Addition Of Material To Distilland To Inhibit Or Prevent Reaction Or To Stabilize Patents (Class 203/6)
  • Patent number: 9776944
    Abstract: A process for producing acetic acid including an acetic acid collection step for feeding a first distillation column with a volatile component at least containing acetic acid, methyl acetate, methyl iodide, water, and hydrogen iodide. Separating a first lower boiling point component as an overhead, and collecting a first liquid stream containing acetic acid. An acetic acid purification step for feeding a second distillation column with the first liquid stream, and separating a second lower boiling point component as an overhead. Collecting a second liquid stream containing acetic acid. An alkali component is added or mixed for distilling a mixture to be treated containing the first liquid stream and the alkali component in the second distillation column. In the mixture, at least one component (A) having a boiling point lower than acetic acid. The at least one component (A) having a concentration of 0.1 to 15% by weight.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: October 3, 2017
    Assignee: DAICEL CORPORATION
    Inventors: Masahiko Shimizu, Ryuji Saito, Hiroyuki Miura, Takashi Ueno
  • Patent number: 9388097
    Abstract: A method for treating a substrate prior to a metathesis reaction includes treating the substrate with a first agent configured to mitigate potentially adverse effects of one or more contaminants in the substrate on a catalyst used to catalyze the metathesis reaction. The treating reduces a level of the one or more contaminants by an amount sufficient to enable the metathesis reaction to proceed at a substrate-to-catalyst molar ratio of at least about 7,500 to 1. Methods for metathesizing substrates are described.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 12, 2016
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Keith M. Wampler, Steven A. Cohen, Georg E. Frater, Levente Ondi, Jeno Varga
  • Publication number: 20150144477
    Abstract: The invention concerns a flexible process for purifying a solvent which inhibits the formation of hydrates during gas processing, in particular monoethylene glycol (MEG), said solvent having a boiling point which is higher than that of water and, at least at one point in time, being mixed with water and salts, the process operating in a different manner with the same facility as a function of the quantity of salts in the MEG to be treated. The process operates in accordance with a phase known as reclaiming (separation of salts under vacuum followed by vacuum distillation) when the salts content exceeds the precipitation threshold and if not, the process operates in a regeneration phase (absence of separation of salts and no operation under vacuum). Advantageously, the change is made under the control of means for testing the salts.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 28, 2015
    Applicant: PROSERNAT
    Inventors: Jeremie ESQUIER, Bernard CHAMBON, Christian STREICHER
  • Publication number: 20150129412
    Abstract: A method for recovering base oil from waste lubricating oil by separating base oil range constituents from a waste lubricating oil mixture, thereafter separating higher quality base oil constituents and lower quality base oil constituents from the base oil recovered from the waste lubricating oil mixture and thereafter treating the lower quality base oil constituents to produce marketable base oil. The total base oil produced from a waste lubricating oil mixture by this process is greater than the quantity producible by previous processes using only base oil separation from the waste lubricating oil mixture or processes which use only treatment of the base oil recovered from the waste lubricating oil mixture to produce the product base oil.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventor: Martin R. MacDonald
  • Patent number: 8895779
    Abstract: A process for making MAA from a clarified DAA-containing fermentation broth includes (a) distilling the broth to form an overhead that includes water and ammonia, and a liquid bottoms that includes MAA, at least some DAA, and at least about 20 wt. % water; (b) cooling the bottoms to a temperature sufficient to cause the bottoms to separate into a DAA-containing liquid portion in contact with a MAA-containing solid portion that is substantially free of DAA; (c) separating the solid portion from the liquid portion; and (d) recovering the solid portion.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: November 25, 2014
    Assignee: BioAmber Inc.
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Publication number: 20140262733
    Abstract: An improved method for removing formaldehyde from a crude butynediol product stream comprising the step of providing a crude butynediol stream containing butynediol and formaldehyde. A pH control agent is then mixed with the crude butynediol stream to form a treated product stream, wherein the pH of the treated product stream is raised to a level that limits the reaction of butynediol and formaldehyde to form acetal complex and decrease the solubility of trace metals. The treated product stream then flows into the inlet of a continuous distillation column. Finally, a concentrated formaldehyde stream from the overhead stream of the distillation column and a concentrated butynediol stream from the distillation bottoms stream that is essentially free of formaldehyde and acetal complex are both recovered.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 18, 2014
    Inventors: Hashim M. Badat, Jason C. Gause
  • Patent number: 8764947
    Abstract: A method and system for disposal of furfural wastewater, wherein raw crop material is transported into a hydrolysis reactor after crushed and mixed with acid to be hydrolyzed to form raw furfural liquid, and then said raw furfural liquid is transported into a distillation column to be distilled, during which furfural wastewater is discharged from said distillation column. Firstly said furfural wastewater is transported into a wastewater evaporation system to be heated it into wastewater vapor which is then transported back into said hydrolysis reactor to form recycle of said furfural wastewater. Wastewater vapor residues generated therein can be utilized directly to combust in boiler, mix with acid, or prepare end product acetate. The system for disposal of furfural wastewater comprises at least a wastewater evaporation system connecting with a heat resource which is one of steam, electricity, coal, oil, gas, plant straws or wastewater vapor residues.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: July 1, 2014
    Assignee: Jinan Shengquan Group Share-Holding Co., Ltd.
    Inventors: Yilin Tang, Chengzhen Jiang, Shaofeng Gao, Dongsheng LV, Zujiang Shen, Xuanwei Suo
  • Publication number: 20130303803
    Abstract: This invention provides a method for purifying a chlorine supply that includes a chlorine component, a bromine component, and nitrogen trichloride. The method includes the steps of introducing the chlorine supply into a vaporizer, heating the chlorine supply in the vaporizer to form a vapor, and introducing the vapor into a distillation system to provide purified chlorine gas, a distillate that includes liquid chlorine and the bromine component, and a bottoms component including the nitrogen trichloride. The method also includes the steps of condensing the vapor in a reflux condenser, heating the condensate in a reboiler, removing the purified chlorine gas from the distillation system, and removing the distillate from the distillation system.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 14, 2013
    Inventors: Robert A. Doerr, Steven D. Gagnon, Kenneth K. Bordelon, Johannes D. Jacobs, Thomas A. Grzanka
  • Patent number: 8568584
    Abstract: A method is described for controlling instability of operation in a de-ethanizer tower (13) in the gas recovery unit in fluid catalytic cracking units and delayed coking units. The method comprises the step of intervening in the de-ethanizer tower (13) when instability occurs in it, and adjusting the material balance of water in such a way that the excess of water in the feed load stream (9) is removed only as an azeotrope. The intervention is performed by introducing into the feed load stream (9) of the de-ethanizer tower (13) a volume fraction (18) of a flow of hydrocarbon, which may be either dry hydrocarbons or hydrocarbons with a low level of water content.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 29, 2013
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Mario de Sousa Almeida, Neyde Alexandra Fraga Marques, Francisco Carlos da Costa Barros, Claudine Toledo Alvares da Silva Costa
  • Patent number: 8491758
    Abstract: A process for inhibiting polymerization of (meth)acrylic acid and/or (meth)acrylic esters by introducing an oxygenous gas into the (meth)acrylic acid and/or the (meth)acrylic ester, in which the (meth)acrylic acid and/or the (meth)acrylic ester has a degree of purity of at least 95% and is in the liquid state.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 23, 2013
    Assignee: BASF SE
    Inventors: Gunter Lipowsky, Steffen Rissel, Volker Schliephake, Ulrich Jäger, Sylke Haremza
  • Patent number: 8444829
    Abstract: Improved methods for carrier-gas humidification/dehumidification [HDH] or dewvaporization enable production of clean water, derived in part from models generated and tested with produced water from the oil and gas industries, which likewise address industrial waste water remediation and generally facilitate the time and cost efficient disposal of waste waters from a plurality of industries ranging from food, wine, and beverage production to novel enhanced efficiencies within the oil and gas industries themselves. High efficiency carrier gas HDH thermal distillation functions without membranes, at ambient or near ambient pressures with no required pre- or post-treatment, and economies of scale to leverage a plastics-based processing platform. Industrial waste water including that generated by the food, wine, and beverage industries, among others, is likewise ameliorated according to the instant teachings.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 21, 2013
    Assignee: Altela, Inc.
    Inventors: Ned Allen Godshall, Matthew Jason Bruff
  • Publication number: 20120323021
    Abstract: An object of the present invention is to provide a high-purity aromatic methyl alcohol compound having reduced a bis(arylmethyl)ether compound as a side product mixed thereinto and a high-purity aromatic methyl alcohol composition having excellent preservation stability and methods for producing them. The object of the present invention is achieved by a method for producing a high-purity aromatic methyl alcohol compound, which comprises obtaining a high-purity aromatic methyl alcohol compound in high yield from an aromatic methyl alcohol-containing crude product by subjecting the crude product to distillation in the presence of an anti-decomposition agent. Further, the object for the preservation stability is achieved by producing a high-purity aromatic methyl alcohol composition using the obtained high-purity aromatic methyl alcohol compound.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 20, 2012
    Inventors: Takashi Doi, Yoshihiro Yoshida, Daisuke Douyama, Ryousuke Katsura, Satoru Fujitsu, Shinji Yasuda, Keisuke Kimura, Kiyoshi Oomori
  • Patent number: 8299282
    Abstract: Continuous method for the esterification of free fatty acids in plant and animal fats with alcohols using a heterogenic acid catalyst.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 30, 2012
    Assignee: Bayer Technology Services GmbH
    Inventors: Dieter Heinz, Leslaw Mleczko, Shaibal Roy, Heinrich Morhenn, Wulf Dietrich
  • Publication number: 20120234664
    Abstract: A thermal desalination process comprising: introducing a feed solution into a thermal separation unit, distilling the feed solution in the thermal separation unit to produce a distillate stream and a residual stream having a higher solute concentration than the feed solution, contacting a portion of the residual stream from the thermal separation unit with one side of a selectively permeable membrane, contacting the opposite side of the selectively permeable membrane with a portion of the feed solution, such that water flows across the membrane to dilute the residual stream by direct osmosis, and introducing at least a portion of the diluted residual stream into the thermal separation unit.
    Type: Application
    Filed: October 26, 2010
    Publication date: September 20, 2012
    Applicant: Surrey Aquatechnology Ltd.
    Inventor: Peter Nicoll
  • Patent number: 8118995
    Abstract: A method for inhibiting the formation of fouling materials including contacting hydrocarbon media containing aldehyde compounds with an antifoulant while treating the hydrocarbon media with a basic wash. The antifoulant includes a reducing sugar.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 21, 2012
    Assignee: General Electric Company
    Inventors: Mary King, Cato Russell McDaniel
  • Publication number: 20110266133
    Abstract: A process for making MAA from a clarified DAA-containing fermentation broth includes (a) distilling the broth to form an overhead that includes water and ammonia, and a liquid bottoms that includes MAA, at least some DAA, and at least about 20 wt % water; (b) cooling the bottoms to a temperature sufficient to cause the bottoms to separate into a DAA-containing liquid portion in contact with a MAA-containing solid portion that is substantially free of DAA; (c) separating the solid portion from the liquid portion; and (d) recovering the solid portion.
    Type: Application
    Filed: April 14, 2011
    Publication date: November 3, 2011
    Applicant: BIOAMBER S.A.S.
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Patent number: 7767170
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Publication number: 20090194407
    Abstract: A method and system for disposal of furfural wastewater, wherein raw crop material is transported into a hydrolysis reactor after crushed and mixed with acid to be hydrolyzed to form raw furfural liquid, and then said raw furfural liquid is transported into a distillation column to be distilled, during which furfural wastewater is discharged from said distillation column. Firstly said furfural wastewater is transported into a wastewater evaporation system to be heated it into wastewater vapor which is then transported back into said hydrolysis reactor to form recycle of said furfural wastewater. Wastewater vapor residues generated therein can be utilized directly to combust in boiler, mix with acid, or prepare end product acetate. The system for disposal of furfural wastewater comprises at least a wastewater evaporation system connecting with a heat resource which is one of steam, electricity, coal, oil, gas, plant straws or wastewater vapor residues.
    Type: Application
    Filed: November 8, 2006
    Publication date: August 6, 2009
    Applicant: JINAN SHENGQUAN GROUP SHAREHOLDINGS CO., LTD.
    Inventors: Yilin Tang, Chengzhen Jiang, Shaofeng Gao, Dongsheng Lv, Zujiang Shen, Xuanwei Suo
  • Patent number: 7560590
    Abstract: A process for rectificatively separating an acrylic acid-containing liquid, by withdrawing an acrylic acid-rich stream from the rectification column above the feed point and polymerization-inhibiting the upper section of the rectification column by means of diacrylic acid.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: July 14, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Frank Hoefer, Volker Schliephake, Klaus Joachim Mueller-Engel
  • Publication number: 20080245652
    Abstract: A method for purifying a crude (meth)acrylic acid obtained by a vapor phase catalytic oxidation method, characterized in that the crude (meth)acrylic acid having most parts of water and acetic acid removed therefrom, is fed to and distilled in a first distillation column of a purification system comprising first to third three distillation columns, the top fraction from the first distillation column is fed to and distilled in the second distillation column, the resulting top fraction is recovered as a high purity (meth)acrylic acid product, the bottoms from the first and second distillation columns are fed to and distilled in the third distillation column, and the resulting top fraction is fed to the first distillation column.
    Type: Application
    Filed: January 15, 2008
    Publication date: October 9, 2008
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuhei Yada, Yasushi Ogawa, Yoshiro Suzuki, Kenji Takasaki
  • Patent number: 7396519
    Abstract: A high purity aqueous solution of hydroxylamine product is prepared by treating an aqueous solution of hydroxylammonium salt with a base like ammonia at low temperatures. A novel process can be carried out by separating the ammonium salt side product from hydroxylamine with a low temperature filtration and a resin-exchange process. The concentration of the hydroxylamine product is further improved by a safe distillation process that produces a high purity and high concentration hydroxylamine product with reduced risks of explosion.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: July 8, 2008
    Assignee: San Fu Chemical Company, Ltd.
    Inventors: Kaung-Far Lin, Jin-Fu Chen, Wei Te Lin, Ruey-Shing Chen, Kung-Chin Kuo
  • Patent number: 7294240
    Abstract: Basic (meth)acrylates IV are prepared by transesterification of alkyl (meth)acrylates I in the presence of a catalyst and working-up of the reaction mixture by distillation, by a process in which a gas or gas mixture which is inert under the reaction conditions is passed through the reaction zone and/or heat exchanger.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: November 13, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Geisendoerfer, Gerhard Nestler, Juergen Schroeder, Hugues Vandenmersch
  • Patent number: 7205438
    Abstract: A diene production stream comprising a solvent recovery blend from diene production comprising one or more fouling agent, one or more extractive distillation solvent, and from about 1 ppm to about 1000 ppm of N,N-disubstituted amide.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: April 17, 2007
    Assignee: Baker Hughes Incorporated
    Inventor: Marilyn Wood Blaschke
  • Patent number: 7182839
    Abstract: Methods and compositions effective to prevent deposition of fouling agents, preferably polymerization precursors, on handling equipment, particularly during solvent recovery.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: February 27, 2007
    Assignee: Baker Hughes Incorporated
    Inventor: Marilyn Wood Blaschke
  • Patent number: 7169268
    Abstract: The present invention concerns a process for providing tertiary amine products which are color-stable, and have a greatly reduced tendency to take on color during their storage. According to the invention, an ethyleneamine derivative is added to the distillation pot prior to or during the distillation of the tertiary amine product. Preferably, the ethyleneamine derivative has a higher boiling point than the desired tertiary amine product so as to preclude the ethyleneamine from distilling over with the tertiary amine.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: January 30, 2007
    Assignee: Huntsman Petrochemical Corporation
    Inventors: Wei-Yang Su, Mark L. Posey, Maarten P. ter Weeme
  • Patent number: 7074304
    Abstract: A process for purifying alicyclic alcohols by distillation, wherein the alicyclic alcohols are distilled in the presence of from 1 to 550 ppm of acidic compounds.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 11, 2006
    Assignee: Celanese Chemicals Europe GmbH
    Inventors: Wolfgang Dukat, Peter Lappe, Klaus Schmid, Horst Scholz, Edgar Storm
  • Patent number: 7037412
    Abstract: The invention provides a method for producing purified N-vinyl-2-pyrrolidone free of odorous components. The method is composed of distilling with a distillation column a liquid, which is formed by adding to an odorous components-containing liquid having a N-vinyl-2-pyrrolidone purity of not lower than 90 wt %, a compound having boiling point lower than that of N-vinyl-2-pyrrolidone, and whereby removing the odorous components together with said low-temperature boiling compound as the distillate.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 2, 2006
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuaki Abe, Takashi Yodoshi, Hitoshi Yano
  • Patent number: 6964728
    Abstract: Bisphenol-A-bis(neopentylglycolphosphate) products of enhanced properties and processes for preparing them are described. One of the processes includes (a) mixing and reacting neopentyl glycol and bisphenol-A-bis(dichlorophosphate) in an inert polar organic solvent which (1) if mixed by itself with an equal volume of water at 25° C., will form a separate phase, (2) the solvent by itself will dissolve at least about 10 wt % of bisphenol-A-bis(neopentylglycolphosphate) at a temperature in the range of 25 to 50° C., and optionally but preferably (3) the solvent by itself can be completely vaporized at a temperature below about 180° C.; (b) washing bisphenol-A-bis(neopentylglycolphosphate) product formed in a) while dissolved in inert organic solvent having such characteristics at least once with an aqueous alkaline washing solution; and (c) optionally but preferably, recovering bisphenol-A-bis(neopentylglycolphosphate) product from organic solvent having such characteristics.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: November 15, 2005
    Inventors: Bonnie G. McKinnie, Robert E. Williams, Gary L. Sharp, Alireza M. Dadgar
  • Patent number: 6793776
    Abstract: A process for the enhanced recovery and operation of hydrogen cyanide (HCN)/heads column obtained from the reactor effluent of an ammoxidation reaction of propane, propylene or isobutylene by reducing the polymer formation above the feed tray in the heads tower.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: September 21, 2004
    Assignee: The Standard Oil Company
    Inventor: Sanjay P. Godbole
  • Publication number: 20040168903
    Abstract: Basic (meth)acrylates IV are prepared by transesterification of alkyl (meth)acrylates I in the presence of a catalyst and working-up of the reaction mixture by distillation, by a process in which a gas or gas mixture which is inert under the reaction conditions is passed through the reaction zone and/or heat exchanger.
    Type: Application
    Filed: December 8, 2003
    Publication date: September 2, 2004
    Inventors: Matthias Geisendorfer, Gerhard Nestler, Jurgen Schroder, Hugues Vandenmersch
  • Publication number: 20040050679
    Abstract: (Meth)acrylic acid is worked up in the presence of at least one stabilizer by a process in which a stabilizer-containing mixture originating from the working-up and substantially freed from (meth)acrylic acid is passed into a distillation apparatus and a stabilizer-containing low boiler stream obtained from said apparatus is recycled to the working-up.
    Type: Application
    Filed: June 23, 2003
    Publication date: March 18, 2004
    Inventors: Ulrich Hammon, Heinz Friedrich Sutoris, Jurgen Schroder, Volker Schliephake
  • Publication number: 20040026228
    Abstract: A process for cleaning apparatus in which (meth)acrylic acid-containing organic solvents have been treated and/or generated and contain fouling and/or polymer and residues of organic solvent, in which the apparatus contents are subjected to a steam distillation in the apparatus.
    Type: Application
    Filed: May 29, 2003
    Publication date: February 12, 2004
    Applicant: BASF Aktiengesellschaft
    Inventors: Volker Diehl, Ulrich Jager, Jurgen Schroder, Joachim Thiel
  • Publication number: 20040011638
    Abstract: The invention concerns a method for stabilising acrylic monomers in a distillation column, comprising the following steps: adding at least a stabilising agent for acrylic monomers having a total concentration in the liquid phase ranging between 1 ppm and 5000 ppm; injecting oxygen in the distillation column with a O2/organic vapour mol ratio ranging between 0.01% and 1%; adding a metal sequestering agent having a concentration in the liquid phase ranging between 0.1 and 1000 ppm.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 22, 2004
    Inventor: Stephane Lepizzera
  • Publication number: 20040015032
    Abstract: The present invention includes methods for improving the operational parameters in primary fractionators which are experiencing diminished operation efficiencies due to deposits of polymerized hydrocarbon species. The invention comprises the step of adding a foam reducing amount of a foam reducing composition at the primary fractionator. A reduction in foaming is achieved whereby the operational efficiency of the process is improved based upon operation parameters including, but not limited to, liquid-gas contact ratio, product top temperature, pressure differentials, gasoline end point or combinations thereof.
    Type: Application
    Filed: July 16, 2002
    Publication date: January 22, 2004
    Inventors: Perumangode Neelakantan Ramaswamy, Mahesh Subramaniyam
  • Publication number: 20030213689
    Abstract: A process is described for preventing plugging of distillation equipment when the distillable liquid comprises a mixture of different liquids containing a dissolved substance tending to precipitate from the distillate. An adjuvant is provided to the mixture to be distilled, which adjuvant forms a composition with the dissolved substance that, if isolated, melts at a lower temperature than the distillation temperature.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 20, 2003
    Inventors: Bonnie G. McKinnie, Robert E. Williams, Gary L. Sharp, Alireza M. Dadgar
  • Patent number: 6596129
    Abstract: The present invention provides: a process can be preventive of a polymerization in a distillation apparatus when distilling a solution containing easily polymerizable substances such as (meth)acrylic acid and (meth)acrylic acid ester. In the distillation process for an easily polymerizable substance-containing solution which includes the step of distilling an easily polymerizable substance-containing solution by a distillation column equipped with a condenser for condensation at a vapor outlet of the distillation column, at least one condenser for polymerization inhibition is further placed in series on a vapor outlet side of the condenser for condensation, and the easily polymerizable substance which is contained in vapor from an upstream condenser is condensed by a downstream condenser.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: July 22, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Yoneda, Takeshi Nishimura, Yasuhiro Shingai, Hajime Matsumoto
  • Publication number: 20020166759
    Abstract: A modular solvent recovery device (30) includes an enclosure (34) mounted to a frame (32) to enclose a tank (70) having a solvent section (72) and a waste fluid section (73), a still (40) in which waste photopolymer fluid is distilled by application of heat and vacuum pressure to the waste photopolymer fluid to distill a solvent from the waste photopolymer fluid and reduce the waste photopolymer fluid to a coalescing concentrated residue, and a flash-point-increasing agent delivery system (95) to supply a flash-point-increasing agent to the concentrated residue in an amount sufficient to raise the flash point temperature of the coalescing concentrated residue to a predetermined temperature. The still has a manhole device (46) comprising a pivotally and telescopically mounted closure (47) having wheels (51) rotatably mounted thereto and tracks (52) mounted to the still to engage the wheels and raise the closure vertically above a manhole (42) of the still upon pivotal movement of the closure.
    Type: Application
    Filed: November 5, 2001
    Publication date: November 14, 2002
    Inventors: Michael D. Mabry, Donald R. McAllister
  • Patent number: 6475348
    Abstract: A mixture contains one or more vinyl-containing compounds as component (A) and, as a further component, a stabilizer (B) which contains one or more readily volatile nitroxyl compounds as component (b1), one or more sparingly volatile nitroxyl compounds as component (b2), if required one or more aromatic nitro compounds as component (b3) and, if required, one or more iron compounds as component (b4). Stabilizers (B) contain the components (b1) and (b2), (b1) and (b2) and (b3), (b1) and (b2) and (b4), and (b1), (b2), (b3) and (b4), and the premature polymerization of vinyl-containing compounds during their purification or distillation is inhibited by a process in which a stabilizer (B) is added or the components of stabilizer (B) are added as individual substances or in at least two groups of the components.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: November 5, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Heinz Friedrich Sutoris, Konrad Mitulla, Jacques Dupuis, Claus Kaliba
  • Patent number: 6475347
    Abstract: Disclosed herein are compounds of the structure wherein R1, R2, and R3 are organic radicals of C1 to C20, such that the combination of the three contain at least twelve carbon atoms and R3 is bound to the methylene carbon atom between X and the aromatic ring by at least one saturated carbon atom, allowing it to be easily separated from the polymerizable monomer by distillation; R1 and R2 have sufficient steric bulk to protect the phenol from reacting with an alkoxy group or halogen bound to silicon; and X is a neutral heteroatomic radical of oxygen, nitrogen, or phosphorus; and their use as inhibitors for the polymerization of (meth)acryloxysilanes.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: November 5, 2002
    Assignee: Crompton Corporation
    Inventors: Robert E. Sheridan, Kenneth W. Hartman
  • Patent number: 6391161
    Abstract: An organic isocyanate or mixture of isocyanates is treated with at least one high molecular weight ester of phosphoric acid corresponding to a specified formula to remove chlorine compounds. The isocyanates which are purified in this manner are useful for the production of coatings, polyurethane moldings and chemical intermediates.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: May 21, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Karsten Danielmeier, Dieter Mager, Reinhard Halpaap, Martin Brahm, Eric Hoffman
  • Patent number: 6358372
    Abstract: A method of removing at least one inert reaction diluent and/or wash solvent from a waste stream from a catalyst precursor production unit is disclosed, where the waste stream includes at least one reaction diluent or wash solvent, at least one titanium alkoxide, at least one magnesium alkoxide, and at least one alkanol. At least one inert reaction diluent and/or wash solvent is removed by contacting the waste stream with a solubilization solvent, and then subjecting the resulting stream to distillation. The solubilization solvent: (i) is present in an amount sufficient to maintain solubility of residual titanium and magnesium alkoxide species; (ii) has a boiling point higher than that of the one or more reaction diluent and/or wash solvent; and optionally but preferably (iii) does not form an azeotrope with the one or more reaction diluent and/or wash solvent.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: March 19, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Michael Philip Zum Mallen
  • Publication number: 20020029952
    Abstract: A process for the enhanced recovery and operation of hydrogen cyanide (HCN)/heads column obtained from the reactor effluent of an ammoxidation reaction of propane, propylene or isobutylene by reducing the polymer formation above the feed tray in the heads tower.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 14, 2002
    Inventor: Sanjay P. Godbole
  • Patent number: 6352618
    Abstract: A process is disclosed for manufacturing a concentrated residue from a photopolymer fluid which includes photopolymer and photopolymer solvent. The photopolymer fluid may be derived by chemically etching a photopolymer layer of a printing plate with a solvent. The process includes distilling the photopolymer fluid to recover the solvent and concentrate the photopolymer fluid to form a concentrated photopolymer residue, and mixing a flash-point-increasing agent with the concentrated photopolymer residue in an amount sufficient to raise the flash point temperature of the concentrated photopolymer residue to a pre-selected temperature to form the concentrated residue. The flash-point-increasing agent may be mixed with the waste photopolymer fluid prior, during, or after distillation. Also, the flash-point-increasing agent includes oils, such as paraffinic and naphthenic oils and a blend thereof.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: March 5, 2002
    Assignee: IHS Solvent Solutions, Inc.
    Inventors: Michael D. Mabry, Donald R. McAllister
  • Patent number: 6350352
    Abstract: A process for distillative separation of pure (meth)acrylic acid from mixtures which include comprise (meth)acrylic acid and dimers and oligomers of (meth)acrylic acid and are essentially free from aldehydes and from components whose boiling point is lower than that of (meth)acrylic acid, using a distillation apparatus which has a thin-film evaporator, a condenser and a connection which contains a baffle device and links the thin-film evaporator and the condenser.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: February 26, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Ruprecht Kroker, Manfred Wiedemann
  • Publication number: 20010050216
    Abstract: A process for distillative separation of pure (meth)acrylic acid from mixtures which comprise (meth)acrylic acid and dimers and oligomers of (meth)acrylic acid and are essentially free from aldehydes and from components whose boiling point is lower than that of (meth)acrylic acid, using a distillation apparatus which has a thin-film evaporator, a condenser and a connection which contains a baffle device and links the thin-film evaporator and the condenser.
    Type: Application
    Filed: February 22, 1999
    Publication date: December 13, 2001
    Inventors: RUPRECHT KROKER, MANFRED WIEDEMANN
  • Patent number: 6299734
    Abstract: An aqueous solution of free hydroxylamine is prepared by treating a hydroxylammonium salt with ammonia by the countercurrent method in a stripping column by a process in which hydroxylamine is liberated and at the same time the solution obtained is separated by distillation into an aqueous hydroxylamine solution and a salt fraction. The novel process can be carried out in a simple and gentle manner and on a large scale. The danger of decomposition is minimized owing to the low thermal load, the low concentration of hydroxylamine and the short residence time in the process.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: October 9, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Watzenberger, Peter Mauer, Eckhard Ströfer, Heiner Schelling, Hans-Michael Schneider
  • Patent number: 6296739
    Abstract: A process for the enhanced recovery and operation of hydrogen cyanide (HCN) / heads column obtained from the reactor effluent of an ammoxidation reaction of propane, propylene or isobutylene by reducing the polymer formation above the feed tray in the heads tower.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: October 2, 2001
    Assignee: The Standard Oil Company
    Inventor: Sanjay P. Godbole
  • Patent number: 6254734
    Abstract: A process for the evaporation of an available warm or hot liquid under a vacuum by applying a pressure drop thereon initiating flash-down evaporation, and followed by further flash-down evaporation under an applied pressure gradient whereby the residual liquid is raised by the vapor produced to an elevation sufficient for subsequently discharging the residual liquid from vacuum without a pump; and by separating the vapor phase from the residual liquid phase before condensing the vapor produced into distilled liquid.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: July 3, 2001
    Inventor: Hugo H Sephton
  • Patent number: 6235161
    Abstract: Inhibition of the formation of unsaturated carbon compounds during the heating of 141b involving the addition of various inhibitors such as butylene oxide and/or the use of a vessel made of a nickel alloy.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: May 22, 2001
    Assignee: Atofina Chemicals, Inc.
    Inventors: Richard M. Crooker, Maher Y. Elsheikh, Anthony D. Kelton, Morris P. Walker, Danny W. Wright
  • Patent number: 6159345
    Abstract: A method and apparatus for recycling and recovering potentially explosive solvents includes providing a contaminated solvent to a distillation tank, vaporizing the solvent in the distillation tank, thereby producing solvent vapor, condensing the solvent vapor, and adding a free radical scavenger substance to the distillation tank during the heating step. The vapor is then condensed and collected in a clean solvent tank where additional free radical scavenger substance is added to the clean solvent tank. Preferably, contaminated solvent is introduced into the solvent recovery system by providing contaminated solvent into contaminated solvent tank which is connected to the distillation tank, and an oxygen displacer substance is provided to the contaminated solvent tank and the clean solvent tank so as to minimize the amount of free oxygen in the tanks.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 12, 2000
    Assignee: Mitsubishi Chemical America, Inc.
    Inventors: John C. Donnelly, Guerry L. Grune, Gregory A. Frick, Kenneth L. Marsh