THA as distillate from the ADN. The first distillation column is operated at a temperature and pressure to minimize isomerization of the ADN into 2-cyanocyclopentylideneimine(CPI). The distillate of the first distillation column is introduced into a subsequent distillation column and the HMD is separated from the ACN and THA.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: May 3, 2005
    Assignee: Invista North America S.A.R.L.
    Inventor: John J. Ostermaier
  • Patent number: 6887344
    Abstract: A compact, self-contained apparatus for treating wastewater containing as impurities and pollutants various non-volatile (at water boiling points) fluids such as greases, oils and soaps, a vessel for collecting the wastewater, a heating chamber including electric heating elements and a heat transfer liquid such as mineral oil to heat the wastewater admixture to boil off the water and to reduce the volume of liquid for disposal, and a wastewater supply tank positioned under the apparatus. The apparatus may further include a disposable liner to isolate the wastewater from the vessel itself and facilitate rapid and clean removal and disposal of waste material after evaporation of the water, and thermally-activated sensors to maintain a desired temperature differential between the heating elements and the heat transfer liquid contained in the apparatus.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: May 3, 2005
    Inventor: Raymond E. VanKouwenberg
  • Patent number: 6869501
    Abstract: A process for evaporating a portion of a colloidal solution, said process including: a) passing a colloidal solution, said colloidal solution including particles in a liquid medium, wherein at least a portion of said liquid medium includes at least one volatile component, through one or more orifices into an evaporation zone that has at least one inner surface, wherein said colloidal solution does not substantially contact said at least one inner surface of said evaporation zone as said colloidal solution is passed through said evaporation zone; b) applying pressure in said evaporation zone that is lower than the vapor pressure of said colloidal solution as it is passed into said evaporation zone, allowing for flash evaporation of at least a portion of said at least one volatile component from said colloidal solution; c) adjusting the pressure in said evaporation zone to evaporate an amount of said at least one volatile component from said colloidal solution; and d) collecting the remaining colloidal solution
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: March 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Robert S. Davidson, Danny B. Anderson, Richard A. Gerth, David R. Holm
  • Patent number: 6863778
    Abstract: A process for the separation of diisobutylene from tertiary butyl alcohol utilizing pressure swing azeotropic distillation to achieve the desired separation. The pressure swing azeotropic distillation takes advantage of the fact that different azeotropes are formed at different pressures. Isobutylene in C4 streams is oligomerized in the presence of tertiary butyl alcohol to produce the diisobutylene. Tertiary butyl alcohol is present in the dimerization because it improves the selectivity to the dimer (diisobutylene) by suppressing further reaction to the trimer or higher. The diisobutylene is separated from the tertiary butyl alcohol utilizing two distillation columns. The first distillation is operated at a higher pressure than the second such that the minimum boiling azeotropes of tertiary butyl alcohol and diisobutylene have different concentrations of tertiary butyl alcohol. Diisobutylene is removed as bottoms from the first distillation column and unreacted C4's are removed as overheads at 60-130 psig.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: March 8, 2005
    Assignee: Catalytic Distillation Technologies
    Inventors: Jianhua Wang, Nishit Sahay, Mitchell E. Loescher, Montri Vichailak
  • Patent number: 6863780
    Abstract: There is provided an azeotropic mixture having 1,1,1,3,3-pentafluoropropane and hydrogen fluoride. Further, there is provided a process of separating/purifying R-245fa and/or HF from a mixture of R-245fa and HF wherein the mixture of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride is subjected to a distillation step so that a distillate is obtained which has the azeotropic mixture of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride, and a bottom product is obtained which has separated/purified 1,1,1,3,3-pentafluoropropane or hydrogen fluoride.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: March 8, 2005
    Inventors: Tatsuo Nakada, Noriaki Shibata, Takashi Shibanuma
  • Publication number: 20040238343
    Abstract: A membrane distillation method includes the steps of preparing a membrane distillation module that includes a hydrophobic porous membrane which is permeable to gas or vapor and impermeable to the solution, and injecting a body of the solution into the membrane distillation module and forming nano-grade gas bubbles of inert gas in the solution in the membrane distillation module in such a manner that the solution is emulsified with the nano-grade gas bubbles and that the thus formed nano-grade gas bubbles are allowed to pass through the membrane from one side to the other side of the membrane.
    Type: Application
    Filed: May 28, 2003
    Publication date: December 2, 2004
    Inventors: Joseph Kuo, Chen-Chang Chang
  • Patent number: 6821394
    Abstract: The present invention relates to a process of extracting haw pits by dry distillation and the device used therein. The process includes the following steps: removing the impurities of haw pits and drying them; immersing haw pits in water and then dripping and charging the dried pit into the furnace for dry distillation; gradually raising the temperature and dry distilling the haw pits at two temperature ranges of 105-195° C. and 305-380° C. respectively and collecting the distillate; mixing together the distillate, allowing them to separate into layers by specific gravity difference and separating out the final brownish red transparent liquor by siphon. The method of the present invention can provide high yield of extraction and the present device is simple in structure. Further, the present invention is easy to be employed on the industrial scale.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: November 23, 2004
    Inventor: Yi Shi
  • Publication number: 20040226812
    Abstract: In an apparatus capable of distilling and refining an easily polymerizable substance, piping is performed so that when a strainer in action is switched to a backup strainer, the strainer can be switched after removing the air in the backup strainer to replace the air in the backup strainer to a discharge liquid of a pump. According to the apparatus, switching the strainers installed on the upstream side of the pump for extracting a liquid of a vacuum distillation column which distills and refines the easily polymerizable substance can be performed with no trouble in the operation of the distillation column. When the apparatus comprises a means measuring a differential pressure between the upstream side and the downstream side of the strainer in action, the two or more strainers installed in parallel can be switched at proper times and the easily polymerizable substance can be produced efficiently.
    Type: Application
    Filed: June 21, 2004
    Publication date: November 18, 2004
    Inventors: Shuhei Yada, Yasushi Ogawa, Hirochika Hosaka, Yoshiro Suzuki, Mitsuo Nakamura
  • Publication number: 20040222077
    Abstract: In a distillation apparatus, a production process and a purification method of readily polymerizable compounds, a problem of the invention is to solve a serious plugging problem in a large-sized distillation column as in the commercial equipment and to provide an apparatus and a method for distilling and purifying a readily polymerizable compound stably over a long period of time.
    Type: Application
    Filed: February 20, 2004
    Publication date: November 11, 2004
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuhei Yada, Yasushi Ogawa, Yoshiro Suzuki, Kenji Takasaki, Kiyoshi Takahashi
  • Publication number: 20040195084
    Abstract: A process for separating secondary-butanol impurity from ethyl acetate (EtAc) by feeding the impure EtAc to a distillation column operating at a pressure of less than 1 bar absolute to provide (1) a stream comprising EtAc as a major component and (2) a residue or a second stream comprising at least some sec-butanol from said impure EtAc. The process can be applied to purifying EtAc derived from (a) catalytic reaction of ethylene with acetic acid followed by (b) a hydrogenation step. The 2-butanone impurity produced in step (a) is difficult to separate from EtAc, and step (b) converts it to sec-butanol which can be separated by the reduced pressure fractionation of the invention.
    Type: Application
    Filed: January 30, 2004
    Publication date: October 7, 2004
    Inventors: Stephen Warren Hetherington, Witold Franciszek Pacynko
  • Publication number: 20040195085
    Abstract: A method for collecting acrylic acid comprising the step of collecting acrylic acid using an aqueous medium from a reaction gas comprising acrylic acid obtained by catalytic vapor-phase oxidation of propane, propylene, and/or acrolein, the step being conducted so as to satisfy the following formula (1) wherein A represents a weight fraction of acrylic acid to all condensable ingredients in the reaction gas before collecting acrylic acid and B represents a weight fraction of acrylic acid in bottoms of a collection device used in the step of collecting. According to the method, acrylic acid can be efficiently collected from the reaction gas comprising acrylic acid obtained by catalytic vapor-phase oxidation.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 7, 2004
    Inventors: Shuhei Yada, Kimikatsu Jinno, Yasushi Ogawa, Yoshiro Suzuki
  • Publication number: 20040188236
    Abstract: Process for recovery of highly pure acrylonitrile by quickly vaporizing under vacuum the contaminated acrylonitrile as well as fresh acrylonitrile followed by contacting with hydrophilic agents in an extractive distillation column using plural number of packed sections.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 30, 2004
    Inventors: Prashant Purushottam Barve, Shrikant Madhukar Ghike, Ravindra William Shinde, Milind Yashwant Gupte, Chandrashekhar Narayan Joshi
  • Publication number: 20040182691
    Abstract: The present invention relates to a process for separating secondary butanol (also referred to as 2-butanol or SBA below) from tert-butanol/water mixtures which are obtained in the dissociation of tert-butanol (TBA), in particular tert-butanol prepared from industrial C4-hydrocarbon mixtures, into isobutene and water.
    Type: Application
    Filed: March 3, 2004
    Publication date: September 23, 2004
    Applicant: OXENO OLEFINCHEMIE GMBH
    Inventors: Andreas Beckmann, Dieter Reusch
  • Publication number: 20040182690
    Abstract: A method for recovering hexamethylene diamine (HMD) from a mixture comprising HMD, 6-aminocapronitrile (ACN) tetrahydroazepine (THA), and ADN comprising:
    Type: Application
    Filed: March 7, 2003
    Publication date: September 23, 2004
    Inventor: John J. Ostermaier
  • Publication number: 20040173449
    Abstract: A system for cooling a heated juice by partial low-pressure evaporation, said juice comprising a charged liquid, preferably juice from a harvested crop, said system comprising a vat in which the juice is subjected to various pressure reductions, said vat (4) comprising at least two compartments(5,6) which communicate with each other by means of a pulsed-effect valve, said juice being subjected to two different decreasing pressure reductions in said compartments, each compartment being connected to a condenser (19,25) which can condense the vapor produced by the pressure reduction. The condensers are serially mounted or parallel mounted and connected to a common vacuum pump (34) by means of at least one control valve (18) which can permanently adjust the pressure in each condenser to a value which is lower than the saturating vapor pressure corresponding to the temperature of the vapor created in each of the condensers.
    Type: Application
    Filed: May 4, 2004
    Publication date: September 9, 2004
    Inventors: Jean-Pierre Nadeau, Dominique Cadiot, Patrick Sebastian, David Callede
  • Patent number: 6787001
    Abstract: A method for distilling a raw material liquid containing (meth)acrylic acid substantially free from azeotropic solvents, collected with a collection agent from a mixed gas obtained by gas phase catalytic oxidation reactions which includes feeding to a distillation column the raw material liquid which temperature is substantially equal to that of the entrance place in the column.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: September 7, 2004
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Kazuhiko Sakamoto, Sei Nakahara, Yukihiro Matsumoto, Kenji Sanada, Masatoshi Ueoka
  • Patent number: 6758945
    Abstract: A method and apparatus for quenching the coke drum vapor line from a coke drum to the main fractionator in a coker unit whereby the volume of quench liquid prevents the drum vapor line from plugging with carbon-based deposits. A differential pressure control technique is utilized to quench the drum vapors being delivered to the fractionator as opposed to a temperature, delta temperature, uninsulated vapor line, or fixed flow rate control as used in the prior art. Vapor line quench control by differential pressure prevents over-quenching of the vapor line during a coke drum switch, unit startup, or slowdown as well as under-quenching during drum warm-ups. It improves the fractionator recovery time from a drum switch and overall liquid product yield during the drum cycle which can be produced by over-quenching. It also prevents the vapor line from drying out at anytime, an under-quenched condition, as long as the quench oil quality and conditions do not vary significantly.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: July 6, 2004
    Assignee: Shell Oil Company
    Inventor: Stephen Michel Haik
  • Publication number: 20040099521
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 27, 2004
    Applicant: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens